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Abstract

The most successful and effective preventive measure against infection from a particular disease is to get vaccinated. Traditional
vaccines use a dead or a weakened pathogenic microbe or a toxin from a pathogen. The introduction of an attenuated or dead
pathogen into a healthy individual generates an immune response. Vaccines aid in creating a memory of the antigenic specificity
of disease in the individual, thus immunizing the individual against that particular disease for a long period. Therefore, getting
vaccinated for a disease is the best measure one can take, especially for military forces. Due to the circumstantial juxtaposition
of a soldier in harsh environments while serving his nation with little to no amenities, the threat of a biological agent increases
significantly. Thus, the maintenance of hygiene and immunity is of utmost importance in the military to prevent any setback in the
line of duty. Some vaccines do require booster doses to retain the memory of antigenic specificity. Various techniques have been
developed or are under development to produce effective vaccines for several diseases. A key development in traditional vaccines
is the reduction of booster doses required, as well as the reduction of side effects. Any technique used to produce vaccines has to
ensure the provision of long-term immunity to the individual, no side effects on the individual due to the vaccine, no relapse or
reversion of pathogenicity, and induction of an immune response at a low dosage. This article aims to highlight the progress and
failures in the development of different types of traditional vaccines, along with the procedures and techniques used in traditional
vaccine production.
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1. Introduction

In the 21st century, the medical facilities and avenues
have advanced to extents where researchers now speak of
DNA and RNA vaccines. Such advancements were not avail-
able in previous centuries. Although war still exists in the
21st century, with advanced medical treatment, the casu-
alties are lower in military forces. Every century has wit-
nessed its own great war. The 20th century witnessed two
world wars. In both World War I (WWI) and World War
II (WWII), thousands of soldiers died of cholera, pneumo-
nia, influenza, typhoid, mumps, tetanus, and rabies, be-
sides other fatal infections. Wars dated prior to the WWI
and WWII witnessed millions of soldiers’ deaths due to in-
fections from battle wounds and unhygienic conditions in
trenches.

According to statistics, the majority of the fatalities did
not occur due to the combat but due to the disease (1). The
infections are transmitted through mosquitoes, ticks, and
urine of rodents or are blood-borne, water-borne, or soil-
borne. Even the consumption of unpasteurized dairy prod-

ucts, undercooked meat, or the use of animal feces are the
factors that may lead to infection. Additionally, there are
other routes such as exposure to animal-derived products
and hides, as well as sexual contact. In modern warfare,
the soldiers are trained in a six-component approach com-
prising preparation, education, personal protection mea-
sures, vaccination, chemoprophylaxis, and surveillance (1).
Military forces are vaccinated prior to service. They are
recommended taking vaccines for diseases mentioned in
Table 1. A few vaccines can be omitted from the inven-
tory based on the region (2). Vaccines for anthrax, small-
pox, and yellow fever are usually region-specific in nature.
Further, vaccines for diseases such as pneumococcal and
meningococcal infection, tetanus, rabies, and influenza re-
quire booster doses every five years (3). Hence, an emphasis
has been laid on increasing the longevity of immunization,
as well as the reduction of side effects such as fever and
body ache after dose inoculation. While DNA vaccines and
recombinant vaccines for most diseases are in the clinical
trial phases, researchers have sought to improve the well-
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established traditional vaccines. This article aims to high-
light the techniques used for producing particular types of
vaccines.

2. Live Attenuated Vaccine

Live attenuated vaccines (LAVs) provide immunity to
individuals against a specific disease as they provide anti-
genic memory in the form of attenuated pathogens to the
host’s immune system. LAVs allow the host immune sys-
tem to produce primary lymphocytes for the antigens dis-
played by these attenuated pathogens. The production of
primary lymphocytes is time-consuming as the specificity
for a particular disease is initially absent in the immune
system. Thus, LAVs provide the immune system with an op-
portunity to recognize and retain the memory of the anti-
genic specificity for the inoculated virus (4). The mode of
action of the vaccine is slow approximately; hence, adju-
vants are not required to further increase the duration of
immunity.

In the past, LAVs were producing by continuous pas-
sages and selections. However, the empiric methods of
production would sometimes lead to the reversion of the
attenuated virus into a wild lethal strain (5). Rational
methods have been developed over the decades for the pro-
duction of attenuated pathogens as they reduce the prob-
ability of reversion of the virus into a wild strain (6). The
strategies for development are listed in the following.

2.1. Attenuation by Loss of Genetic Pool

In the case of viral pathogens, the population is not a
single genotype but a mixed genotype due to rapid mu-
tations in the viral RNA; hence, it is essentially a “quasis-
pecies”. This quasispecies is necessary for the survival and
virulence of the pathogen as it provides the pathogen with
a better chance of survival when infecting an individual
by granting the virus to have the ability to adapt to a new
environment when infecting a host (7). Degradation in
this quasispecies can be brought about by propagating the
virus in an atrophic host, resulting in the loss of genetic di-
versity for successful infection of the trophic host (8). The
oral poliovirus vaccine was produced by limiting the qua-
sispecies of poliovirus by conducting several passages of
Mahoney type-1 strain and Saukett type-3 (9) strain in rats
and mice with subsequent passages in cell cultures.

The vaccine for smallpox, which was obtained from
milkmaids suffering from cowpox, can be considered the
first-ever vaccine made using this concept (10-12). The var-
iola virus had not been inoculated in another host; how-
ever, it can be deemed that cowpox was an already existing
attenuated model of smallpox present in cows that would

mildly infect humans. Thus, when Edward Jenner inoc-
ulated James Phipps with cowpox pathogen, followed by
variola virus, James survived without developing smallpox
(10, 11, 13).

The virulence of a pathogen would decrease if the over-
all genotypic diversity of the population was restricted
by subjecting the viral population to continuous genetic
variation and competition (14). For example, the measles
vaccine is produced by inoculating and passaging the
pathogen in chicken embryonic fibroblast, resulting in the
attenuation of the virus (7). The vaccine for yellow fever
was produced in a similar manner. Two strains of yellow
fever were independently produced by different groups.
The yellow fever-French neurotropic vaccine (YF-FNV) was
produced by taking a wild strain and passaging the strain
128 times in the intracerebral mouse brain (15) while the
Asibi strain for yellow fever was produced by another wild
strain passaged in the mouse culture, followed by chick
embryo tissue (16, 17). The Asibi strain was attenuated by
passaging in HeLa cells in the previous decade (18). An
experiment on the prolonged cultivation of yellow fever
virus in vitro demonstrated that the virulence decreased
for the cultivation in chick embryo tissue while the viru-
lence was retained in the prolonged cultivation in mouse
tissue (17).

The controversial Urabe strain for mumps, whose use
stopped as a vaccinating strain because of developing
meningitis and encephalitis (19), was produced by atten-
uating the pathogen in chick fibroblast (5, 20). This is
while the Jeryl Lynn strain of mumps is produced owing to
this concept by inoculating it into specific pathogen free
(SPF) chicken embryonic fibroblasts (21) and cell cultures
of chick embryo (20, 22). Strains such as rubini strain (23)
are obtained by isolating the pathogens from the patient,
followed by SPF chicken fibroblasts and MRC-5 cells pas-
sages (16, 24). The Leningrad-3 strain is a combination of
five strains of mumps while L-Zagreb strain is a further sub-
cultivation of the Leningrad-3 strain in chicken fibroblasts
(25, 26).

The influenza vaccine is produced using a similar strat-
egy wherein the dominant strains of influenza A (H1N1 and
H3N2) and influenza B are collected for the next infective
season (27) and propagated in embryonated chicken eggs
of typically 2-weeks-old (28-30). Since such large-scale pro-
duction of single-use bioreactors is not possible to meet
the demands for bulk production of the vaccine, the host
is changed to a mammalian cell line, which is typically the
Vero cell line or the MCDK cell line in the case of Flucelvax
that is produced by Novartis (31).

In the case of bacterial pathogens, a synthetic quorum
sensing environment that induces the expression of at-
tenuated factors can be constructed and induced on the
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Table 1. Vaccines Given to Military Forces Based on the Geographical Location of Their Posting

Disease Vaccine Type Geographical Regions

Meningococcal infection Conjugate vaccine Africa, Europe, North America

Pneumococcal infection Conjugate vaccine Africa, Middle East, Europe, Indo-Pacific, North and South America

Hepatitis A Inactivated vaccine Africa, Middle East, Europe, Indo-Pacific, North and South America

Hepatitis B Inactivated vaccine Africa, Middle East, Europe, Indo-Pacific, North and South America

Japanese encephalitis Inactivated vaccine Indo-Pacific

Polio Inactivated vaccine Africa, Middle East, Europe, Indo-Pacific, North and South America

Rabies Inactivated vaccine Africa, Middle East, Europe, Indo-Pacific, North and South America

Influenza Live attenuated vaccine Africa, Middle East, Europe, Indo-Pacific, North and South America

MMR Live attenuated vaccine Africa, Middle East, Europe, Indo-Pacific, North and South America

Yellow fever Live attenuated vaccine Africa, Europe, South America

Small pox Live attenuated vaccine Indo-Pacific, North America

Typhoid Live attenuated vaccine Africa, Middle East, Europe, Indo-Pacific, North and South America

Tetanus Toxoid vaccine Africa, Middle East, Europe, Indo-Pacific, North and South America

population of the pathogen (32). Thus, the virulence of
the pathogens decreases by inducing a bottleneck to pre-
vent the expansion of genetic diversity of the population.
The attenuation of a pathogen can be confirmed by check-
ing the markers for virulence in the pathogen’s genome
sequence. This indicates that there are certain genes re-
sponsible for the reduced virulence of a pathogen. Hence,
by targeting genes and “switching them on or off”, a viru-
lent pathogen can be engineered to be non-virulent and
in the case of vaccines, it can be engineered to be atten-
uated. These engineered pathogens are attenuated in na-
ture either due to a low replication rate or due to a de-
crease in the expression of toxins or both (33). Polymerase-
based attenuation relies on the mutation or replacement
of a specific residue on the pathogenic RNA-dependent
RNA-polymerase (RdRp) such that the genetic variation of
the quasispecies is lowered. Site-directed mutation medi-
ated through PCR overlapping is used to mutate a specific
residue (34). The mutation aims at increasing the fidelity
of RdRp. By increasing the fidelity, the number of muta-
tions occurring reduces; hence, a loss in genetic variation
is evident (35). This method reduces the probability of the
attenuated virus from becoming a wild type even after sev-
eral passages, thus effectively reducing the chance of rever-
sion.

2.2. Attenuation by Codon Targeting

A codon is degenerate in nature, that is, there are mul-
tiple codons coding for the same amino acid. In an organ-
ism, the genome has degenerate codons; however, it has
been observed that among synonymous codons, there are
certain codons that are expressed more; thus, a codon bias

may exist in certain species (36, 37). For example, in the case
of poliovirus, a change in the genome sequence of type-2
strain by increasing the frequency of CpG and UpA dinu-
cleotides results in the decrease of codon bias, followed by
the attenuation of the virus due to the lowered expression
of toxins and lowered replication rate, which were found
to be conserved after several passages in HeLa cells (36, 38,
39).

Deoptimized codons have several advantages comply-
ing with the strategy of vaccine development. First, the
deoptimized codons express proteins that are identical to
the wild type and the attenuated type but the translational
efficacy is greatly reduced. Hence, the antigenicity is not
affected and the immune response elicited is similar to
the response toward a natural infection. Second, this tech-
nique can be applied to a large number of viruses as it is a
systemic approach rather than an empiric one. Finally, the
point mutations are brought about in thousands of syn-
onymous codons, thus minimizing the possibility of rever-
sion to a wild lethal strain.

2.3. Attenuation by Auxotroph

Auxotrophic mutants of a strain are incapable of pro-
ducing a naturally synthesizable compound by the nor-
mal strain, thus requiring the naturally synthesizable com-
pound to be additionally present in the media for normal
functioning of the auxotrophic strain. Auxotrophic strains
are usually mutated by deleting or silencing a gene that is
responsible for the production of a growth-linked product.
As a direct result of this deletion, the mutant strain is un-
able to proliferate at a rate similar to that of the normal
strain.
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In LAVs, the use of auxotrophic mutants is possible
due to the fact that the mutant is unable to receive suffi-
cient quantity of metabolites required for growth inside
the host system. To make the vaccine more effective and
less revulsive, the strain is further manipulated to decrease
the invasive and toxin production capability. A successful
model of such a vaccine can be observed for S. typhi. The
hypoxanthine, thiamine, and adenine auxotroph of S. typhi
(40) constructed through two deletion mutations from the
Ty2 and CDC 10 - 80 strain has been reported as a possible
candidate for the live-oral vaccine for typhoid (41).

3. Inactivated Vaccine

Unlike LAVs, inactivated vaccines provide immunity to
the host by inducing an immune response in the host to-
ward the injected virus that has been killed or inactivated
via chemical or thermal means such that it cannot fur-
ther replicate or survive in the host organism. Several
novel agents and methods of inactivation have been de-
scribed (42) such as ascorbic acid used for preparation of
the rabies vaccine (43), psoralen-induced inactivation for
the dengue vaccine (44), UV treatment and Gamma irradia-
tion for the inactivated influenza A vaccine (45, 46), the use
of ethylenimine derivates, heat inactivation for poliovirus
(47), formaldehyde, β-propiolactone, and so on (48, 49).
The rabies vaccine is produced by binary ethylenimine af-
ter propagating the virus in BHK cells; however, vaccine
inactivation by this method is less stable (50). Nonethe-
less, formaldehyde and β-propiolactone (BPL) are widely
used for the production of inactivated vaccines because
of higher efficiency and stability retention. Inactivated
vaccines are second to LAVs in stimulating and mimick-
ing the immune response to a natural infection; however,
the immune response generated by inactivated vaccines is
weaker than the immune response generated by LAVs, thus
requiring “booster” injections and immunological adju-
vants to provide a stronger immune response against the
pathogen.

Inactivated vaccines are stable and can be easily main-
tained when compared to LAVs. Moreover, inactivated vac-
cines can be used in multivalent combinations to pro-
vide immunity against different strains and viruses in
a single dose. Inactivated vaccines can be further clas-
sified as whole virus vaccines that contain completely
killed/inactivated virus, split virus vaccines that contain
disrupted viruses using a detergent to make the split virus
vaccine, and subunit virus vaccines produced by only puri-
fying out the antigen from the virus such that the purified
antigen can mimic the stimulation of a natural immune
response.

3.1. Inactivation by Thermal Treatment

Inactivation by heat treatment is the simplest tech-
nique that can be used for inactivating viruses. Thermal in-
activation is followed by chemical inactivation that may re-
sult in increased vaccine toxicity (51). For unknown viruses,
the virus sample is usually heated below 100°C for a long
duration or over 100°C for a short duration. The thermal
inactivation point determines the lowest temperature that
would suffice to inactivate an unknown virus when treated
for 10 minutes. The temperature is increased at intervals
of 10°C from the first exposed temperature and the inter-
val is reduced to 5°C when inactivation first occurs (52). A
common drawback of thermal inactivation is the denatur-
ing of RNA and DNA strands, as well as proteins, resulting
in ineffective vaccines. Despite this drawback, both hepati-
tis A and hepatitis B vaccines are produced by heating the
virus to 56°C for 30 minutes (53). A study demonstrated
that heat inactivation at a temperature of 65°C for a pe-
riod of 15 minutes (54) was sufficient to completely inac-
tivate poxvirus, picornavirus, toga virus, coronavirus, or-
thomyxovirus, rhabdovirus, herpes virus, lentivirus, and
retrovirus while parvovirus and Papovaviruswere inacti-
vated with heat treatment for 90 seconds at 103°C (55).

3.2. Inactivation by Formaldehyde

Formaldehyde is the simplest aldehyde that usually
acts as a reducing agent unless a stronger reducing agent
is added to the reaction mixture. It brings about various
modifications such as methyl groups, methylene bridges,
and Schiff bases in proteins. This results in the inactivation
of proteins.

Generally, formaldehyde stock solutions are diluted to
a final concentration of 0.4% formalin. This concentra-
tion requires an inactivation period of up to three weeks
for higher titers of the virus at an incubation temperature
of 2°C to 7°C. However, to inactivate more potent batches
of the virus, the concentration of formalin is lowered to
approximately 0.025% - 0.012% and the temperature is in-
creased to 37°C - 40°C as used in the preparation of Salk’s
vaccine (56). Therefore, the higher the concentration of
formalin and the higher the temperature, the faster the
rate of inactivation; however, the loss of immunogenicity
might be observed due to the degradation and destruction
of the toxin. Thus, the inactivation time should be opti-
mized such that the immunogenicity is not lost while as-
suring the complete inactivation of the virus. Once inac-
tivation of the virus is done, residual formalin is removed
using sodium bisulfite (48).

Japanese encephalitis virus (JEV) is cultured in Vero
cells and inactivated in formalin, followed by purification
to obtain the antigens. The genetic analysis of all JEV
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isolates confirmed that they comprised a single serotype
(57). This information is valuable for vaccine design (58).
A study of a strain obtained from Vellore, India, demon-
strated that inactivation by formalin at 22°C was faster and
cheaper than inactivation by formalin at 4°C (59).

Formalin-inactivated hepatitis A virus showed an ap-
propriate immune response in a study (51), thus, suggest-
ing vaccine development by formalin inactivation (60).
The inactivated poliovirus vaccine is produced by inactiva-
tion of three strains of poliovirus, Mahoney type-1, MEF-1,
and Saukett type-3, using formaldehyde; however, a failure
in the inactivation of the Mahoney strain due to resistance
to formaldehyde resulted in the replacement of Mahoney
strain with Brunenders strain type-1 (9).

In the case of live attenuated strains of influenza, in-
cluding two subtypes of influenza A (H1N1 and H3N2) and
two antigenically distinct lineages of influenza B, obtained
from serial passages in embryonic chicken eggs or Vero
cells depending on the host used, when further treated
with formalin (61), it was observed that the surface gly-
coproteins hemagglutinin (HA) and neuraminidase (NA)
characteristics were retained while effectively killing the
cells, resulting in the formation of an inactivated vaccine
(29, 62). Hence, this multivalent vaccine is a whole virus
vaccine in nature that contains toxins from more than one
strain (28). This whole virus vaccine when treated with
Triton-X100 results in the production of the split virus vac-
cine (63).

3.3. Inactivation by β-Propiolactone

β-propiolactone (BPL) is a four-ringed lactone and is
highly reactive toward nucleophiles. BPL is stable in
concentrated liquid forms but readily degrades in aque-
ous solutions due to hydrolysis into non-toxic and non-
carcinogenic products. This results in the complete elim-
ination of BPL from the reaction mixture, thus eliminat-
ing the requirements of techniques for further removal
of BPL from the product. Thus, BPL poses an advantage
over formaldehyde inactivation methods as residual for-
malin has to be removed from the product. However, if ex-
cess BPL is present, it has to be neutralized using thiosul-
phate. The inactivation time of viruses is shorter when BPL
is used than when formaldehyde inactivation methods are
employed. Moreover, the temperature used during inacti-
vation is low, thus reducing the risk of denaturation of epi-
topes due to thermal degradation.

BPL is used for the inactivation of the rabies virus. The
PM strain and Flury HEP strain were adapted in WI-38 for
several passages and a viral pool was prepared in the BHK
cell line. These strains were then chemically inactivated by
BPL at the 0.025% concentration at 4°C for various lengths

of time (64). The PV/VERO-Paris strain of rabies was inacti-
vated by BPL after culturing in Vero cells (65).

However, BPL directly interacts with nucleic acids to in-
activate the virus. DNA and RNA are irreversibly alkylated
and acylated by BPL, specifically reacting with N-7 of guano-
sine and N-1 of adenosine to some extent. Due to this mod-
ification, Gp is misread as Ap by the polymerase, resulting
in numerous irreversible point mutations in the genome
of the virus, hence rendering it inactive. Therefore, the pro-
teins expressed are altered due to this nucleic mutation.
Moreover, it has been observed in a study that BPL inter-
acts with 9 amino acids, hence directly altering proteins.
A loss in immunogenicity occurs due to these alterations.
Unlike formaldehyde inactivation, the concentration and
the temperature of BPL vary based on the virus being inac-
tivated.

3.4. Inactivation by Psoralen

Treatment of viruses by psoralen is a relatively mild
method to inactivate the virus. 4’-aminomethyl 4,5’-8-
trimethylpsoralen in an inert environment along with UV
radiation has shown to be an effective inactivator for the
bluetongue virus (66) and immunodeficiency viruses (67).
Psoralen inactivates viruses by intercalating between the
base pairs of double-stranded nucleic acids, hence inhibit-
ing the replication of DNA. The viral protein structure
is preserved after inactivation and no residual toxicity is
observed; however, inactivation by psoralen is not cost-
effective (68).

4. Toxoid Vaccine

Toxoid is a bacterial endotoxin with suppressed prop-
erties by using chemicals such as formalin but maintain-
ing the immunogenicity. On vaccination, the immune re-
sponse is generated by the host body and the immunolog-
ical memory is built against the molecular markers of tox-
oid but there is no manifestation of the disease in the host.
However, no strong immune response is elucidated, neces-
sitating booster doses.

The preparation of toxoid is done by the inactiva-
tion of endotoxins by chemical methods including oxi-
dation such that the process is irreversible. The oxidiz-
ing agents could be either organic or metallic in nature.
Organic oxidizing agents including hydrogen peroxide,
aldehydes, sodium peroxides, N-chloro-4-methyl-benzene-
sulfonamide sodium salt (chloramine-T), performic acid,
dioxane peroxide, periodic acid, sodium permanganate,
and sodium hypochlorite (69) are used primarily. The most
preferred oxidizing agent is hydrogen peroxide as it is eas-
ily handled, easily available, and cost-effective (69). Alde-
hydes such as glutaraldehyde or formaldehyde form Schiff
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bases. Schiff bases are chemically unstable and may lead to
reversible reactions leading to toxoid conversion into an
active toxin (70).

A recent method involved the addition of small
amounts of metal ions to oxidizing agents for the treat-
ment of the toxin. Metal ions will chemically inactivate
the toxin while maintaining immunogenicity. Oxidizing
agents oxidize amino acids such as cysteine, cystine, me-
thionine, tryptophan, or tyrosine at specific positions in
the peptide (69). For example, tetanus disease is caused
by endotoxin secreted by Clostridium tetani bacterium.
The endotoxin from Clostridium tetani is isolated using
a purifier (71). The toxin in its native form is lethal. For
chemical inactivation, formaldehyde or aluminum salts
are used to neutralize the toxin. This toxin would not gen-
erate a strong immune response; therefore, an adjuvant,
usually aluminum, is added (72). The vaccine for pertussis
may act as an adjuvant for the tetanus vaccine; hence,
the vaccine is administered as a combination dose of the
diphtheria-pertussis-tetanus (DPT) vaccine.

4.1. Vaccine Delivery Using Adjuvants

An adjuvant is a compound that helps the vaccine en-
hance the immune response. Although several potential
adjuvants have been proposed and used in clinical tri-
als, they are not accepted because of their high toxicity
and side effects such as depot development at the site
of administration by mineral compounds, oil-based adju-
vants, or biodegradable polymers and liposomes (73). Fre-
und’s complete adjuvant (FCA), muramyl dipeptide (MDP),
pertussis toxin (PT), and monophosphoryl lipid A (MPL)
are the widely used adjuvants, as they act like immuno-
stimulators (74).

An ideal adjuvant has minimal side effects with mini-
mized local and systemic reactions, elicits the maximal re-
sponse with less antigen, and has no carcinogenicity, hy-
persensitivity, or teratogenicity. It needs to be stable and
biodegradable (74). In addition, it should pose physical
properties such as high surface area, high pI, and good ca-
pacity for adsorption of positively charged proteins (75).

Aluminum compounds such as aluminum hydroxide,
aluminum phosphate, and alum-precipitated compounds
are the most common adjuvants for human use. Protein
antigens such as diphtheria and tetanus toxoids are puri-
fied using aluminum phosphate and aluminum hydrox-
ide in the presence of anionic compounds such as bicar-
bonates and sulfates (76). Aluminum hydroxide shows
better adsorption than aluminum phosphate for both TT
and DT. Studies prove that serum proteins are adsorbed
10 - 20 times more on aluminum hydroxide, establish-
ing aluminum hydroxide as a superior adjuvant to alu-
minum phosphate with similar results for FCA (74). An-

other method of adsorption is to incubate the positively
charged gel and the antigen at an optimal pH of 6, followed
by stirring continuously overnight (77). Vaccines using cal-
cium phosphate are prepared in a similar manner but a se-
vere Arthus type is observed in the case of TT (78). Recently,
the purification of protein antigens is done by using am-
monium sulfate and techniques such as ultrafiltration and
chromatography.

In a comparative study to check the efficiency of ad-
juvants for TT purified by ammonium sulphate, ultrafil-
tration, chromatography, and adsorption onto aluminum
phosphate, calcium phosphate, or stearyl tyrosine, it was
observed that aluminum phosphate generated the high-
est titre value of IgG in the first dose, followed by calcium
phosphate, while stearyl tyrosine did not yield impressive
titre values. However, in the second dosage, the difference
in the titre values was negligible between all the three ad-
juvants. Moreover, TT purified by chromatography showed
the highest titre values for all the three adjuvants (79).

Another comparative study demonstrated the effi-
ciency of aluminum hydroxide and calcium phosphate for
diphtheria-tetanus (DiT) toxoid. The aluminum hydroxide
adjuvant expressed higher titre values for both diphtheria
and tetanus toxoid (TT) than the calcium phosphate adju-
vant (80).

Liposomes made of dioxyethylene cetyl ether, choles-
terol, and oleic acid are non-phospholipid compounds in
nature used as adjuvants in TT and DT. Studies show that
they elucidate a higher response than FCA aluminum phos-
phate. TT-encapsulated vaccines sustained more antibody
levels than TT vaccines mixed with liposomes. Encap-
sulated liposomes showed higher anamnestic responses
than aluminum phosphate adsorbed to TT (81).

FCA is a water-in-oil emulsion with killed mycobacteria
in the aqueous phase. This is one of the most potent ad-
juvants, as it confers a delayed-type hypersensitivity (DTH)
response by directing T lymphocytes to acquire a Th1 pat-
tern (82, 83). FCA causes long-lasting local reactions, ulcers
at the site of injection, and toxicity in humans (84). Fre-
und’s incomplete adjuvant (FIA) is a water-in-oil emulsion
but lacks mycobacteria. FIA is prepared by using paraffin
oil with mannide mono-oleate as a surfactant. It generates
immune responses by releasing antigens from oil to stimu-
late innate immunity (85). The toxicity of FIA is low; hence,
it is suitable for human vaccine formulations. Both the ad-
juvants act by prolonging the life of antigen and stimulat-
ing its delivery to the immune system (86).

4.2. Vaccine Delivery Using Micro-Particles

Microspheres exhibit an immunostimulant property,
thus acting as antigen delivery vehicles (87). Micro-
particles are used as adjuvants for the prolonged and con-
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trolled release of toxoid. They reduce the frequency of
booster doses and are potent in making the toxoid vaccine
a single-dose vaccine (88). Micro-particles are prominently
used in the preparation of diphtheria toxoid (DT). The DT
is encapsulated in microparticles using the polylactide-co-
glycolide polymer based on the solvent evaporation tech-
nique (89). Various combinations are made with different
sizes of microparticles and release characteristics. These
were tested on Sprague rats and the antibody response
was monitored and compared with alum immunized con-
trol groups for a period of 32 weeks. It was observed that
microparticles with single trapped antigen DT had a bet-
ter response than the combination of DT and TT because
of the presence of antigenic competition among both the
antigens resulting in poor antigen presentation (90). Mi-
croparticles with a single polymer were less effective for
long-term antibody formation while the combination of
the vaccine and antigens with alum adsorbed to it gave the
best response in the formation of antibody titres and the
duration of the response (90).

The advantages of microparticles in vaccine develop-
ment are related to their biodegradable nature, ability to
generate a potent immune response, and ability to control
the release of antigens by manipulating their composition,
molecular weight, and crystallinity of the polymer (91, 92).
The variation in size of the microparticle controls the par-
ticle uptake by antigen presenting cell (APC). Smaller mi-
croparticles (< 10 µ) are taken by macrophages while the
bigger ones are not taken by macrophages as these parti-
cles exhibit a stronger adjuvant activity than microparti-
cles of greater than 10 µ (91, 93).

The microparticles are prepared by the solvent evap-
oration method in which the larger microparticles with
DT toxoid are diluted and emulsified using a Silverson ho-
mogenizer and polymer solution in methylene chloride
(94). This emulsion is added to distilled water containing
polyvinyl alcohol resulting in the formation of a water-oil-
water (w/o/w) emulsion. The microparticles are obtained
after evaporating the w/o/w emulsion. Smaller microparti-
cles can be prepared by varying the polymer concentration
and stirring speed (94).

Biodegradable microspheres are a type of micropar-
ticles made of poly(L-lactic acid) (PLA) or poly(D, L-
lactic/glycolic acid) (PLGA) (95). A biodegradable mi-
crosphere for tetanus toxoid is prepared by the solvent
extraction or solvent evaporation method in multiple
emulsion systems (94, 96, 97). The protein was analyzed at
different physical conditions to check for its antigenicity
and integrity. A partial loss in antigenicity was observed
because of lyophilization and the nature of the organic
solvent (98). Varied sizes (ranging from 3 kDa to130 kD)
of PLA and PLGA showed good protein loading efficiency

(99). Protein release is influenced by polymer weight and
composition. A study demonstrated that large micro-
spheres were degraded slowly, hence having a low titer
value while smaller microparticles exhibited a burst and
continuously increasing release rate (99). PLA and PLGA
showed a constant release pattern and the release rate of
PLA was lower than that of PLGA (96). The microencap-
sulated vaccines are more immunogenic than the fluid
vaccines as determined by the IgG levels (95) although the
duration and response of antibody did not much differ
(100).

Microspheres may be used to carry antigens at the
targeted delivery sites; for example, they transfer the TT
vaccine in mucous associated lymphoid tissue (MALT) (101).
The microspheres are made of polystyrene, poly(methyl
methacrylate), poly(hydroxybutyrate), poly(DL-lactide),
and poly(lactide) with varying ratios of lactide to glycol-
ide. When the drug was orally administered, it showed
good absorption in the payer’s patches in the small intes-
tine. The microspheres coated with ethyl cellulose, acetate
hydrogen phthalate, or cellulose triacetate showed very
low uptake. The tissue penetration is specific and limited
to the diameter of 10 µ. However, microspheres with
diameters of smaller than 5 µ are transported through
the efferent lymphatics within the macrophages while the
ones with a greater diameter remain fixed at the payer’s
patch (102). The effective delivery of microspheres in MALT
is associated with their ability to produce secretory IgA.
Microspheres are prepared using endotoxin or coumarin-
6 dye by microencapsulation procedures. It was observed
that hydrophobic particles were readily phagocytized by
the reticular-endothelial system (102).

5. Conjugate Vaccine

A conjugate vaccine is a covalent vaccine made by
joining a weak antigen to a strong antigen, resulting in
the increased immunogenicity of the weak antigen. The
weak antigen is usually a polysaccharide that is attached
to a strong protein antigen. Recently, peptide-protein or
protein-protein conjugates have also been developed.

The response of B cells to the capsular polysaccharide
is T cell-independent, implying that B cells can produce an-
tibodies without the help of T cells. Normally, polysaccha-
rides cannot be loaded by themselves on MHCs of the anti-
gen presenting cells (APCs) because MHCs bind only to pep-
tides; therefore, a T cell response can be induced by con-
jugating a polysaccharide (103). The target polysaccharide
antigen is linked to the carrier peptide that is made avail-
able to bind to the MHCs molecule for activating T cells.
T cells generate a vigorous immune response and a long-
lasting immune memory; hence, the conjugate vaccine is
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very effective in the prevention of invasive bacterial dis-
eases (104).

5.1. Conjugation by Covalent Linkage to Carrier Proteins

A polysaccharide conjugate vaccine consists of a
polysaccharide that is covalently attached to the carrier
protein to provide epitopes for T cell-independent anti-
gens. The polysaccharide of known molecular size is
chemically purified for the generation of chemically reac-
tive groups that can form a bond with the carrier protein.
The methods used for polysaccharide activation are the
periodate oxidation of vicinal hydroxyls and cyanationof
hydroxyls (105). The size of the polysaccharide may be
noted after purification as low-molecular size impurities
result in inefficient conjugation.

The factors considered for conjugation include the
polysaccharide to protein ratio and the percentage of non-
conjugate saccharide. Yield and conjugate stability play
determining roles, as well. Usually, less than 20% of the ac-
tivated polysaccharide become conjugated, which can be
increased by improving the conjugation methods through
the generation of highly reactive groups (105).

Carrier proteins bind to the MHCs of APC. The carrier
proteins used in conjugate vaccine preparation are genet-
ically modified cross reacting material (CRM) of diphthe-
ria toxin, tetanus toxoid (TT), meningococcal outer mem-
brane protein complex (OMPC), DT, and hemophilus in-
fluenza protein D (HiD) (103). These carrier proteins are ef-
fective in increasing the vaccine immunogenicity but they
vary in quantity and avidity of the antibody they carry.

CRM197 is a nontoxic variant of diphtheria toxin. A
point mutation by glycine substituting glutamic acid at
position 52 of the polypeptide sequence results in the elim-
ination of enzyme activity and toxicity. CRM 197 has more
lysyl side chains available for conjugation and does not re-
quire inactivation by formaldehyde. It requires formalde-
hyde detoxification and is obtained at about 100% purity.
The size is about 63 kD (106). For example, the meningo-
coccal serogroup C vaccine was developed by conjugating
it with CRM197 (107).

DT is derived from Corynebacterium diphtheriae, detox-
ified by formaldehyde, and purified from ammonium sul-
fate fractionation and distillation. The size is about 63 kD
(108). A tetravalent meningococcal vaccine of serogroups
A, C, Y, and W135 conjugated to diphtheria toxin is such an
example (107).

TT is isolated from Clostridium tetani by detoxification
with formalin, purification with ammonium sulfate, and
filter sterilization before use. It is about 140 kD in size (109).
The meningococcal serogroup C vaccine can also be con-
jugated to TT as first introduced in the UK (107, 110, 111).
The meningococcal serogroup A vaccine is produced using

TT as a carrier protein (112) and it was observed to be ef-
ficient in providing immunization to toddlers and school
children (113).

OMPC is isolated from the N. meningitidis serogroup B
strain 11 outer membrane protein complex. It is purified
by detergent extraction, ultracentrifugation, defiltration,
and sterile filtration. The size is about 37 kD (114).

HiD is an antigenically conserved surface lipoprotein
isolated by solubilization with sonication and sarkosyl-
extraction by SDS-PAGE. It is used in a non-acylated active
form. The size is 42 kD (115).

HiB polyribosylribitol phosphate (PRP) conjugate vac-
cines show local reactions such as redness, pain, and
swelling in infants. It was observed that the inflamma-
tory reactions were less frequent in children who received
the vaccine with carrier proteins D and CRM than those
receiving the vaccine with carrier proteins OMP and T af-
ter three doses of the vaccine (104). The first injection
showed a high rate of irritability, crying, and fever in T car-
rier proteins but not in subsequent injections. HiB-OMP
showed lymphadenopathy, hypersensitivity, abscess, and
febrile seizures (103).

The vaccine stability changes with the molecular size
of polysaccharides and the percentage of free polysaccha-
rides. It has been reported that saccharides of shorter
chain lengths are better to develop T cell-dependent anti-
body responses (116). Oligosaccharide-T with an average
length of 14.5 kDa is a superior immunogen to that with
the average long chain of 27 kDa. However, the presence of
conformational epitopes is an important determinant of
the optimal length of the oligosaccharide used in the con-
jugated vaccine (116).

The pneumococcal conjugate vaccine is composed of
a bacterial polysaccharide conjugated with a carrier pro-
tein. There are several valency variants of this vaccine. In a
placebo-controlled trial in adults aged more than 65 years,
the efficacy of 13-valent polysaccharide conjugate vaccine
(PCV13) was determined (117) for vaccine type-community
acquired pneumonia and vaccine type-invasive pneumo-
coccal disease (IPD) (118). It was observed that PCV13 had
significant efficacy in the prevention of pneumococcal dis-
ease in adults over 65 years of age (119). Another study
demonstrated that the non-conjugated pneumococcal vac-
cine is not effective in preventing pneumonia (120). The
converse was demonstrated in the case of PCV13 versus the
23-valent pneumococcal polysaccharide vaccine (PPSV23)
(121).

6. Conclusions

LAVs, inactivated vaccines, toxoid vaccines, and conju-
gate vaccines have been available since the 20th century,

8 J Arch Mil Med. 2019; 7(1-2):e96149.

http://jammonline.com


Borkar TG and Goenka V

thus referred to as traditional vaccines. Traditional vac-
cines have found application in immunization against a
number of infectious diseases over the years. These vac-
cines have also been improved and improvised to increase
their efficacy while reducing the dosage and toxicity. In
the 21st century, many advancements have occurred in vac-
cination, e.g., the development of recombinant DNA vac-
cines that provide a long-term immunity similar to LAVs,
but do not contain attenuated organisms similar to in-
activated vaccines; however, rDNA vaccines are still un-
der preclinical and clinical trials for a majority of dis-
eases. Another development in modern vaccinology is ed-
ible vaccines; however, the preclinical trial results are not
as promising as rDNA vaccines. Nanotechnology has been
developed to produce antigen-carrying vehicles. However,
the biocompatibility of nanoparticles and the rate of anti-
gen release from nanoparticles are the limiting factors in
this development.
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