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Abstract

Background: Diagnosing patient deterioration and preventing unexpected deaths in the emergency department is a complex task
that relies on the expertise and comprehensive understanding of emergency physicians concerning extensive clinical data.
Objectives: Our study aimed to predict emergency department mortality and compare different models.
Methods: During a one-month period, demographic information and records were collected from 1,000 patients admitted to the
emergency department of a selected hospital in Tehran. We rigorously followed The Cross Industry Standard Process for data mining
and methodically progressed through its sequential steps. We employed Cat Boost and Random Forest models for prediction
purposes. To prevent overfitting, Random Forest feature selection was employed. Expert judgment was utilized to eliminate
features with an importance score below 0.0095. To achieve a more thorough and dependable assessment, we implemented a K-fold
cross-validation method with a value of 5.
Results: The Cat Boost model outperformed Random Forest significantly, showcasing an impressive mean accuracy of 0.94
(standard deviation: 0.03). Ejection fraction, urea (body waste materials), and diabetes had the greatest impact on prediction.
Conclusions: This study sheds light on the exceptional accuracy and efficiency of machine learning in predicting emergency
department mortality, surpassing the performance of traditional models. Implementing such models can result in significant
improvements in early diagnosis and intervention. This, in turn, allows for optimal resource allocation in the emergency
department, preventing the excessive consumption of resources and ultimately saving lives while enhancing patient outcomes.
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1. Background

Healthcare has grown into one of the largest
industries worldwide, and the Emergency Department
(ED) stands out as a crucial department within these
services that exhibits significant demands (1). The ED is
fully prepared and equipped to deliver comprehensive
emergency care to the community during emergencies
and non-emergencies. Operating round the clock,
365 days a year, this department operates uniquely,
involving multiple interactions and requiring intensive
decision-making. These factors can result in interruptions
and disruptions within this section (2).

Over the past few decades, overcrowding in hospital ED
has become a widespread issue across the globe. The rise
in patient numbers and the influx of patients requiring
admission have exacerbated this problem. Substantial

evidence suggests that overcrowding has detrimental
consequences, such as prolonged wait times for critically
ill individuals, reduced patient satisfaction, heightened
mortality rates, and increased medical errors (3).

Efficiently distributing resources in the healthcare
industry and enhancing societal health quality is
paramount. However, given the constraints of limited
resources, the high expenses associated with healthcare,
and the sensitive and complex nature of the field, it
has consistently remained contentious (4). Hence, to
effectively allocate resources to patients, it is necessary
first to diagnose the deterioration of their condition.
Conversely, early identification and prevention of
untimely deaths using extensive clinical data present a
significant challenge for emergency physicians, requiring
substantial expertise and precise intuition (5).

Copyright © 2023, Journal of Archives in Military Medicine. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 International License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages,
provided the original work is properly cited.

https://doi.org/10.5812/jamm-140442
https://crossmark.crossref.org/dialog/?doi=10.5812/jamm-140442&domain=pdf
https://orcid.org/0000-0003-4567-6912
https://orcid.org/0000-0001-8393-7314


Moosavi Kashani S and Zargar Balaye Jame S

Artificial intelligence (AI) refers to the capacity of
computer programs to perform tasks or reasoning
processes typically associated with human intelligence.
Its main focus is on making accurate decisions despite
ambiguity, uncertainty, or the presence of large data
sets. In the healthcare domain, where extensive amounts
of data exist, machine learning (ML) algorithms are
utilized for classification purposes ranging from clinical
symptoms to imaging features. Machine learning is
a methodology that leverages pattern recognition
techniques. Within the clinical field, AI has found
applications in diagnostics, therapeutics, and population
health management. Notably, AI has significantly
impacted areas such as cell immunotherapy, cell biology,
biomarker discovery, regenerative medicine, tissue
engineering, and radiology. The application of ML in
healthcare encompasses drug detection and analysis,
disease diagnosis, smart health records, remote health
monitoring, assistive technologies, medical imaging
diagnosis, crowdsourced data collection, and outbreak
prediction, as well as clinical trials and research (6).

Several conventional methods are used in clinical
settings to assess the condition and predict the mortality
risk of intensive care patients. These methods include the
Simplified Acute Physiology Score (SAPS II), Sequential
Organ Failure Assessment (SOFA), and Acute Physiological
Score (APS). They incorporate factors such as age,
medical history, vital signs, and laboratory test results.
These scoring systems help healthcare professionals
determine the severity of a patient’s illness and predict
life-threatening events like sepsis, cardiac arrest, or
respiratory arrest (7). Barboi et al. (8) indicated that
ML models exhibit higher accuracy than traditional
scoring models. Therefore, clinicians are encouraged to
prioritize the selection of models that have undergone
more rigorous validation.

Li et al. (5) demonstrated that ensemble models,
specifically bagging and boosting, exhibit superior
performance compared to single classifiers. By analyzing
demographic and laboratory data from 1,114 ED patients,
the researchers found that the gradient boosting machine
(GBM) model stood out with an impressive accuracy rate
of 93.6% in predicting patient mortality.

In a retrospective cohort study conducted by van
Doorn et al. (9), the accuracy of predicting patient
outcomes in the ED differs when utilizing only laboratory
information compared to a combination of laboratory and
clinical data. Specifically, the study employed the Extreme
Gradient Boosting (XG Boost) model and found that when
using solely laboratory information, the accuracy was 82%.
However, by integrating both clinical and laboratory data,
the accuracy increased to 84%. The study involved 1,344 ED

patients.
Klug et al. (10) used variables including age, admission

mode, chief complaint, five primary vital signs, and
emergency severity index (ESI) to analyze ED patients. By
implementing the XG Boost model, the study achieved an
impressive accuracy rate of 92%. The ESI is a tool used in ED
to assess the severity of a patient’s condition and prioritize
care accordingly (11).

2. Objectives

This study aimed to accurately predict patients’
mortality within the ED while also conducting a
comparative evaluation of different models. By achieving
high forecasting accuracy, this study aimed to provide
doctors and ED specialists with valuable insights
to prioritize patients effectively regarding resource
allocation.

3. Methods

The Cross Industry Standard Process for Data Mining
(CRISP-DM) is a process model designed for data mining
that can be applied across various industries. This model
encompasses six sequential phases, executed iteratively
from understanding the business requirements to the
final deployment and implementation of the data mining
solution (12).

To conduct our study, we gathered the electronic
health records, medical data, and demographic
information of 1,000 patients who were admitted to the
ED of a hospital in Tehran. The data were retrospectively
collected using the Hospital Information System unit
during a one-month timeframe.

We initially removed patients with missing data from
the study during the data preparation phase. Additionally,
we employed the Interquartile Ranges (IQRs) to detect
and eliminate outliers. As a result, 200 patients were
excluded from the complete dataset. The IQR is a measure
of statistical dispersion that quantifies the spread of a
data set. It is defined as the difference between the
third quartile (Q3) and the first quartile (Q1) in a data set
(13). We employed a label encoder for the target column
to represent binary categories, where class 0 signifies
discharged, and class 1 signifies expired. After considering
the research by Newaz et al. (14), which explored the
model’s accuracy with over-sampling and under-sampling,
we concluded that over-sampling would be the most
suitable approach for balancing the classes in the target
column.

Feature selection is a crucial step in analyzing data as
it involves selecting a concise group of pertinent features.
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The RF classifier serves as a critical foundation for wrapper
algorithms, effectively addressing all significant issues
by offering a measure of variable importance (15). To
prevent overfitting, RF feature selection was employed.
Expert judgment was utilized to eliminate features with
an importance score below 0.0095. Subsequently, the
models were created using the remaining features. In the
modeling phase, the decision was made to use ensemble
models due to their relatively good accuracy.

Ensemble models combine multiple models that work
together to make predictions. These models can be of
the same type or different types, and by leveraging the
strengths of each individual model, ensemble models can
often outperform any single model. Ensemble models
have become popular in various domains, including
machine learning and data science because they can
improve the overall performance and robustness of
a prediction system. They reduce bias and variance,
increase model generalization, and mitigate the risk of
overfitting. By aggregating the predictions from multiple
base models, ensemble models can capture a wider range
of patterns and improve the accuracy of predictions (16).
The commonly used ensemble techniques are bagging,
boosting, and stacking (17):

- Bagging involves training multiple decision trees on
various subsets of the same dataset and then averaging
their predictions.

- Boosting, on the other hand, works by sequentially
adding ensemble members that improve upon the
predictions of prior models, ultimately resulting in a
weighted average of all predictions.

- Stacking involves training multiple models of
different types on the same data and utilizing another
model to learn the most effective way to combine these
predictions.

The RF algorithm is a widely known supervised ML
technique used in both classification and regression
problems. This algorithm leverages a collection of decision
trees, each trained on different subsets of the dataset,
and combines their predictions through averaging to
enhance the overall predictive accuracy. This approach,
known as bagging, has contributed to the algorithm’s
popularity. Notably, empirical studies have shown that
the Random Forest (RF) classifier outperforms individual
classifiers regarding classification rates. Furthermore, it
demonstrates shorter training time than Decision Tree and
SVM algorithms (18).

Cat Boost (CB) is a GB framework developed by
Yandex, a Russian search engine company. It is specifically
designed to work with categorical features in the dataset
and provides superior performance compared to other
traditional gradient-boosting models. Cat Boost can

automatically handle categorical features without
requiring explicit feature engineering or encoding,
making it a convenient choice for working with datasets
containing categorical variables. It uses a novel algorithm
called ”Ordered Boosting” that reduces the impact of the
order of categorical features on model performance (19).

Some key features of CB include (20):
- Handling of categorical features
- Improved accuracy
- Fast training time
- Robustness to outliers
Hence, we employed RF and CB models in this study to

predict mortality and assess their relative efficacy.
In the evaluation phase, accuracy, precision, recall,

and the F1-score are essential criteria for evaluating
classification problems. These metrics are calculated as
follows (21):

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − score = 2× (Precision× recall)

(Precision+ recall)

A true positive (TP ) occurs when both the actual and
predicted classes of data points are labeled as 1. Conversely,
a true negative (TN ) occurs when both the actual and
predicted classes of data points are labeled as 0. On the
other hand, a false positive (FP ) happens when the actual
class of the data point is 0, but the predicted class is 1.
Finally, a false negative (FN ) refers to the scenario where
the true class of the data point is 1, but the predicted class
is 0.

K-fold cross-validation is a popular technique used in
ML to evaluate the performance of a model on a limited
dataset. It helps estimate how well the trained model
performs on unseen data. In K-fold cross-validation, the
dataset is divided into k equal-sized subsets or folds. The
model is then trained on k-1 folds and tested on the
remaining fold. This process is repeated k times, each time
using a different fold as the test set and the remaining folds
as the training set. The model’s performance is averaged
over all k iterations to obtain a more reliable estimate (22).
To ensure a more precise assessment, we employed 5-fold
cross-validation.

The receiver operating characteristic (ROC) curve
visually depicts how well a binary classifier system
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performs as its threshold for decision-making is adjusted.
It is commonly used in data mining and ML to assess
the classifier’s performance. The area beneath this curve
serves as a measure to evaluate the classifier, and a higher
area indicates a better-performing model (23).

4. Results

After completing the data preparation phase, 800 
patient records were ready for review and model building. 
The research findings revealed that 63.88% of these 
patients were men. Additionally, 18.36% of the overall data 
was observed to reflect cases of patient mortality.

To ensure a more thorough analysis, we decided 
to separate the numerical features from the binary 
features. We then analyzed their statistical characteristics 
separately for two specific scenarios - discharges and 
deaths. Employing a confidence level of 95%, we conducted 
t and chi-square tests. This led us to compile Table 1, which 
contains statistical information related to the numerical 
features, and Table 2, which shows statistical information 
related to the binary features.

After employing the RF algorithm to identify the 
variables with the greatest influence on the outcome 
variable, the analysis revealed that ejection fraction (EF), 
UREA, and diabetes mellitus (DM) possessed the highest 
impact. Among the pool of 46 research variables, we 
prioritized the first 22 based on expert opinion from the 
field (Figure 1).

After analyzing the impact of each variable, the 
performance of RF and CB models was evaluated using 
5-fold cross-validation. The results, presented as mean 
(standard deviation), indicated that CB outperformed the 
other model in terms of performance (Table 3).

In summary, both models performed well in terms 
of accuracy, precision, recall, and F1 score. However, CB 
achieved a slightly higher recall rate (94% vs. 92%) and 
overall F1 score (94% vs. 93%) than the RF model.

The ROC curves with k-fold cross-validation offer 
several advantages. It allows for a fairer comparison 
of model performance, as cross-validation provides 
more accurate estimates. Additionally, it helps 
assess the robustness of the model by evaluating its 
performance across various data subsets, providing a 
comprehensive understanding of performance across 
different distributions. The ROC curve also allows for a 
trade-off analysis between TP and FP rates, aiding in 
generalization assessment for unseen data. Furthermore, 
calculating the standard deviation or confidence interval 
of the performance metric provides insight into the 
reliability and uncertainty associated with the model’s 
predictions. Overall, displaying the ROC curve with

k-fold cross-validation provides a more rigorous and
comprehensive evaluation of the model’s capabilities and
limitations. Therefore, the ROC diagram for the CB model
with 5-fold cross-validation is depicted in Figure 2.

5. Discussion

The primary objective of this study was to predict
the likelihood of mortality among patients in the ED. To
achieve this objective, ensemble models were employed,
specifically chosen from the bagging models, i.e., the RF
and CB models, in the boosting mode.

Based on the research findings, the CB model displayed
better performance than the RF, albeit with a minor
advantage. However, it is important to consider the
unique dataset characteristics and project objectives when
selecting between CB and RF classification. To identify
the most suitable algorithm, it is advisable to conduct
experiments and evaluate the performance of various
algorithms on the provided dataset. Based on previous
research, it has been consistently demonstrated that ML
outperforms traditional scoring methods in terms of
performance. Furthermore, recent studies have shown
that the highest predictive accuracy achieved so far is
92%. However, upon reviewing the present study, it was
observed that analyzing additional patient records and
incorporating more variables can enhance the model’s
accuracy by up to 94%.

The study revealed significant variations in variables,
including age, Total Leukocyte Count (TLC), platelet count,
and urea levels, between the patients who expired and
those who were discharged. Safaei et al. (24) conducted a
study similar to ours, where they developed an extremely
precise and effective CB model to anticipate mortality
after patients were discharged from the ICU. They
focused on data collected within the initial 24 hours
of hospitalization. The outcomes of their research
revealed a range of significant factors, such as age, heart
rate, respiration rate, blood urea nitrogen, and creatinine
level, which greatly impacted mortality prediction.

Furthermore, to enhance the patient’s condition in
the ED and ensure the effective allocation of resources,
it is advised to perceive the admission and discharge
of patients as a cohesive process. Utilizing simulation
techniques can aid in refining this process and optimizing
the distribution of resources. Hence, forthcoming
research should concentrate on augmenting resource
efficiency and determining the optimal allocation of
resources, prioritizing patients in critical conditions.
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Table 1. Numeric Features

Features Description
Outcome

P-Value (0.05) t-Test
Discharged (Class 0) Expired (Class 1)

Age, y Patient’s age 64.56 ± 12.3 67.28 ± 13.1 0.017 a -2.381

HB Hemoglobin 11.91 ± 2.2 11.59 ± 2.2 0.127 1.526

TLC Total leukocytes count 12.27 ± 5.8 17.42 ± 13.6 <0.001 a -4.481

Platelets Thrombocytes 242.43 ± 102.6 208.12 ± 120.05 0.002 a 3.210

Glucose Carbohydrate 179.75 ± 88.1 194.20 ± 108.6 0.087 -1.715

Urea Body waste 57.03 ± 39.7 86.18 ± 53.5 <0.001 a -6.227

Creatinine Creatinine 1.56 ± 1.3 1.89 ± 1.05 0.004 a -2.859

BNP B-type natriuretic peptide 888.32 ± 921.6 1370.18 ± 1203.6 <0.001 a -4.562

EF Ejection fraction 37.89 ± 12.6 30.40 ± 8.3 <0.001 a 8.799

a Statistical significance at a P-value of 0.05.
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Figure 1. The importance of selected variables
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Table 3. Evaluation of Models with 5-Fold Cross-Validation

Models Accuracy Precision Recall F1 Score

RF 0.93 ± 0.04 0.94 ± 0.01 0.92 ± 0.08 0.93 ± 0.04

CB 0.94 ± 0.03 0.94 ± 0.02 0.94 ± 0.06 0.94 ± 0.04

a Values are expressed as mean ± SD.
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Figure 2. ROC curve for CB model

5.1. Conclusions

This study sheds light on the exceptional accuracy and
efficiency of ML in predicting ED mortality, surpassing
the performance of traditional models. Implementing
such models can result in significant improvements in
early diagnosis and intervention. This, in turn, allows
for optimal resource allocation in the ED, preventing the
excessive consumption of resources and ultimately saving
lives while enhancing patient outcomes.
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Table 2. Binary Features

Features and Description
Outcome P-Value (0.05) Chi-square Test

Discharged (Class 0) Expired (Class 1)

Gender 0.332 0.941

Female 241 48

Male 412 99

Smoking 0.003 a 8.798

No 599 145

Yes 54 2

Alcohol 0.001 a 10.284

No 593 145

Yes 60 2

Diabetes (DM) <0.001 a 26.713

No 308 104

Yes 345 43

Hypertension (HTN) 0.001 a 11.970

No 310 93

Yes 343 54

Coronary artery disease (CAD) 0.003 a 8.798

No 228 74

Yes 425 73

Cardiomyopathy (PRIOR CMP) <0.001 a 24.491

No 463 73

Yes 190 74

Chronic kidney disease (CKD) 0.006 a 7.675

No 569 115

Yes 84 32

Raised cardiac enzymes 0.009 a 6.810

No 471 90

Yes 182 57

Severe anemia 0.365 0.819

No 642 146

Yes 182 1

Anemia 0.091 2.858

No 509 105

Yes 144 42

Stable angina 0.243 1.361

No 647 147

Yes 6 0

Acute coronary syndrome (ACS) 0.004 a 8.798

No 375 65

Yes 278 82

St elevation myocardial infarction (STEMI) 0.938 0.006

No 526 118

Yes 127 29

Chest pain 0.635 0.225

No 652 147

Yes 1 0

Continued on next page
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Table 2. Binary Features (Continued)

Heart failure (HF) <0.001 a 54.185

No 366 33

Yes 287 114

HF with reduced ejection fraction (HFREF) <0.001 a 46.062

No 433 53

Yes 220 94

HF with normal ejection fraction (HFNEF) 0.197 1.662

No 584 126

Yes 69 21

Valvular heart disease (Valvular) 0.224 1.480

No 620 143

Yes 33 4

Complete heart block (CHB) 0.515 0.425

No 637 142

Yes 16 5

Sick sinus syndrome (SSS) 0.207 1.590

No 646 147

Yes 7 0

Acute kidney injury (AKI) <0.001 a 23.843

No 442 68

Yes 211 79

Cerebrovascular accident infract (CVAI) 0.099 2.726

No 619 144

Yes 34 3

CVA BLEED 0.248 1.337

No 652 146

Yes 1 1

Atrial fibrillation (AF) 0.789 0.072

No 586 133

Yes 67 14

Ventricular tachycardia (VT) <0.001 a 32.691

No 634 126

Yes 19 21

PAROXYSMAL SUPRA VT (PSVT) 0.410 0.678

No 650 147

Yes 3 0

Congenital Heart disease (CONGENITAL) 0.207 1.590

No 646 147

Yes 7 0

Urinary tract infection (UTI) <0.001 a 17.654

No 573 146

Yes 80 1

Neuro cardiogenic syncope (NCS) 0.243 1.361

No 647 147

Yes 6 0

Orthostatic 0.477 0.506

No 638 145

Yes 14 2

Infective endocarditis 0.635 0.225

Continued on next page

J Arch Mil Med. 2023; 11(3):e140442. 9



Moosavi Kashani S and Zargar Balaye Jame S

Table 2. Binary Features (Continued)

No 652 147

Yes 1 0

Deep venous thrombosis (DVT) 0.571 0.320

No 645 146

Yes 8 1

Cardiogenic shock <0.001 a 198.708

No 617 74

Yes 36 73

Shock <0.001 a 219.871

No 628 77

Yes 25 70

Embolism 0.032 a 4.618

No 633 147

Yes 20 0

Chest infection 0.274 1.199

No 640 146

Yes 13 1

a Statistical significance at a P-value of 0.05.
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