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Abstract

Coagulation factor VII (FVII) is a vitamin K-dependent serine protease that plays a pivotal role in normal hemostasis. Mature FVII
is a glycoprotein comprised γ-carboxyglutamic acid-rich (Gla) domain, two epidermal growth factor (EGF)-like domains, an activa-
tion domain, and a serine protease domain. FVII requires proteolytic activation followed by tissue factor (TF) binding for maximal
activity. The F7 gene (14.8 kb) is located on 13q34, composed of nine exons and eight introns. The congenital FVII deficiency is a
rare coagulopathy with an autosomal recessive pattern of inheritance that occurs due to mutation in the F7 gene. A considerable
number of mutations of different types have been identified throughout this gene affecting the expression, structure, and post-
translational alterations of the protein. FVII deficiency is the most frequently recessively inherited bleeding disorder. Subjects with
FVII deficiency show a wide range of symptoms, including cutaneous hemorrhage, mucosal hemorrhage, gastrointestinal bleed-
ing, joint bleeding, and central nervous system (CNS) hemorrhage. Unlike other coagulation factor deficiencies, serum levels of FVII
do not demonstrate the severity of the disease, and there is no direct correlation between serum levels and clinical complications.
Replacement therapy is the treatment of choice for FVII deficiency. Various therapeutic products such as prothrombin complex con-
centrate, plasma-derived FVII concentrate, fresh frozen plasma, and activated recombinant FVII are available to treat FVII deficient
individuals. This review aims to provide information on molecular, biochemical, and clinical aspects of coagulation FVII, its role in
hemostasis, and the consequences of its deficiency.
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1. Context

Coagulation factor VII (FVII), the first factor in the coag-
ulation cascade, is one of the most critical factors in main-
taining hemostasis in physiological conditions. Blood flu-
idity and vascular system are maintained by primary and
secondary hemostasis systems after tissue injury (1). Pri-
mary hemostasis is defined as platelet plug formation and
platelet aggregation, while secondary hemostasis is insol-
uble fibrin deposition via the coagulation cascade. Dur-
ing vascular injury, the vessel is immediately contracted at
the injury site resulting in platelet plaque formation, fib-
rin clot generation, white blood cell accumulation in the
damaged tissue region, and inflammation and repair initi-
ation (1).

The coagulation cascade is initiated through intrin-
sic or extrinsic pathways (Figure 1). The extrinsic path-
way requires tissue factor (TF), a single transmembrane
glycoprotein located in the vascular wall, and becomes

exposed to blood only after vascular injury. TF has a
high affinity for FVII, and in the presence of calcium ions,
these molecules form a complex that initiates coagulation
through the extrinsic pathway (2). Although the precise
mechanism of blood coagulation is not well defined, the
extrinsic pathway seems to play a significant physiologi-
cal role (3). All the required protein components are avail-
able in the blood circulation in the intrinsic pathway, and
no external protein source is required. Initiation of intrin-
sic pathway requires negatively charged surfaces. The in-
trinsic pathway is clearly important in blood clotting in
vitro. However, its physiological significance is unknown,
and the activation of this pathway may be limited to non-
physiological conditions, such as exposing blood to glass
or kaolin (2, 3).

Coagulation factors include enzymes, non-enzymatic
cofactors (such as factors VIII and V, TF, and thrombomod-
ulin), and structural proteins (fibrinogen). All the enzyme
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Figure 1. Overview of coagulation cascade: Coagulation cascade initiates by surface contact (through intrinsic pathway) or vascular injury (through extrinsic pathway). Both
pathways lead to activation of FX, where the common pathway begins. Eventually, the conversion of fibrinogen to fibrin culminates in fibrin clot formation, ensuring the
maintenance of hemostasis.

proteins involved in coagulation (such as FVII, FIX, FX, and
prothrombin) are vitamin K-dependent serine proteases
circulating in the plasma in the form of zymogen (inac-
tive precursor), which become activated a few seconds af-
ter a vascular injury (2). This review highlights the molec-
ular and physiological properties of coagulation FVII and
describes its role in hemostasis. We also discuss the clini-
cal aspects and consequences of FVII deficiency.

2. FVII Protein

Mature FVII (50 kDa-406 amino acids) is a glycoprotein
synthesized by the liver cells and secreted into the serum as
a serine protease zymogen at a low concentration of 10 nM
(500 ng/mL) (4, 5). Spontaneous extracellular proteolytic
cleavage of about 1% of the serum FVII in the absence of vas-
cular injury produces activated FVII (FVIIa). Factor seven
activating protease (FSAP) is a plasma protein thought to
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be responsible for activating FVII. However, further studies
have shown that the role of FSAP in activating FVII is negli-
gible. Thus, the origin of FVIIa in plasma remains unknown
(6-8). The half-life of circulating FVII zymogen in humans
is about 4 - 6 hours, while the plasma half-life of FVIIa is 2.5
hours. Compared to other vitamin K-dependent coagula-
tion proteases, the circulating half-life of FVII and FVIIa is
very short, complicating the treatment of FVII deficient in-
dividuals (Table 1) (9).

Table 1. The Plasma Half-life of Coagulation Factors

Coagulation Factor Plasma Half-life

Factor FVII 4 - 6 hours

Factor VIIa 2.5 hours

Fibrinogen 2 - 4 days

prothrombin 3 - 4 days

Factor V 36 hours

Factor X 40 - 60 hours

Factor XI 50 hours

Factor XIII 9 - 12 days

FVII has either a 38 or a 60 amino acid signal peptide
required for translocating the newly synthesized protein
into the lumen of the endoplasmic reticulum. Propep-
tide, which follows the signal peptide, directs the vitamin
K-dependent γ-carboxylation of the mature FVII. This do-
main is part of the FVII pre-pro leader. Upon transfer to the
trans-Golgi, propeptide is cleaved and removed. Propep-
tide cleavage occurs in the trans-Golgi just before the se-
cretion of FVII. The amino terminus of the mature FVII has
a region rich in γ-carboxyglutamic acid (Gla). The precur-
sor FVII has a peptide that directs the γ-carboxylation of 10
glutamic acids. The Gla residues are essential for FVII to ob-
tain calcium-dependent conformation and bind to phos-
pholipid surfaces (10, 11).

The following domains in the FVII structure are the two
epidermal growth factor-like (EGFs) domains, followed by
an activation domain. EGF domains are responsible for
interacting with the cell membranes and other coagula-
tion cascade proteins. The activation domain provides
a proteolytic cleavage site. In the presence of calcium
ions and phospholipids, the single-chained FVII is quickly
hydrolyzed by FXa (activated FX) and thrombin and con-
verted into a two-chained form (6, 11). Activation of FVII
involves cleavage of the peptide bond between Arg152 and
Ile153 in the activation domain creating a heavy and a light
chain that remain attached by disulfide bonds. This pro-
teolysis is associated with an 85-fold increase in FVII ac-

tivity. The remainder of the protein comprises the ser-
ine protease catalytic domain. Vitamin K-dependent co-
agulation factors, including FVII, have conserved disulfide
bonds. There are three disulfide bonds in each EGF domain
and several disulfide bonds in the catalytic domain of FVII.
Disulfide bonds form in the endoplasmic reticulum, and
chaperons such as protein disulfide isomerase (PDI) are es-
sential for forming proper disulfide bonds (6, 10, 12).

FVIIa has catalytic activity but acts more as a zymogen
before binding to TF. The FVIIa-TF complex formation in-
creases the catalytic activity of FVIIa, by more than 1000
fold (13). It has been suggested that TF probably causes a
change in the active site of FVIIa, which leads to a more ef-
ficient hydrolysis of the substrate. The interaction of FVIIa
with TF depends on calcium ions. The Gla domain sat-
uration with Ca2+ is likely responsible for the high affin-
ity of FVIIa for TF (14). Various studies have shown non-
hemostatic properties for TF and FVIIa-TF complex, such as
cell signaling, metastasis, and angiogenesis (15-18).

3. Factor VII Gene

The human FVII encoding gene (F7) is a single copy
gene on the long arm of chromosome 13 (13q34) and is 2.8
kb downstream of the FX (F10) gene (6). O’Hara et al. re-
ported the complete nucleotide sequence of the human F7
gene in 1987 (19). The F7 gene (14.8 kb) includes nine exons
and eight introns (Table 2). Exon 1a, 1b, and part of exon 2
code for a pre-pro leader sequence that is cleaved away dur-
ing the protein processing. The remaining exons code for
406 amino acids that remain in the mature protein circu-
lating in the blood (19). The F7 gene gives rise to three differ-
ent mRNA transcripts. The first transcript (NM_019616.4)
codes for a protein with a 38 amino acid long pre-pro leader
(total length of the protein is 444 residues), and the second
transcript (NM_000131.4) codes for an FVII molecule with
a 60 amino acid long pre-pro leader (total length of the
protein is 466 residues). Genomic sequence information
has shown that the first transcript lacks an optional exon
(exon 1b). Both transcripts are functional and give rise to
the production of biologically active FVII. The final product
of both transcripts (mature FVII protein) is identical. In the
normal liver, mRNA lacking exon 1b is more abundant than
the mRNA possessing this exon. The third transcript (NM_-
001267554.1) lacks the amino-terminal domains. However,
the physiological significance of the third transcript is un-
known (6). As for other vitamin K-dependent proteins,
each of the exons of the F7 gene codes for a separate pro-
tein domain. These domains are conserved between vita-
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min K-proteins, and between them, the activation domain
has the lowest degree of conservation (19).

Table 2. The Exons and Introns of the F7 Gene

Exon Intron Coding Region Length (bp)

1a Pre-pro leader 100

1a 1068

1b Pre-pro leader 66

1b 2574

2 Pre-pro leader, Gla domain 161

2 1928

3 Gla domain 25

3 70

4 EGF domain 139

4 1716

5 EGF domain 141

5 971

6 Activation domain 110

6 595

7 Catalytic domain 124

7 817

8 Catalytic domain 1622

Promoter and other regulatory elements located im-
mediately 5’ to the human F7 gene have been extensively
investigated. The promoter region of the F7 gene lacks the
typical TATA-box. This feature is also seen in the promoter
of other coagulation proteins such as FXII, FX, FIX, and pro-
thrombin. Although a CAAT-box is critical for FIX and FX
promoters, there is no such element in the FVII promoter
region. The major transcription initiation region of the F7
gene is located within a strong promoter element at posi-
tion -51 upstream of the translation starting point. Sp1 and
HNF-4 binding sites, which are crucial in the promoter ac-
tivity of F7, are located upstream of the transcription start
site (Figure 2). There are two silencer elements upstream
of the promoter region (20). In addition, the F7 gene can
be regulated at least by a remote gene. Fagan et al. have
shown that at least a gene locus on 8p23.2-23.1 controls FVII
levels (21).

4. F7 Gene Variations

A significant number of mutations have been re-
ported in the F7 gene. According to the FVII gene vari-
ant database (factorvii.org) and human gene mutation

database (hgmd.cf.ac.uk), there are more than 200 differ-
ent variants throughout the F7 gene that can affect all pro-
tein domains. Missense mutations are the most frequent
type of mutation, followed by splice site mutations, pro-
motor mutations, nonsense mutations, and small inser-
tions and deletions (15). Many of these mutations are con-
sidered the cause of FVII deficiency, but only a small num-
ber of them have been functionally studied and described.
The International Registry on FVII deficiency (IRF7) and the
Greifswald Registry record more than 1000 FVII deficiency
genetic diagnoses (22, 23). In the F7 gene, several large rear-
rangements have been identified that can lead to FVII defi-
ciency. So far, five large chromosomal deletions of chromo-
some 13, including the entire or part of the F7 gene, have
been reported (24-27). Despite the observation of muta-
tions in the promoter, exon, and splice sites in most pa-
tients, less than 10% of the patients had no mutations in the
F7 gene. Even with next-generation sequencing, mutations
in some patients remain unknown, suggesting that FVII de-
ficiency could be caused by mutations in genes other than
F7 (28, 29).

The plasma levels of FVII (activity and antigen) are vari-
able between healthy and FVII deficient subjects, making
FVII:C and FVII:Ag tests (FVII antigen level) ineffective for di-
agnosing FVII deficiency. Different environmental factors
such as sex, age, weight, and diabetes are of considerable
importance. For example, FVII levels increase with age and
are lower in women than men at younger ages (30). On the
other hand, differences in plasma levels of FVII can also be
due to genetic factors in which the role of multiple poly-
morphisms has been proven (31).

G > A substitution at position -402 and G > T in -401 are
two common unrelated functional polymorphisms in the
promoter region of the F7 gene. The -401T allele decreases
the basal transcription level of the F7 gene. In contrast, the
-402A allele is associated with increased transcriptional ac-
tivity of the F7 gene (32). The FVII levels in healthy subjects
are reduced by 25% when a 10bp insertion (rs36208070) oc-
curs at position -323 in the 5’UTR of the F7 gene (20). The
G73A polymorphism (rs6039) in intron 1a of the F7 gene can
also affect the FVII level. The A73 allele reduces the plasma
levels of FVII (33). Previous studies revealed that coding re-
gion polymorphisms could also affect the FVII plasma level.
An example is the Q353 allele of R353Q (rs6046) polymor-
phism derived from the substitution of G to A at position
10976 of exon 8, which causes a 25% decrease in FVII activ-
ity and antigen levels (34). Additionally, genome-wide as-
sociation studies (GWAS) have identified several genomic
regions associated with FVII levels that may provide addi-
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Figure 2. Major transcription binding sites and promoter elements of the F7 gene

tional data on how FVII levels vary among individuals (35,
36).

Multiple studies have investigated the association be-
tween F7 polymorphisms and cardiovascular diseases. In
this regard, a meta-analysis revealed that the -323Ins10
polymorphism was significantly associated with coronary
heart disease (CHD) in Asians and Europeans, and R353Q
polymorphism showed an association with CHD in the
Asian population (37). Another meta-analysis confirmed
the association of R353Q with CHD and suggested that
R353Q polymorphism was associated with the reduced risk
of CHD in Asians (38). F7 gene polymorphisms may be in-
volved in response to anticoagulants such as warfarin. Re-
search has shown that R353Q plays a critical role in the ini-
tial response to warfarin (39).

For some mutations detected in patients, recombinant
FVII expression and site-directed mutagenesis of F7 have
been used in various functional studies. These studies ex-
amine the effects of different variants on FVII features such
as the secretion rate, ligand binding, coagulation activity,
and intracellular localization to elucidate the molecular
basics of the deficiency. FVII mutants are valuable tools for
evaluating single residues or defining essential regions in-
volved in the structure-function relationship and the for-
mation of macromolecular complexes (40). Site-directed
mutagenesis, in vitro expression, and description of TF and
FVII variants have identified essential amino acids for TF
binding and TF-FVIIa activity. Such studies suggest that the
binding of FVII to TF occurs through a large interface, and
the interface includes four FVIIa domains and two extracel-
lular TF domains (41). A study showed that FVII with the
R79Q mutation was normally expressed but had a reduced

affinity for TF binding (42). In this regard, further stud-
ies taking advantage of X-ray crystallography showed that
the side chain of this residue played an important role in
the interaction of EGF1 with TF (43). Elsewhere, an investi-
gation indicated that the F328S mutation reduced the FVII
affinity for TF and prevented FVII from activating FX, pos-
sibly due to a disruption in the site of attachment to the
substrate (44). The R152Q mutation showed poor expres-
sion in another functional study and had no detectable co-
agulation activity. This mutation occurs at the site of pro-
teolytic cleavage of FVII and inhibits the activation of FVII
(45). H348R and S282R mutations detected in a compound
heterozygote patient were examined in a study. Both mu-
tations showed reduced secretion and coagulant activity
while not altering the protein’s intracellular localization
(40).

Some mutations lead to intracellular accumulation of
FVII. For instance, the T359M mutation causes FVII to ac-
cumulate within the cell and thus results in a severe de-
fect in F7 secretion (46). Interestingly, another study ex-
amining the functional properties of FVII showed that C91S
mutation led to increased protein secretion in the culture
medium while severely reducing coagulant activity (5).

Cysteine residues play an essential role in the function
and structure of FVII protein. For instance, the Cys329Gly
mutation in the catalytic domain disrupts the formation of
a disulfide bond with Cys310. This disulfide bond is essen-
tial for binding TF and the catalytic function of FVIIa (47).

The development of advanced bioinformatics software
and in silico tools enables us to investigate the phenotype-
genotype correlation and predict the effects of novel mu-
tations detected in genetic diseases, including FVII de-
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ficiency. Tiscia et al. characterized a novel variation
(c.1199G>C) using the bioinformatics tools such as PROMO,
SIFT, and Polyphen-2. In silico predictions revealed that
c.1199G>C had a damaging effect on FVII conformation via
influencing the formation of the Cys400-Cys428 disulfide
bond (48).

Novel variations keep being detected, and their ef-
fects need to be examined using in silico and laboratory
testing. In 2021, Zhang et al. detected four novel vari-
ations (c.251T>C, c.466G>A, c.1016C>T, c.-16T>G) and in-
vestigated their pathogenicity using PyMOL2.4, Swiss-PDB
Viewer, SIFT, POLYPHEN-2. Bioinformatics analyses found
these variations pathogenic (49). In another study, Liang
et al. detected two novel variations in three patients with
FVII deficiency; the molecular model analysis of the two
novel mutations (Cys115Arg and Pro324Leu) indicated im-
pairment of the proper folding of the EGF1 domain and im-
pairment of the F7 coagulant activity (50). Cys164Tyr, an-
other novel mutation, was found in a patient with mild
clinical manifestations despite deficient FVII activity (51).

5. FVII Deficiency

Coagulation defects other than Hemophilia A,
Hemophilia B, and von Willebrand’s disease, generally
autosomal recessive, are rare, and the frequency of ho-
mozygous individuals in the general population ranges
from 1 in 2,000,000 for FII and FXIII deficiencies to 1 in
500,000 for FVII deficiency (9, 52, 53). There are some
exceptions where these deficiencies have higher frequen-
cies, such as countries with large Jewish populations, the
Middle East countries, and South India. In the latter two
cases, familial marriages are relatively common and cause
autosomal recessive traits to become more abundant (54,
55).

Congenital FVII deficiency (OMIM 227500) is the most
common rare congenital coagulation disorder (RICD) (56);
it has autosomal recessive inheritance and is often asso-
ciated with consanguineous marriage. Heterozygous in-
dividuals have approximately 50% of normal coagulation
factor levels and usually lack clinical symptoms, but this is
not always the case, and occasionally, a heterozygote may
have significant bleeding events. In such cases, the coexis-
tence of a polymorphism affecting the FVII level might be
the underlying cause (31, 57). Based on activity and antigen
levels, FVII deficiency is divided into three categories: CRM-

(cross-reacting material negative), CRM+, and CRMred (58).

Clinical manifestations of congenital FVII defi-
ciency vary widely, ranging from asymptomatic to life-

threatening bleeding (59). Based on clinical features,
people suffering from FVII deficiency are categorized into
severe, mild/moderate, and asymptomatic groups. There
is significant molecular and phenotypic heterogeneity in
FVII-deficient individuals. Box 1 summarizes the clinical
manifestations of FVII deficiency. The frequency of symp-
tomatic females is more than symptomatic males due to
menorrhagia, which is the most common symptom in
women. Life-threatening bleeding, including gastroin-
testinal bleeding and central nervous system hemorrhage
(in 20% of patients), is seen in people with a lower activity
level of FVII. Life-threatening bleedings often (70% of cases)
occur in the first six months of life and are associated with
high mortality rates. The most significant risk factor for
CNS bleeding is the trauma that occurs during childbirth
(6, 60, 61).

Box 1. The Clinical Manifestations of Congenital FVII Deficiency

Asymptomatic

Mild (having one or two of the following symptoms)

Moderate (having three or more of the following symptoms)

Mucous membrane bleeding, including epistaxis and oral bleeds

Non-life threatening gastrointestinal bleeding

Heavy menstrual bleeding

Bleeding during or after surgery

Joint or significant soft tissue bleeds and cutaneous bleeds following
identifiable trauma

Sever

Mucous membrane bleeding that is life-threatening or that requires
RBC transfusion

Life-threatening gastrointestinal bleeding, particularly intra-mural
bleeds or where no lesion is identified

Recurrent Joint or significant soft tissue bleeds

CNS bleeds

Spontaneous ocular bleeding

5.1. Severe Factor VII Deficiency

People with severe FVII deficiency may die due to bleed-
ing at or shortly after birth. Severe cases are homozygous
or compound heterozygotes for deleterious mutations, re-
sulting in FVII:C of less than 2%. Most mutations disrupt the
expression, including promoter mutations, splice-site mu-
tations, or frameshift mutations (61).

5.2. Mild/Moderate Factor VII Deficiency

Cases with mild or moderate clinical phenotypes are
homozygous or compound heterozygotes for deleterious
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mutations. FVII:C measured in these individuals varies
from less than 1 to 52% and does not correlate well with
the clinical severity of symptoms. Differentiating between
mild and severe cases based on FVII:C or FVII antigen
(FVII:Ag) measurement is impossible (61). Coinheritance of
FV Leiden with FVII deficiency enhances thrombin forma-
tion and leads to mild bleeding phenotypes (6).

5.3. Asymptomatic Cases

Asymptomatic subjects have FVII:C from 4 to 61%, and
FVII:Ag from 5 to 113%. All known mutations in these in-
dividuals are missense substitutions. The diagnosis of
asymptomatic cases is usually made during family studies
or hemostatic screenings (6, 61).

The severity of the clinical phenotype of congenital
FVII deficiency reflects the pivotal role of FVII at the onset
of coagulation so that a complete lack of FVII in humans
results in perinatal mortality (6). Occasionally, deficien-
cies in the coding genes of proteins that contribute to the
post-translational alterations of coagulation factors and vi-
tamin K metabolism may lead to a combined coagulation
factors defect (62). One of these cases is the combined de-
fect of FVII and prothrombin (63). Chromosome 13 dele-
tions can also result in the coexistence of FVII and FX de-
ficiencies (64).

In addition to heredity, FVII deficiency is occasionally
acquired by the presence of a tumor, liver failure, vitamin
K deficiency, or treatment with vitamin K antagonists. Ac-
quired FVII deficiency may also occur due to bone marrow
transplantation and bacteremia. Clinical manifestations
of acquired FVII deficiency are usually mild to moderate,
which may become relevant in the case of surgery (56, 65-
67).

5.4. Diagnosis

In the case of congenital and acquired FVII deficien-
cies, the diagnosis is based on the isolated prolonged pro-
thrombin time (PT) and normal activated partial throm-
boplastin time (aPTT) (55, 68). FVII:C measurement is nec-
essary to confirm the diagnosis. ELISA technique using
monoclonal FVII-specific antibodies can also be used to
measure the plasma level of the FVII antigen (68). In pa-
tients with severe, mild/moderate, and asymptomatic con-
genital FVII deficiency, the levels of FVII:Ag and FVII:C are
widely overlapping and cannot be used to predict the clin-
ical severity of the disease; thus, collecting a detailed fam-
ily history is essential (51). However, the FVII:Ag and FVII:C
assays allow one to distinguish between CRM- (FVII:Ag and
FVII:C reduced with the same ratio), CRM+ (a decreased

FVII:C with normal FVII:Ag), and CRMred (FVII:Ag reduction
but not as much as FVII:C) (5, 6, 69). The lack of correlation
between clinical phenotypes and the laboratory findings
probably reflects that only trace amounts of FVII are suffi-
cient to initiate the coagulation process, and routine lab-
oratory assays cannot detect these amounts. Both exper-
imental and mathematical modeling studies have shown
that 5 pmol/L of FVIIa may be sufficient for coagulation in-
duction (58).

Genotyping is another way to diagnose RICDs, includ-
ing FVII deficiency, whose main application is a prenatal di-
agnosis but should be restricted to families with a history
of severe bleeding episodes. Total gene sequencing is the
recommended method for genotyping. This method en-
ables us to detect 90 to 92% of mutated alleles (54, 68).

5.5. Treatment

As with hemophilia, replacing a deficient coagulation
factor is the main treatment for FVII deficiency (70). Pro-
phylaxis is also essential for patients with severe clinical
manifestations and must be considered from childhood or
immediately after the first bleeding episode. However, due
to the short half-life of FVII, prophylaxis in FVII deficiency
demands much effort (71). Pregnancy complicates the
management of FVII deficient individuals. During preg-
nancy, the FVII plasma level increases in the normal pop-
ulation and heterozygote women with the highest thresh-
old in the third trimester. Thus, the highest risk of bleed-
ing may be during the early stages of pregnancy. No FVII
level increase has been reported in homozygotes. There-
fore, the patient’s bleeding history, third trimester PT, FVII
level, mode of delivery, and multiple gestations are neces-
sary to manage FVII deficient pregnant women (72, 73). Ac-
quired FVII deficiency is often associated with an underly-
ing pathology, and treating the causative pathology leads
to the normalization of FVII activity level. Therapeutic op-
tions for congenital and acquired FVII deficiency are the
same (68). Available therapeutic options for FVII deficiency
are as follows:

5.5.1. Prothrombin Complex Concentrate (PCCs)

The main advantage of this product is the lower vol-
ume of injection, fewer allergic reactions, and the possibil-
ity of taking strategies to inactivate viruses during produc-
tion. Because the half-life of FVII is much shorter than other
coagulation factors, injection of multiple PCC doses may
increase other factors and the risk of thrombotic events
(74).
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5.5.2. Plasma-Derived FVII Concentrate (pdFVII)

Concentrates of FVII are obtained from pools of
plasma. These products are used for preventive treatment
and control of serious bleeding and bleeding during
surgery. However, plasma-derived concentrates are associ-
ated with the risk of transmitting pathogens (74).

5.5.3. Fresh Frozen Plasma

Fresh frozen plasma(FFP) containing all coagulation
factors is relatively inexpensive and widely available, but
its effectiveness is limited because of the high risk of fluid
overload due to repeated infusions and the need for slow
infusions. The transmission of viral infections such as hep-
atitis or HIV viruses is one of the risks of using FFP (6, 74).

5.5.4. Activated Recombinant Factor VII

Activated recombinant factor VII (rFVIIa) is used to
treat bleeding events in patients with FVII deficiency and
prevent bleeding in patients under surgery (75). Prophy-
lactic administration of rFVIIa has been previously sched-
uled for children with severe congenital FVII deficiency
(76). This product does not contain human plasma and
albumin; therefore, there is no risk of human viral trans-
mission. The ideal replacement therapy for patients with
FVII deficiency is rFVIIa, but this treatment is costly and not
available to all patients (54, 69). Alloimmunization against
exogenous FVII, a scarce phenomenon, is the main chal-
lenge of this kind of replacement therapy and results in re-
ducing rFVIIa effectiveness (53). Perioperative hemorrhage
in neonatal cardiac surgery is a significant cause of mor-
bidity and mortality. Since neonates have immature coag-
ulation cascade and low levels of coagulant proteins, ad-
ministration of rFVIIa may be a prophylactic option during
surgery (77). Researchers are currently conducting various
strategies to improve rFVII half-life or activity. So far, some
rFVII molecule with improved features has been produced,
and clinical trials are in progress (78-80).

6. Conclusions

The FVII protein is a key component of homeostasis,
and along with TF, it plays a role in other cellular processes
besides blood coagulation. Due to its importance, exten-
sive studies have been performed on the F7 gene, FVII pro-
tein, and related phenotypes to determine its molecular
and clinical features. So far, researchers have achieved sig-
nificant results leading to advancements in treating FVII
deficiency and improving the quality of patients’ lives.

These studies have also paved the way to prevent and pre-
natally diagnose FVII deficiency. Plenty of functional stud-
ies have been and are being performed on previously and
newly identified mutations to elucidate the phenotype-
genotype correlation of FVII deficiency. Despite extensive
studies, the genotype-phenotype correlation in patients
with FVII deficiency has not yet been fully understood, and
further studies are needed to elucidate all aspects of the
disease entirely.
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