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Abstract

Context: The Chironomidae family is more sensitive to changes in water environment quality. This taxon is tolerant in stream
ecosystems. Thus, it could be used as a bio-indicator of freshwater to recognize the presence of contaminants with deleterious
effects on human health.
Evidence Acquisition: We searched keywords Chironomidae, bioindicator, environment, water stream, water quality, anthro-
pogenic disturbance, pollutant, fossil, industrial waste, and aquatic habitats. Chironomidae was used once in single and again
in combination with others. Google Scholar, Scopus, Springer, ScienceDirect, PubMed, ProQuest, JSTOR, EBSCO, BioOne, Research-
Gate, Sage, Wiley Online Library, and SID were used as databases or search engines. Then, the results were sorted into four sections:
Distribution and ecology, biotic indicators, food, and paleoecological studies.
Results: The identification key of chironomids should be improved based on morphological and molecular data to determine this
family more clearly. Identifying sub-fossil chironomid insects found in the sediments of lakes unravels the range of environments
during the history of its aquatic habitat through paleoecological investigations.
Conclusions: Chironomidae at genera or species has variations in traits in the ecosystems. Each species as a bio-indicator has dif-
ferent tolerable condition in its own habitat .Overall, the role of this family in all types of pollutants is ambiguous. More studies are
needed to particularize the importance of Chironomidae based on genera and species.
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1. Context

Organics, pathogens, nutrients, agriculture runoff,
suspended solids, sediments, inorganic pollutants (salts
and metals), and thermal pollution are significant water
contaminants (1, 2). Toxic metals in waste streams affect
fish life. They harm growth, change liver glycogens and
triglycerides, and disrupt metabolic enzyme activities in
the catfish (3). Some chemical elements negatively affect
embryonic development, hatching, and viability of the
mallard (4). Also, they are harmful to human health in ei-
ther short or long-term exposure. The kidney, pancreas,
heart, bones, veins, arteries, liver, and brain would be dys-
functioned by the intake of certain pollutants ingested
through drinking water (5).

Bioindicators are sensitivities to the ecological and nat-
ural changes caused by anthropogenic disturbance. It af-

fects biodiversity and community of insect (6-8). Aquatic
macroinvertebrates such as Baetis sp., Fallceon sp., Lepto-
hyphes sp., Tricorythodes sp., Farrodes sp., Phyllogomphoides
sp., Hydroptila sp., Mayatrichia sp., Neotrichia sp., Oxyethira
sp., Nectopsyche sp.1, Nectopsyche sp.2, and Oecetis sp. are
bioindicators sensitive to water contamination (9).

Chironomidae has been used as a significant insect for
the bioassessment of water quality for a long time (10).
This study aims to explore Chironomidae as an impor-
tant bioindicator in all types of water bodies and environ-
ments. Furthermore, this macroinvertebrate has a role in
the food chain, energy transfer, and paleoecological inves-
tigations. This family adapts to environmental conditions
and predicts unexpected contamination from human ac-
tivities or other agents. Studying the Chironomidae traits
helps us clarify the dynamic of the species-environment re-
lationship. Moreover, due to its predictability, it demon-
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strates the effects of stressors on ecosystems.

2. Evidence Acquisition

We used keywords such as Chironomidae, bioindica-
tor, environment, water stream, water quality, anthro-
pogenic disturbance, pollutant, fossil, industrial waste,
and aquatic habitats. Chironomidae was used once in sin-
gle and again in combination with others. Google Scholar,
Scopus, Springer, ScienceDirect, PubMed, ProQuest, JSTOR,
EBSCO, BioOne, ResearchGate, Sage, Wiley Online Library,
and SID were used as databases or search engines. Then,
the results were sorted into four sections: Distribution and
ecology, biotic indicators, food, and paleoecological stud-
ies. The obtained articles and scientific documents were
often helpful. Few were dropped from our work because
of low quality or overlap.

3. Results

3.1. Distribution and Ecology

The family Chironomidae (order: Diptera) comprises
predominant insects in freshwater environments. Lit-
tle studies have been carried out about the lifecycle
and ecology of this family. The family has more than
5,000 species worldwide, but the exact number is un-
clear. A few chironomids have terrestrial habitats (11).
This family is categorized into 11 subfamilies and 22 tribes.
The subfamilies include Telmatogetoninae, Usambaromyi-
inae, Aphroteniinae, Chilenomyiinae, Podonominae, Tany-
podinae, Buchonomyiinae, Diamesinae, Prodiamesinae,
Orthocladiinae, and Chironominae (12). Belgica antarc-
tica, Eretmoptera murphyi (subfamily Orthocladiinae), and
Parochlus steinenii (subfamily Podonominae) are the only
chironomid species identified in the Antarctica areas (13).
The subfamily Chilenomyiinae is restricted to Chile. Bu-
chonomyiinae has two species identified in Europe and
Asia. Aphroteniinae, including four genera, has been rec-
ognized only in South America, South Africa, and Australia.
Subfamilies, including Orthocladiinae, Tanypodinae, and
Chironominae, are established more in lake sediments
(14). Genus Dicrotendipes Kieffer from China comprises
eight species: Dicrotendipes flexus, Dicrotendipes fusconota-
tus, Dicrotendipes nervosus, Dicrotendipes nudus sp. n., Dicro-
tendipes pelochloris, Dicrotendipes saetanumerosus sp. n., Di-
crotendipes septemmaculatus, and Dicrotendipes tamaviridis
(15). This family has four larval instars with around one
year of longevity, but pupal and adult stages last about
a few days or weeks, depending on species and climate.

Males swarm about one hour before sunrise and scatter
about one hour after sunset for mating with females (16).
The larvae stages of Paratendipes albimanus and Rheotany-
tarsus curtistylus are remained in the second and third in-
star in winter (17). Chironomidae are abundant in the
organic content of sediments or beds of lakes and rivers
(18). For example, macrophytes (Potamogeton pectinatus
and Ruppia maritima) or benthic algae (Rhizoclonium hiero-
glyphicurn) significantly affect the growth of Cricotopus or-
natus (Meigen) (Diptera: Chironomidae) (19). Also, it has
been found in gravel sediments. Overall, it is limited to
the surface layers of soft sediments, but some species habi-
tat more deeply, and the sediment depth may be confining
to population density in some instances. Some species in-
gest wood because of having symbiotic microorganisms in
their gut (20). Notably, chironomids larvae use physiologi-
cal or behavioral strategies to survive in habitats with re-
peated changes in the situation, such as rain pools, phy-
totelmata, freshly filled ponds or soil layers, urban rivers,
hot springs, and coastal lagoons (21-23).

3.2. Biotic Indicators

Chironomid midges adapt to sites with different wa-
ter quality streams in the Scioto River basin, Ohio. (1) Stic-
tocbironomus was found in the hard, alkaline unpolluted
water; (2) Pentaneura, Cricotopus, and Tanytarsus were ob-
served in the sewage enriched water; (3) Procladius and Di-
crotendipes have existed in the high agricultural runoff; (4)
Ablabesmyia and Tribelos were adapted to general organic
pollution, soft acid water (24). Moreover, Chironomus ri-
parius is an indicator of organic pollution and sediment
toxicity monitoring (20, 25). Chironomidae larvae exist
in lentic and lotic environments with different taxonomic
levels (26-30). This aquatic macroinvertebrate was found
at polluted spots of Barbados Stream in Brazil, where pol-
lutants like domestic sewage, plastic materials, root, and
slime were sorted (31). Remarkably, riparian vegetation af-
fects Chironomidae assemblage and has a significant role
in the composition of aquatic fauna in neotropical streams
(32, 33).

Neonicotinoid insecticides affect Chironomidae life in
all stages. Chironomidae represent high densities of high-
affinity nicotinic acetylcholine receptors (34). Also, sig-
nificant factors influencing Chironomid distribution are
temperature associated with O2, Cl-, Al3+, Mg2+, and Na+

ions in lakes of central Yakutia, Russia (35). The chi-
ronomid species (i.e., Anatopynia plumipes, Procladius sp.,
Psectrotanypus rarius, Cricotopus sylvestris, Psectrocladius ed-
wardsi, Chironomus tentans, C. polaris, Chironomus sp. I and
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II, Einfeldia dissidens, E. pagana, and Glyptotendipes paripés)
have shown tolerance to low oxygen pressures and tem-
perature in a frozen lake in northern Sweden (36). More-
over, larval and pupal of Pseudodiamesa arctica were ob-
served in temperatures between 0°C and 4°C of Nettilling
lake in Baffin Island, Canada, but 15°C is desirable tem-
perature in small water bodies for larval growth (37). Be-
sides, pH is another environmental parameter. Chirono-
mids species are diverse in pH ranging from 6.4 to 8.3 in
small prairie ponds in central Saskatchewan, Canada (38).
Chironomus salinarius Kieffer can tolerate a range of salin-
ity levels (39). Baeotendipes noctivagus (Kieffer, 1911) is pos-
sibly the most inflexible species to salinity in the world
(40). A special subfamily or tribe of chironomids is inhab-
ited in different sampling sites of Swartkops River, south
of Africa, by water quality. Dissolved oxygen, electrical con-
ductivity, orthophosphate-phosphorus, total inorganic ni-
trogen, and turbidity were the critical variables for chi-
ronomid communities (41). Hydrocarbon phenanthrene
as a chemical substance harms benthic organisms in sed-
iments through acute/chronic exposure. Chironomus sanc-
ticaroli larvae frequently have shown susceptibility to this
compound (42). Additionally, biodegradation of amor-
phous carbon was identified in the digestive tract of Chi-
ronomidae species (43). Deformities in larvae are reported,
often resulting from responding of Chironomidae to an-
thropogenic and environmental disturbances (44). The de-
formity rate may be a practicable parameter for biomoni-
toring (45). This event has been seen in Ablabesmyia sp. and
Procladius sp. larvae in acid mine drainage (46). Mouth-
part deformities of the Chironomini tribe in response to sed-
iments containing metals such as Pb, Zn, Cu, As, and Cd are
recorded from a river in the USA (47).

3.3. Food

Chironomus plumosus larvae are the source of natural
substances more beneficial for farm fish diet. For instance,
crude protein content is 7.6% and 55.7% in fresh larvae and
dry weight, respectively. Amino acids such as Arginine,
Histidine, Isoleucine, Leucine, Valine, Lysine, Phenylala-
nine, Methionine, Threonine, and Tryptophan have been
isolated from larvae of this species (48, 49). Other food
values of chironomid larvae are carbohydrate 23%, chitin
4%, ash 9%, and caloric content (4.6 to 6.1 kcal.g-1) (50).
Dragonfly larvae feed at least 30% of their body weight on
midges (51). Similarly, Chironomidae larvae are solely di-
eted for kind of leech (Erpobdella octoculata) so that leech
survives where Chironomidae grow and increase in run-
ning water (52). Sometimes, predators like nine-spine

stickleback, Pungitius pungitius, and the damselfly, Enal-
lagma clausum, threaten the Cricotopus ornatus population
in the fourth instar and pupal phases (19). Chironomids
are the main in the early dietary regime of young flightless
dabbling ducks after hatching (36). Furthermore, this fam-
ily, particularly Corynoneura, participates in the trophic
cycle and decomposition of plant detritus in subtropical
streams. Chemical elements of the detritus assemblage
influence the structure of the chironomids community
during a long time of exposure (53). Moreover, chirono-
mids with small body sizes have been detected in an envi-
ronment with high levels of disturbance. Anthropic and
climatic factors may cause this morphological trait (54).
There is a symbiotic relationship between Chironomidae
larvae and benthic animals as follows: Demeijerea rufipes,
Chironomidae, a parasite of sponges and bryozoan, Euki-
efferiella ancyla, subfamily Orthocladiinae, as commensal
of the snail Ancylus fluviatilis, and Symbiocladius rhithroge-
nae, Orthocladiinae, a true and obligate parasite of Hep-
tageniidae/Ephemeroptera larvae, feeding on the mayfly’s
hemolymph (55).

3.4. Paleoecological Studies

Climate affects chironomid fauna composition and
their morphological structures (56). Surficial sediments
sampling upon altitudinal range can be helpful. It means
we can trace chemistry among lakes according to lake
depth. On the other hand, Chironomid fauna presents
the past condition of the environment in different depths.
Heterotrissocladius was predominant in deep lakes rather
than shallow ponds. In contrast, Cladopelma was limited
to shallow lakes as warmer habitats in summer (57). Anal-
ysis of deposits has approved that more chironomid taxa
were discovered at low elevations in the southern Cana-
dian Cordillera lakes (58). In a study using the larval head
capsule fossils from surface sediment samples of 50 lakes,
7,771 chironomids were identified, following 13 species,
10 species groups, four subgenera, 41 genera, four genus
groups, five types, and three with unknown taxonomic
affiliation. Taxon richness was described with physical,
chemical, and biological variables such as water tempera-
ture, lake depth, pH, conductivity, alkalinity, calcium, mag-
nesium, sodium, potassium, total organic carbon, latitude,
longitude, and altitude (59).

4. Conclusions

Chironomids are a favorable candidate to use in
bioassessment approaches in toxicity tests and paleolim-
nology. Detailed life-history information of some species is
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available from laboratory studies. In contrast, they might
be disqualified as biochemical and physiological indica-
tors of environmental stress resulting from taxonomic
problems with larvae and small size (60). However, the role
of this family in all types of pollutants is ambiguous. More
studies are needed to particularize the importance of Chi-
ronomidae based on genera and species.
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