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 recent studies have revealed that eukaryotic 
genomes are almost entirely transcribed,

2,3 

generating an enormous number of non-pro-
tein-coding RNAs (ncRNAs).

4-6
 Thus there may 

be a vast reservoir of biologically meaningful 
ncRNAs that greatly exceed the  1.2% of the 
genome that corresponds to conventional pro-
tein coding genes.

7,8
 Several classes of func-

tional ncRNAs have been identified in recent 
years. Text box-1 provides a list of mamma-
lian RNA species and various categories of 
ncRNAs.  Natural antisense transcripts and 
microRNAs are two prominent and complex 
classes of ncRNAs.

1
 

Natural antisense transcripts 
RNA Natural antisense transcripts (NATs) 

are RNA molecules transcribed from the op-
posite strand of conventional (sense) genes 
and often overlapping in part with mature 
sense.9,10(Fig. 1) Sense and antisense RNAs 
can both encode protein

 
or be non-protein-

coding transcripts; however, the most promi-
nent form in the mammalian genome is a 
non-protein-coding antisense partner of a pro-
tein-coding gene.

11
 NATs are shown to have 

tissue-specific expression pattern, support-
ing involvement of these ncRNAs in sophisti-
cated regulatory functions of various organs.

12

Mammalian genomes encode numerous 
non-protein-coding RNAs (ncRNAs) in-

cluding microRNAs and natural antisense tran-
scripts. Functional validation studies indicate 
that ncRNAs are involved in regulation of vari-
ous normal cellular pathways and a range of 
essential biological processes. Deregulations 
of ncRNAs are also documented in variety of 
human complex disorders including cardiovas-
cular and hematopoietic disorders. This review 
provides an overview of different ncRNA class-
es and summarizes recent reports regarding 
involvement of ncRNAs in cardiovascular and 
hematopoietic disorders. 

The human genome sequencing projects re-
vealed that the human genome contains over 3 
billion DNA base pairs, but only 20,000–25,000 
protein-coding genes. In fact, only about 1.2% 
of the genome codes for proteins.

1
 Surprising-

ly, the number of human genes seems to be 
almost equal to lower mammals like rodents, 
and less than a factor of two greater than that 
of many much simpler organisms, such as the 
roundworm and the fruit fly. On the other hand,

  Review



                                                                              MA Faghihi                                                                                          www.icrj.ir

73                                                                                                                                Iranian Cardiovascular Research Journal    Vol.3, No. 2, 2009      

Recent research on NATs, including several 
large-scale expression-profiling studies,

11,12
 

has conclusively established the existence 
of NATs in eukaryotic genomes. In fact, the 
consensus opinion is that the mammalian 
genome encodes an enormous number of 
natural antisense transcripts, most of which 
represent ncRNAs.

11
 However, there are 

many unanswered questions that still exist 
concerning NATs biological functions and their 
heterogeneous mode of actions in various 
cells. For instance, what fraction of NATs may 
have functional significance, and how many 

different regulatory mechanisms may exist 
for these RNA molecules? NATs appear to be 
utilizing various cellular pathways, but it is still 
not clear which intrinsic properties of natural 
antisense RNA molecules or extrinsic features, 
such as protein interactions, cellular and 
developmental context are decisive for any 
given pathway. How is the expression of these 
ncRNAs regulated in various cells, and what are 
the extrinsic factors that affect the regulatory 
output of antisense RNA transcripts? Based 
on what we know about the broad expression 
of NATs in different tissues and cell types, and 

1.Messenger RNA (mRNA), well known class of RNA 
with average size of 2 kb. It is transcribed from DNA 
and processed before leaving the nucleus. The proc-
essed mRNA, which is located in cytoplasm, contains 
polyA tail, cap structure, open reading frame and it is 
frequently spliced, in many cases alternatively. 

2.MicroRNA (miRNA) is a small non-coding regulatory 
RNA. The miRNA precursor (pri-premiRNA) is tran-
scribed into a single stranded RNA transcript of ap-
proximately 150-250 nucleotides in length. A ‘hair-
pin’ secondary structure is formed in pri¬premiRNA 
which is then processed by the enzyme Drosha and 
exported to the cytoplasm. Pre-miRNA is further 
processed by the enzyme Dicer to create a stable, 
~22 nucleotide single-stranded mature miRNA from 
one arm of the hairpin. The mature miRNA sequence 
tends to be highly conserved. 

3.Small nucleolar RNAs (snoRNAs) are a class of small 
RNA molecules that guide chemical modifications 
(methylation or pseudouridylation) of ribosomal 
RNAs (rRNAs) and other RNA genes (tRNAs and 
other small nuclear RNAs (snRNAs)). snoRNAs are 
commonly referred to as guide RNAs but should not 
be confused with the guide RNAs (gRNA) that direct 
RNA editing in trypanosomes. The snoRNAs are less 
than 70 nucleotides in length including 10-20 nucle-
otides of antisense elements for base pairing. 

4.Small nuclear RNA (snRNA) is a class of small RNA 
molecules that are found within the nucleus of eu-
karyotic cells. They are involved in a variety of proc-
esses such as RNA splicing, regulation of transcrip-
tion factors (7SK RNA) or RNA polymerase II (B2 
RNA), and maintaining the telomeres. 

5.Piwi-interacting RNA (piRNA) is a class of small RNA 
molecules that is expressed in mammalian testes and 
forms RNA-protein complexes with Piwi proteins. 
These piRNA complexes (piRCs) have been linked 
to transcriptional gene silencing of retrotransposons 
and other genetic elements in germ line cells, particu-
larly those in spermatogenesis. Purification of these 
complexes has revealed that these oligonucleotides 
are approximately 29-30 nucleotides long. 

6.Rapid associated RNA (RasiRNA): is presumably de-
rived from long double stranded RNA (dsRNA) and 
match to repetitive sequence elements in antisense 
orientation. In the Drosophila germline, rasiRNAs 
ensure genomic stability by silencing endogenous 
selfish genetic elements such as retrotransposons and 
repetitive sequences 

7.Natural antisense transcripts (NAT) are single-strand-
ed RNAs that are complementary to mRNAs. NAT 
regulate mRNAs in a concordant or discordant man-
ner. The average length of NAT is 2 kb, but in some 
cases it is extremely long (over 100 kb). NAT in some 
cases is spliced and contains polyA, cap structure or 
even open reading frame. 

8.Other long non-coding RNA transcripts (sometimes 
referred to as macroRNA) are diverse and not neces-
sarily well conserved; they are often processed, con-
taining polyA tail and/or cap structure. There is no 
significant open reading frame for macroRNAs and 
their functions are largely unknown. 

9.Ribosomal RNA (rRNA) and transfer RNA (tRNA) 
are well studied components of the protein synthesis 
machinery. 

 

Text Box 1. Some mammalian RNA species
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Figure 1. Illustration of prominent transcriptomics 
patterns relating to complex loci in human and mouse 
genomes. (A) cis-NATs, like BACE1-AS

9 
or naPINK1

58 
in 

which two converging transcripts, from opposite strands 
of DNA, have overlapping exons shown as hashed parts. 
(B) Bi-directional promoters as for example for FMR4

59 

drive transcription of two RNAs in opposite directions. 
The transcripts may share the same transcription start 
site (TSS), or even exhibit overlapping 5’UTRs. (C) Full 
or intronic transcripts in which antisense RNA (blue) is 
inside the boundary of the sense transcript (red). Even 
if the fully processed RNAs do not contain overlapping 
sequences, RNA duplexes can still form between 
unprocessed transcripts. Alternatively, antisense RNA 
can bind to the DNA and exert its regulatory function.

their varied proposed functions, NATs appear 
to be a heterogeneous group of regulatory 
RNAs with a wide variety of biological roles.

Diverse regulatory mechanisms recruited 
by NATs 

The NATs have been suggested to regulate 
gene expression by controlling various levels 
of gene expression including chromatin archi-
tecture/epigenetic memory, transcription, RNA 
splicing, editing, transcript localization,

9
 trans-

lation and turnover.
13-16

 NATs have been shown 
to be involved in methylation,

17
 demethylation,

18
 

parental gene imprinting,
19

 chromosome X in-
activation,

20
 splicing,

21-23
 transport,

24
 polyad-

enylation,
25-27

 editing and stabilization.
28,29

NATs in cardiac gene regulation 
NATs are shown to be involved in cardiac 

gene regulation
30 

as well as cardiac
31,32 

and skeletal
33 

myosin gene organization. 
Specifically, cardiac α and β myosin heavy 
chain gene switching is suggested to regulate 
through a mechanism involving naturally 
occurring antisense transcript.

31
 Induction of 

hypothyroidism and diabetes states in rats 
were shown to alter the expression of NATs 
and subsequently the sense α and β myosin 
mRNAs. Additionally, in vitro stimulation of 
neonatal rat cardiac myocytes with either 
Triiodothyronine (T3) or phenylephrine is 
shown to alter α and β sense and antisense 
RNA level, in a concordant way.

32
 Antisense 

transcripts are originated from bidirectional
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transcription in the intergenic region of both 
α and β myosin heavy chain genes and could 
be accounted for cardiac α to β gene switching. 

NATs in regulation of hemetopoiesis 
Antisense transcript for PU.1 mRNA is a well 

documented case of translational inhibition 
mediated by NATs. Transcription factor PU.1 
is an important regulator of hematopoiesis and 
suppressor of leukemia transformation. PU.1 
mRNA translation is inhibited by a noncoding 
NAT.

34
 Both sense and antisense transcripts 

of the PU.1 are co-regulated by an upstream 
regulatory element (URE). PU.1 antisense 
RNA is a polyadenylated transcript with a 
lower concentration but a longer half-life time 
than the sense PU.1 transcript and is equally 
distributed between cytoplasm and nucleus.

34
 

Processed antisense RNA in the cytoplasm 
may bind to the sense transcript and stall 
translation between initiation and elongation 
steps.

34
 

NAT involvement in certain forms of anemia 
In one inherited forms of anemia, α -thal-

assemia, a NAT has been reported to cause 
silencing of the α-globulin gene via methyla-
tion.

17
 Tufarelli et al

17
 found that a deletion in 

the globin gene locus of thalassemic patients 
relocates the constitutively active LUC7L gene 
300 nucleotides downstream of alpha-2 glo-
bin (HBA2) gene. HBA2 encode hemoglobin 
alpha chain and antisense RNA causing pro-
moter methylation and transcriptional silenc-
ing of HBA2 gene. This phenomenon results 
in anemia in patients because of reduction in 
hemoglobin alpha chain, which is major con-

stituent of adult hemoglobin. A mouse model 
for genomic rearrangement (relocation of LU-
C7L) recapitulated the α-thalassemia disease 
phenotype and confirmed the role of cis-NAT in 
early developmental CpG island methylation.

17
 

MicroRNA synthesis and function 
MiRNAs are a class of small ncRNAs (19-

25 nucleotides) that have recently generated 
much interest.

35-37
 The enzymatic machin-

ery and sequence of events, involved in the 
biogenesis of miRNAs are highly conserved 
across animals and plants (Fig. 2).  Specifi-
cally, miRNA precursor (immature miRNA) is 
transcribed into a single stranded RNA tran-
script of approximately 50-120 nucleotides 
in length, which forms a ‘hairpin’ secondary 
structure.

38,39
 This precursor miRNA hairpin is 

exported from the nucleus to the cytoplasm, 
where it is processed by Dicer, in combina-
tion with Argonaute proteins, and the RISC 
complex (RNA-induced silencing complex) to 
yield a stable, ~19 nucleotides single-stranded 
mature miRNA from one arm of the pre-miR-
NA hairpin.

39
 This mature miRNA sequence is 

highly conserved across species.
35,36

 In plants, 
miRNAs often demonstrate complete or pre-
cise complementary base-pairing with target 
mRNA transcripts,

40
 resulting in the cleavage 

and degradation of target mRNA transcripts, 
via RNA interference (RNAi) machinery.

41,42
 In 

contrast to plant, animal miRNAs are gener-
ally thought to recognize and bind to the target 
mRNA transcripts by incomplete complemen-
tary base pairing. Such imperfect base pairing 
with target transcripts results in translational 
inhibition and down-regulation of associated 
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proteins. Thus, miRNAs may represent ‘master 
regulators’ of gene expression that orchestrate 
the expression levels of clusters of associated 
proteins.

43,44

The miRBase Sequence Database provides a 
searchable online resource for entire published 
miRNA sequences.

45,46
 The miRBase also con-

tains predicted miRNA target genes. Latest 
release (Release-13.0) of the miRBase data-
base contains 9539 hairpin precursor miRNAs, 
expressing 9169 mature miRNA products, in 
103 species.

31
 The data are freely available to 

all through the web interface at http://microrna.
sanger.ac.uk. 

Indeed, 713 human miRNAs have been 
experimentally identified and it has been 
estimated that more than 33% of human gene 
products may be regulated by miRNAs.

47

MicroRNA and cardiovascular disorders 
The essential role of miRNAs in divers bio-

logical processes, such as cell proliferation, 
differentiation, apoptosis and stress response 
has been described.

48,49
 Importantly, there are 

several reports indicating pivotal role for miR-
NAs in cardiovascular physiologic function as 
well as various cardiac disorders. These re-
ports include, but not limited to, involvement 
of miR-1 in cardiac arrhythmias,

50,51
 miR-29 

Figure 2. MicroRNA (miRNA) bio-
genesis: MiRNAs are transcribed by 
RNA polymerase II and usually form 
characteristic hairpin structure, which 
is termed primary miRNAs (pri-miR-
NAs).60 Pri-miRNAs are processed 
by ribonuclease enzyme, Drosha, to 
release a hairpin, which is called pre-
cursor miRNA (pre-miRNA). Expor-
tin-5 is responsible for pre-miRNAs ex-
port from nucleus to the cytoplasm.61 
Dicer is a member of the RNase III 
superfamily of ribonucleases that has 
been implicated in pre-miRNA cleav-
age, in the cytoplasm; to produce ap-
proximately 19 nucleotides long double 
stranded RNA. The resulting double-
stranded RNA has two nucleotides 3’ 
overhangs. Only one of the two strands 
is the mature miRNA, which is then in-
corporated into a multi protein complex 
called RNA-induced silencing complex 
(RISC).  MiRNAs usually bind to target 
mRNA through nucleotide complemen-
tarities between miRNA “seed region” 
and 3’ UTR region of the mRNA. Bind-
ing of miRNA to RNA transcript com-
monly caused translation repression of 
the targeted mRNA.
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in cardiac fibrosis following myocardial infarc-
tion

52
 and miR-133 in cardiac hypertrophy.

53
 

Specifically, miR-133 has been shown to 
protect against cardiomyocytes hypertrophy 
both in human and mouse models of cardiac 
hypertrophy.

53
 Both miR-133 and miR-1 are 

skeletal and heart muscle-specific miRNAs 
that control myogenesis, cardiac develop-
ment and performance.

54
 Over-expression of 

miR-133 or miR-1 caused inhibition of cardiac 
hypertrophy in vitro and blockage of miR-133 
with antagomir caused sustained and marked 
cardiac hypertrophy in vivo. The effects of 
these miRNAs on cardiac hypertrophy is ap-
peared to mediate through their binding and 
posttranscriptional regulation of RhoA, Cdc42 
and Nelf-A/WHSC2 mRNAs.

53

Another well documented miRNA involved in 
cardiac pathologies is the miR-21, which is 
shown to protect cardiomyocytes against re-
active oxygen species.

55
 Exposure of cardiac 

myocytes to hydrogen peroxide caused up-
regulation of miR-21 and down regulation of its 
direct target gene, Programmed cell death 4 
(PDCD4).

55
 Moreover, miR-21 is shown to ex-

press in cardiac fibroblasts and regulate the 
ERK-MAP kinase  signaling pathway. The ERK-
MAP kinase signaling pathway is regulating fi-
broblast survival and growth hormone secre-
tion and controlling the interstitial fibrosis and 
cardiac hypertrophy.

56
 Blockage of miR-21, in 

vivo, in the mouse model of pressure-overload 
cardiomyopathy, attenuates cardiac dysfunc-
tion.

56
 Therefore, deregulation of miR-21 might 

participate in several heart malfunctions such 
as cardiac hypertrophy, heart failure and myo-
cardial infarction by increasing susceptibility to 
reactive oxygen species injuries. 

Additionally, up-regulation of miR-1 and 
miR-206 is documented in rat model of 
myocardial infarction.

57
 The target mRNA for 

miR-1 and miR-206 is appeared to be insulin-
like growth factor 1 (IGF-1), which contains 
sequence complementary to both miRNAs 
within 3’-untranslated region (3’UTR) of IGF-1 
mRNA.

57
 Induction of myocardial infarction in 

rats caused down-regulation of IGF-1 protein, 
without obvious alteration of IGF-1 mRNA, 
which suggest a posttranscriptional regulation 
of this protein by miR-1 and miR-206.      

Concluding remarks 
In conclusion, enormous body of evidence 

indicates that there are widespread occur-
rences of non-protein-coding RNAs, including 
NATs and miRNAs in mammalian genomes 
and that many of these regulatory elements 
are indeed functionally relevant in controlling 
gene expression. Considering tissue-and cell 
type-specific expression patterns of ncRNAs 
and their heterogeneous proposed functions, 
it seems that we have, so far, only touched 
parts of an elephant in the dark. The big pic-
ture, in the light of future studies, probably will 
include these parts, but it could be dissimilar 
to our current understandings.  I summarized 
here the recent reports regarding involvement 
of two ncRNA classes, NATs and miRNAs in 
various cardiovascular and hematopoietic dis-
orders. Interestingly, most reported functional 
ncRNAs are helping to mediate precise gene 
expression in response to a variety of envi-
ronmental stimuli and to keep tight regulation 
of protein expression by allowing proteins to 
perform their physiological functions while 
avoiding the serious consequences of over or
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