
J Arch Mil Med. 2024 March; 12(1): e144281 https://doi.org/10.5812/jamm-144281

Published Online: 2024 September 9 Research Article

Copyright © 2024, Journal of Archives in Military Medicine. This open-access article is available under the Creative Commons Attribution-NonCommercial

4.0 (CC BY-NC 4.0) International License (https://creativecommons.org/licenses/by-nc/4.0/), which allows for the copying and redistribution of the material

only for noncommercial purposes, provided that the original work is properly cited.

Synergistic Role of Aerobic Training and Resveratrol on AMPK/PGC1-

α/SIRT1 Pathway in the Hippocampus of Rats with Alzheimer's Disease

Ammar Rashet 1 , Ahmad Abdi 1 , * , Alireza Barari 1

1 Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

*Corresponding Author: Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran. Email: a.abdi58@gmail.com

Received: 31 December, 2023; Accepted: 5 August, 2024

Abstract

Background: Alzheimer's disease symptoms indicate that increased Aβ leads to central nervous system dysfunction. Exercise

reduces Aβ deposition through the AMPK signaling pathway. Additionally, resveratrol (RSV) has neuroprotective effects related

to cognitive decline.

Objectives: This study investigated the effects of aerobic training and RSV on the AMPK/PGC-1α/SIRT1 pathway in the

hippocampus of Alzheimer's rats.

Methods: Thirty-five male Wistar rats were divided into five groups: Normal (NO), Alzheimer's (AD), Alzheimer's-training

(ADT), Alzheimer's-resveratrol (ADRSV), and Alzheimer's-training-resveratrol (ADTRSV). The supplement groups received 20 mg

of RSV (per kg of body weight) orally during the intervention period. The aerobic exercise program, which included running on

a treadmill at speeds of 6 - 18 meters per minute, was performed 5 days a week for eight weeks.

Results: Alzheimer's induction caused a significant decrease in the expression of AMPK/PGC-1α/SIRT1 (P = 0.0001). Exercise and

RSV significantly increased the expression of AMPK/PGC-1α/SIRT1 in AD rats (P < 0.05). Additionally, significant increases in the

expression of AMPK, PGC-1α, and SIRT1 were observed in the ADTRSV group compared to the ADT group (P = 0.034, P = 0.020, and

P = 0.038, respectively) and ADRSV (P = 0.026, P = 0.021, and P = 0.021).

Conclusions: AD induction was associated with decreased AMPK/PGC-1α/SIRT1 expression. Aerobic exercise and RSV

consumption can reverse this decrease. Given the crucial role of this signaling pathway in hippocampal function, alterations in

these indicators following physical activity and RSV use may partially mitigate Alzheimer's disease complications.
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1. Background

The improvement in living standards is associated
with increased age, and as the elderly population grows,

the phenomenon of population aging occurs (1). By

2030, over half a billion people will be at risk of nervous

system degradation due to aging, with 65% of this

population affected by Alzheimer's disease (AD) (2).

Pathological changes in the brains of Alzheimer's

patients include brain atrophy characterized by senile

plaques (SP) or β-amyloid plaques, neurofibrillary

tangles (NFT), and neuron loss (3). The pathogenesis of

Alzheimer's disease reveals that an imbalance between

Aβ production and clearance causes neurodegeneration

and dementia, leading to pathological processes such as

tau protein hyperphosphorylation, inflammatory

responses, and neuronal death (3). Although the

mechanism of Aβ toxicity to neurons remains unclear,

Aβ is known to induce SP deposition. Additionally, Aβ
oligomers increase apoptosis or stimulate glial cells to

overexpress nitric oxide synthase (iNOS), and elevated

NO levels contribute to neuronal death (4). Since Aβ
deposition plays a crucial role in brain disorders and

contributes to AD, reducing Aβ deposition is a key

therapeutic goal for AD (5). Exercise influences AMPK

and reduces Aβ deposition (6). Physical activity is often

considered a cost-effective and beneficial intervention

for many diseases, and its effects are attributed to the

activation of AMPK (7). PGC-1α and SIRT1 are downstream

effectors of AMPK and are important targets for

reducing Aβ. One study demonstrated that after 35

sessions of moderate-intensity treadmill exercise,
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learning and memory impairments in AD mice were

improved, associated with a reduction in Aβ deposition.

It is hypothesized that exercise increases the expression
of PGC-1α and PPARγ due to AMPK activation, thereby

reducing Aβ42 production (8). In addition to exercise,
certain plants can directly and indirectly affect the

nervous system. Resveratrol (RSV: 3,5,4′-trihydroxy-trans-

stilbene) is a naturally occurring polyphenol found in
grape skins, red wine, rhubarb, and other plants.

Resveratrol has neuroprotective effects related to
cognitive decline (9). For instance, Moussa et al. (10)

demonstrated that 52 weeks of RSV treatment prevented

the progression of mild to moderate AD (10). Another

study indicated that 26 weeks of RSV treatment in

overweight elderly individuals led to improved memory
performance, retention, and hippocampal function (11).

These studies highlight RSV as a promising treatment
for neurodegenerative diseases. The primary

mechanism of RSV's action involves the activation of

sirtuin 1 (SIRT1). Sirtuins regulate essential intracellular
processes such as energy consumption, metabolic

patterns, control of reactive oxygen species (ROS) levels,
DNA protection, and cellular aging (12). The combined

therapeutic effects of exercise and RSV, both of which

can protect the nervous system, are not well
documented. A limited study has reported that aerobic

exercise combined with RSV is associated with reduced
Aβ oligomer toxicity, suppressed neuronal autophagy,

and reduced apoptosis in AD mice (13). However, Allard

et al. found that RSV treatment alone did not
significantly affect APOE expression in the brain tissue

of AD mice but was effective when combined with
exercise (14).

2. Objectives

Physical activity and an active lifestyle are promising

therapeutic strategies for preventing or delaying AD and
other dementias. Additionally, there is growing evidence

that antioxidant dietary supplements may also play a

role in treating and preventing AD progression. We

hypothesize that combining RSV administration with

exercise training has a synergistic effect on the
AMPK/PGC-1α/SIRT1 pathway in AD rats.

3. Methods

In this research, all animal experiments were

conducted in accordance with animal protection

policies (based on the Helsinki Convention) and the

guidelines provided by the National Institute of Health

for the care of laboratory animals. Thirty-five male

Wistar rats, aged 8 weeks and weighing 223.17 ± 9.08

grams, were obtained from the Pasteur Institute and

transferred to the animal laboratory. The ambient

temperature was maintained at 22 ± 3°C, with a light-

dark cycle of 12:12 hours. All animals had free access to
water and rat chow. After a one-week acclimatization

period to the new environmental conditions, the rats
were divided into five groups, each consisting of eight

rats: (1) normal (NO), (2) Alzheimer's (AD), (3)

Alzheimer's-training (ADT), (4) Alzheimer's-resveratrol
(ADRSV), and (5) Alzheimer's-training-resveratrol

(ADTRSV).

3.1. Alzheimer's Induction

First, amyloid-β1-42 (Sigma-Aldrich) was dissolved in

sterilized distilled water and incubated at 37°C for one

week. The rats were anesthetized with an injection of

ketamine (50 mg/kg) and xylazine (5 mg/kg) and then

placed in the stereotaxic apparatus. The hair on the rats'

heads was shaved, and the bregma and lambda sutures

were identified using a sagittal cut. The CA1 region of the

hippocampus was marked, and the skull was gently

pierced. A Hamilton syringe was used to inject Aβ. Two

microliters of Aβ were slowly injected into the brain

over approximately one minute (15).

3.2. Exercise Protocol

The training schedule for AD rats is shown in Figure 1.

Exercise on the treadmill began at 2 months of age and

was divided into two stages: (1) familiarization with

training (2 weeks) and (2) adaptation to training (8

weeks). During the familiarization phase, the rats

underwent exercise training at speeds of 6 - 18 meters

per minute for 15 - 45 minutes per session, five times a

week. Following this, the rats engaged in the main

exercise regimen on the treadmill for eight weeks, five

days a week, at an intensity of 18 meters per minute for

45 minutes per session.

3.3. Resveratrol Consumption

Resveratrol (20 mg/kg from Sigma-Aldrich) or an

equivalent volume of saline solution was administered

orally by gavage to rats every morning (between 8:00

AM and 10:00 AM) for 2 months (8 weeks) (16, 17).

3.4. Laboratory Methods

After applying the independent variable, all the

samples were similar and in basic conditions. Forty-

eight hours after the last training session and 12 to 14

hours of fasting, the animals were anesthetized and

sacrificed. Immediately after isolation and washing with

saline, the hippocampal tissue was placed in tubes

containing RNA, transferred to liquid nitrogen, and
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Figure 1. Exercise protocol

then stored in a refrigerator at -80°C until

measurement.

3.5. Primer Design and Preparation

Table 1 shows the primer pattern. First, the primers

were designed, and then total RNA was extracted from
the tissues and converted into cDNA. The cDNA was then

amplified by PCR and analyzed for the expression of the
mentioned genes.

3.6. Data Analysis Procedure

After confirming the normal distribution of the data

using the Shapiro-Wilk test and the homogeneity of
variances using Levene's test, one-way analysis of

variance and Tukey's post hoc test were used for

statistical analysis. Calculations were performed using

SPSS version 26 statistical software, and a significance

level of P ≤ 0.05 was considered.

4. Results

The average weight of the groups is presented in

Table 2.

Data analysis revealed a significant difference in the

amount of AMPK expression in hippocampal tissue

between different groups (P = 0.0001, F = 15.140) (Figure
2). Post hoc test results indicated a significant decrease

in AMPK expression in the AD (P = 0.0001), ADT (P =

0.006), and ADRSV (P = 0.004) groups compared to the

NO group. Additionally, a significant increase in AMPK

expression was observed in the ADT (P = 0.036), ADRSV (P
= 0.047), and ADTRSV (P = 0.0001) groups compared to

AD, and in the ADTRSV group compared to the ADT (P =
0.034) and ADRSV (P = 0.026) groups (Figure 2).

Data analysis also revealed a significant difference in

PGC-1α expression in hippocampal tissue between the

groups (P = 0.0001, F = 15.940) (Figure 3). Post hoc test

results showed a significant decrease in PGC-1α
expression in the AD (P = 0.0001), ADT (P = 0.004), and
ADRSV (P = 0.004) groups compared to NO.

Furthermore, a significant increase in PGC-1α expression

was observed in the ADT (P = 0.039), ADRSV (P = 0.037),

and ADTRSV (P = 0.0001) groups compared to AD, and in

the ADTRSV group compared to the ADT (P = 0.020) and
ADRSV (P = 0.021) groups (Figure 3).

Finally, data analysis showed a significant difference

in SIRT1 expression in hippocampal tissue between the

groups (P = 0.0001, F = 14.877) (Figure 4). Follow-up test

results revealed a significant decrease in SIRT1

expression in the AD (P = 0.0001), ADT (P = 0.026), and
ADRSV (P = 0.014) groups compared to NO. A significant

increase in SIRT1 expression was observed in the ADT (P =

0.015), ADRSV (P = 0.027), and ADTRSV (P = 0.0001)

groups compared to AD, and in the ADTRSV group

compared to the ADT (P = 0.038) and ADRSV (P = 0.021)

groups (Figure 4).

5. Discussion

The results of the present study showed that the

induction of AD caused a significant decrease in the

expression of AMPK/PGC-1α/SIRT1. The decreased activity
of the AMPK/PGC-1α/SIRT1 signaling pathway is closely

related to AD pathogenesis. AMPK can activate SIRT1 by

increasing levels of nicotinamide adenine dinucleotide

(NAD+) in cells, which leads to the activation of PGC-1α.

Research has shown that Aβ25-35 inhibits mitochondrial

biogenesis in hippocampal neurons by attenuating the

AMPK/PGC-1α/SIRT1 signaling pathway (18). In line with

the results of the present study, Panes et al.

demonstrated in animal models of AD that the

expression of SIRT1/PGC-1α decreased, indicating

defective mitochondrial biogenesis in AD (19). Jia et al.
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Table 1. Primer Pattern

Genes Forward Primers Reverse Primers

AMPK 5’- ACTATCAAAGACATACGAGAGCA -3’ 5’- CTTGAGGGTCACCACTGTATAA -3’

PGC-1α 5’- CAGAAGCAGAAAGCAATTGAAGA -3’ 5’- GTTTCATTCGACCTGCGTAAAG -3’

SIRT1 5’- TCCTGTGGGATACCTGACTT-3’ 5’- AAAGGAACCATGACACTGAATGA -3’

GAPDH 5′-AGAAGGCTGGAGAAGATGAGG-3′ 5′-TTGGTGCCTCGTGTCTTCTGT-3′

Table 2. Average Weight of Groups in Different Groups a

Group NO (n = 7) AD (n = 7) ADT (n = 7) ADRSV (n = 7) ADTRSV (n = 7)

Weight (g) 219.71 ± 10.61 225.57 ± 11.28 224.71 ± 9.41 222 ± 6.42 223.86 ± 8.49

Abbreviations: NO, normal; AD, Alzheimer's; ADT, Alzheimer's-training; ADRSV Alzheimer's-resveratrol; ADTRSV, Alzheimer's-training-resveratro.

a Values are expressed as Mean ± SD.

Figure 2. Hippocampal AMPK expression in different groups by one-way analysis of variance (P < 0.05). A, difference from NO; B, difference from AD; C, difference from ADTRSV.
Abbreviations: NO, normal; AD, Alzheimer's; ADT, Alzheimer's-training; ADRSV, Alzheimer's-resveratrol; ADTRSV Alzheimer's-training-resveratrol.

also observed that AD induction is associated with

decreased expression of AMPK, SIRT1, and PGC-1α in the

rat hippocampus (20). Studies indicate mitochondrial

dysfunction in AD. Mitochondrial dysfunction in the

brain tissue of AD patients leads to decreased glucose

uptake, reduced activity of enzymes related to the
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Figure 3. Hippocampal PGC-1α expression in different groups by one-way analysis of variance (P < 0.05). A, difference from NO; B, difference from AD; C, difference from ADTRSV.
Abbreviations: NO, normal; AD, Alzheimer's; ADT, Alzheimer's-training; ADRSV, Alzheimer's-resveratrol; ADTRSV Alzheimer's-training-resveratrol.

mitochondrial tricarboxylic acid cycle and oxidative

phosphorylation, and increased ROS, which causes

apoptosis. Increased Aβ accumulation in AD can

decrease the activity of AMPK and CaMKKβ while

increasing the activity of the ubiquitin-proteasome

system. These changes are associated with the

degradation of PGC-1α and ultimately impair

mitochondrial DNA function in neurons, leading to

mitochondrial-dependent cell death (21). Therefore,

improving mitochondrial homeostasis to restore

normal mitochondrial function is beneficial for

preventing or treating AD. Regular exercise is one way to

improve mitochondrial function in the AD brain.

The results of the present study showed that exercise

training increased the expression of AMPK/PGC-1α/SIRT1

in the hippocampus of AD rats. Recently, Azarian et al.

showed that AD induction caused a significant decrease

in the expression of the PGC-1α gene in the hippocampal

tissue of rats, and that after eight weeks of endurance

training, the expression of PGC-1α increased (22). In aged

rats, swimming exercise was shown to improve the

AMPK/PGC-1α/SIRT1 pathway in hippocampal tissue,

thereby suppressing apoptosis and inflammation in the

brain (23). Exercise mediates various mitochondrial

autophagy pathways through AMPK. One such pathway

is AMPK/PGC-1α/SIRT1, where AMPK and SIRT1 are closely

related in energy regulation, metabolism, and aging

and can enhance each other's activities (24).

Nicotinamide adenine dinucleotide increases SIRT1

activity by activating AMPK, leading to the deacetylation

of PGC-1α and subsequently activating the AMPK/PGC-

1α/SIRT1 signaling pathway. Therefore, exercise improves

mitochondrial biogenesis and removes damaged

mitochondria through autophagy. Additionally, exercise

increases BDNF and its receptor, tyrosine kinase B,

activates PKA through the MAPK-2/ERK1 pathway, and

ultimately activates cAMP (25). Calcium release

following muscle contraction also activates calmodulin,

calcineurin, and calmodulin kinase, thereby increasing

the activity of SIRT1, PGC-1α, and PPAR (26).
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Figure 4. Hippocampal SIRT1 expression in different groups by one-way analysis of variance (P < 0.05). A, difference from NO; B, difference from AD; C, difference from ADTRSV.
Abbreviations: NO, normal; AD, Alzheimer's; ADT, Alzheimer's-training; ADRSV, Alzheimer's-resveratrol; ADTRSV Alzheimer's-training-resveratrol.

Among the results of the present study, the

expression of AMPK, PGC-1α, and SIRT1 increased after

RSV consumption in AD rats. Some studies have shown

that RSV significantly improves disorders caused by AD

through the modulation of various underlying

mechanisms and signaling pathways and can slow the

onset and progression of AD (27). It has also been

demonstrated that pretreatment with RSV improves the

antioxidant defense system and increases SIRT1 in AD

patients (28). In another study, RSV was shown to

improve mitochondrial function by modulating the

activation and expression of PGC-1α, which is

responsible for mitochondrial biogenesis (29).

Mitochondrial biogenesis appears to be induced by

SIRT1 with the involvement of AMPK. In SIRT1 knockout

mice, daily intake of 25 and 215 mg of RSV had no

significant effect on the increase of AMPK, mtDNA

content, mitochondrial respiration, or PGC-1α (30). This

result suggests that the protective effect of RSV is

mediated by its impact on SIRT1. Resveratrol inhibited

NF-κB signaling in neurons and protected these cells

against microglia-dependent Aβ toxicity. RSV has also

been reported to increase mitochondrial mass and

function, as well as PGC-1α levels, citrate synthase, and

cytochrome c oxidase IV (COXIV) activity, by activating

AMPK (31). An in vitro study indicates an ameliorative

effect of RSV against neurodegeneration in the brain

through the regulation of mitochondrial dynamics and

action on AMPK-related pathways (32). Ma et al.

conducted a study administering RSV at a dose of 25

mg/kg in Wistar diabetic AD model rats, showing that

RSV could increase the level of SIRT1 (33).

Another finding of the present study was the

increased expression of AMPK, PGC-1α, and SIRT1 in the

ADTRSV group compared to other experimental groups.

As mentioned, both exercise training (21, 22) and RSV (28,

30-32) can increase the expression of AMPK, PGC-1α, and

SIRT1 in various mouse models (AD, aging, and diabetes).

It seems that RSV can enhance the effects of exercise on

these indicators, leading to synergistic results. Liao et al.

https://brieflands.com/articles/jamm-144281
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showed that exercise, RSV, and their combination

increased the expression of AMPK and SIRT1, while

decreasing the expression of P53 and the Bax/Bcl-2 ratio

in aged rats (34). Another study indicated that the

combination of exercise and RSV could cause synergistic

activation of SIRT1 and PI3K/Akt signaling in the heart

tissue of old rats (35).

One limitation of the present study is the lack of

investigation of the AMP/ATP ratio and the NAD+/NADH

ratio, which are crucial factors for AMPK activation

following exercise. Additionally, since the onset of AD

occurs over a long period, induction of AD using Aβ may

not fully reveal the disease's symptoms.

The results of the present study indicated that AD

induction decreased the expression of AMPK/PGC-

1α/SIRT1, while aerobic exercise improved the expression

of these indicators in the hippocampus of AD rats. RSV

also positively affected this signaling pathway. However,

the combined effect of exercise and RSV on this pathway

was greater than the effect of each intervention alone,

indicating a synergistic effect. Therefore, based on the

results of the present study and previous research, it is

recommended to use both exercise and RSV

supplementation to improve mitochondrial function

and metabolic status in AD, potentially reducing or

delaying the problems caused by AD by enhancing

cellular function in the central nervous system.
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