
J Cell Mol Anesth. 2024 March; 9(1): e145369. https://doi.org/10.5812/jcma-145369.

Published online: 2024 February 3. Review Article

Copyright © 2024, Hashemi et al. This open-access article is available under the Creative Commons Attribution 4.0 (CC BY 4.0) International License

(https://creativecommons.org/licenses/by/4.0/), which allows for unrestricted use, distribution, and reproduction in any medium, provided that the original

work is properly cited.

Machine Learning-Guided Anesthesiology: A Review of Recent

Advances and Clinical Applications

Sana Hashemi 1 , Zohreh Yousefzadeh 1 , Ahmad Ali Abin 1 , * , Azar Ejmalian 2 , Shahabedin Nabavi 1 , Ali

Dabbagh 3

1 Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
2 Department of Anesthesiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
3
 Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

*Corresponding author: Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran. PO Box: 1983969411, Tel: +989127253488, Email: a_abin@sbu.ac.ir

Received 2024 January 22; Accepted 2024 February 3.

Abstract

Anesthesia is the process of inducing and experiencing various conditions, such as painlessness, immobility, and amnesia, to

facilitate surgeries and other medical procedures. During the administration of anesthesia, anesthesiologists face critical

decision-making moments, considering the significance of the procedure and potential complications resulting from

anesthesia-related choices. In recent years, artificial intelligence (AI) has emerged as a supportive tool for anesthesia decisions,

given its potential to assist with control and management tasks. This study aims to conduct a comprehensive review of articles

on the intersection of AI and anesthesia. A review was conducted by searching PubMed for peer-reviewed articles published

between 2020 and early 2022, using keywords related to anesthesia and AI. The articles were categorized into nine distinct

groups: “Depth of anesthesia", “Control of anesthesia delivery", “Control of mechanical ventilation and weaning", “Event

prediction", “Ultrasound guidance", “Pain management", “Operating room logistic", “Monitoring", and “Neuro-critical care".

Four reviewers meticulously examined the selected articles to extract relevant information. The studies within each category

were reviewed by considering items such as the purpose and type of anesthesia, AI algorithms, dataset, data accessibility, and

evaluation criteria. To enhance clarity, each category was analyzed with a higher resolution than previous review articles,

providing readers with key points, limitations, and potential areas for future research to facilitate a better understanding of

each concept. The advancements in AI techniques hold promise in significantly enhancing anesthesia practices and improving

the overall experience for anesthesiologists.
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1. Introduction

Currently, artificial intelligence (AI) is becoming

increasingly pervasive across various scientific fields,

including medicine and healthcare. Medical
applications of AI have seen significant growth in recent

years (1, 2). Given the direct impact of medical decisions
and activities on human life, the healthcare sector

receives substantial attention from the research

community. In this context, AI's potential to assist
physicians and medical staff in managing complex

tasks, handling a body of data, and making medical
decisions has garnered considerable interest.

Numerous studies conducted in recent years have
demonstrated the high capabilities of AI algorithms,

resulting in a noticeable reduction of risks associated

with medical practices. Furthermore, AI
implementation has contributed to providing a better

overall experience for both patients and medical staff

alike.

The field of anesthesia is one of the critical areas in

medical sciences. Since conscious patients are unable to

breathe due to anesthetic drugs, the anesthesiologist

must ensure they have stable breathing conditions
through appropriate interventions. Therefore, making

accurate decisions in this context is of utmost

importance. Tasks such as predicting the depth of

intraoperative anesthesia (3), developing metrics for

neurological care (4), and predicting postoperative
complications (5) are among the responsibilities that
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anesthesiologists perform with the assistance of AI

algorithms. This integration of AI results in reduced

errors, increased speed, and enhanced accuracy, as
reported by anesthesiologists.

This study is a review of current trends in AI in

anesthesia within 2020-2022. Moreover, this study

provides substantial assistance for anesthesiologists

who are familiar with the basic concepts of AI and

machine learning (ML) and are interested in monitoring

the latest developments in this field. Instead of focusing

extensively on teaching the basics of ML and AI, the

authors have dedicated their efforts to reviewing

existing studies and covering a wider range of articles.

After reviewing the studies in the field of anesthesia

and AI, existing studies were summarized by presenting

a tabular structure of the main details within each
study. This structure includes information on the

purpose and type of surgery and anesthesia, the AI

algorithms employed, the features used by AI models,

dataset information, data accessibility, and evaluation

criteria. Additionally, this study categorized and
reviewed articles with a higher level of detail than

Hashimoto et al.’s study (6), which divided the studies

into six categories. This study extends the previous

research by introducing three new categories and

incorporating recent studies from 2020. The collected
studies were thoughtfully divided into nine categories

based on the expertise of the anesthesiologist (Table 1).

The remainder of the study is structured as follows:

Section 2 provides an overview of AI and ML techniques.

The categorization and reviews are presented in Section

3. A comprehensive discussion of the reviewed studies is
presented in Section 4. Finally, Section 5 concludes the

study and offers insights into potential future

directions.

2. A Brief Introduction to AI and ML

Artificial intelligence is a branch of computer science

whose main purpose is to produce intelligent machines

capable of performing tasks that require human

intelligence. This technology is a type of human

intelligence simulation for computers, mainly aiming

to design and build machines that can think like

humans and imitate their behavior. Artificial

intelligence techniques can be divided into several

major categories, and currently, the two categories of

ML and deep learning (DL) are widely used in various

applications. This section provides a brief description of

the concepts of ML and DL and the interpretability of

learning models for the reader's general acquaintance.

Machine learning is considered one of the most

important branches of AI. In ML, the learning process

begins with observations in the form of data. The
learner uses examples, direct experiences, or

instructions to identify specific patterns and
automatically make decisions and solve problems.

Machine learning algorithms are typically categorized

based on their learning styles, such as supervised
learning, unsupervised learning (7), and semi-

supervised learning, depending on the observability of
variables under investigation.

Deep learning is a subset of ML that mimics the way

the human mind learns about specific subjects. Deep

learning aims to learn complex patterns by finding

representations that fit each problem through

successive layers of neural networks. Feature extraction

is a key aspect of both ML and DL; however, DL

algorithms are more automated than ML, where human

resources might be involved in feature selection.

The interpretability of learning model outcomes is

one of the most important issues in both ML and DL.
When considering a particular medical problem, a

learning algorithm can inform the physician of various

predictions related to the problem. However, it might

not provide the physician with sufficient information

about the underlying reasons for those predictions and
the process of reaching them. This “black box” nature of

the learning algorithm might limit its applications in

the medical field. To address this challenge,

interpretability techniques are applied to the

immediate results of the models. A model is considered
interpretable when one can easily and significantly

grasp the reasoning behind its predictions and

decisions. More interpretable models are easier for

human resources to understand and trust, especially in

critical domains, such as healthcare (8).

3. Literature Review

This section studies all articles within a specific

category based on their similarities.

3.1. Category A: Neuro-critical Care

The brain is the most vital organ of the human body.
Therefore, specialists must pay special attention to brain

function during anesthesia. Managing and controlling

the function of the brain and other organs is done
through neuro-critical care. Predicting and monitoring

brain damage can be challenging for human resources,
and as a result, AI algorithms have been used to create

systems for performing such tasks. Brain injuries can be

divided into two groups: Traumatic and non-traumatic.
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Table 1. Article Categories with the Number of Articles in Each Category

Category Names #Articles

A Neuro-critical care 9

B Pain management 6

C Control of mechanical ventilation and weaning 2

D Event prediction

D1. Perioperative 15

D2. Postoperative 16

D3. Critical care 12

E Ultrasound guidance 5

F Operating room logistic 3

G Depth of anesthesia 21

H Control of anesthesia delivery 6

I Monitoring 4

Traumatic injuries result from trauma or brain injury;

nevertheless, non-traumatic brain injuries are caused by
vascular accidents, such as rupture or bleeding in the

brain or narrowing of the arteries (cerebral ischemia).

Most studies in this category are related to traumatic
brain and head injuries.

Intracranial hemorrhage is considered one of the

most traumatic brain injuries. In two studies (9) and

(10), deep neural networks and unsupervised ML

algorithms were employed to analyze this injury,

respectively. In another study by Schweingruber et al.

(4), a deep, long, short-term memory (LSTM) neural

network was used to predict the critical stages of

intracranial hypotension and intracranial pressure,

which are types of traumatic brain injuries. Farzaneh et

al. (11, 12) conducted two studies focused on the use of AI

methods to classify and predict different types of brain

damage. In 2020, they used an ML model to assess the

severity of subdural hematoma (11). In 2021, they

provided long-term performance outcomes for patients

with traumatic brain injury (TBI) by presenting an ML

framework (12). The latter study’s results were

interpreted using the Shapley method.

Seizures are bursts of uncontrolled electrical activity

between brain cells, causing temporary abnormalities
in the function of some organs. The random forest (RF)

model was used to diagnose and monitor traumatic
brain injuries related to seizures in a study (13); however,

another study (14) used the generalized linear model

(GLM). Both studies utilized continuous
electroencephalogram (EEG) signals. The use of

interpretability techniques is one of the advantages and
positive contributions of these studies. Given the

importance of interpretability in medical applications,

as mentioned in section 3, it is noteworthy that its
significance in the field of neurological care is amplified

due to the presence of the most critical organ in the

human body. Among the traumatic injuries of the head,

subarachnoid hemorrhage (SAH) injuries were
predicted by Koch et al. (15) using the Elastic-Net ML

model and orthogonal partial least squares-

discriminant analysis (OPLS-DA). Hypoxic-ischemic
brain injury is a non-traumatic brain injury that can

occur after cardiac arrest. In another study, Elmer et al.
developed a new clustering algorithm called K-

prototypes, inspired by the famous K-means clustering
algorithm, to identify the phenotypes of primary brain

damage after cardiac arrest (16). Further details about

the reviewed studies in this category are shown in Table
2.

3.2. Category B: Pain Management

Pain is a sensation caused by stimulating nociceptors

in the central or peripheral nervous system. This feeling

can arise following a surgical incision and might result

from inadequate anesthetic drug injection during an

operation or insufficient postoperative analgesia.

Therefore, pain management and prevention are of

great importance for both the anesthesiologist and the

patient. Artificial intelligence models can assist

specialists in better pain management by measures,

such as defining the pain index and predicting its

timing. The reviewed studies in this category can be

divided into two subcategories.

The first subcategory includes studies aiming to

diagnose and predict the occurrence of pain during or

after an operation. For example, in a study (13), the

possibility of diagnosing toothache based on the three

signals of electrocardiography (ECG),

photoplethysmography (PPG), and chest were

investigated using the RF model, which performed well

on the test dataset. Tan et al. (17) compared ML

techniques to statistical inference techniques to identify

and predict breakthrough pain during labor, with the
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ML models not performing better than the statistical

methods, potentially due to the presence of unbalanced

data.

The second subcategory of studies focuses on

assessing the level of pain by defining a pain index. The

lack of a well-defined criterion for determining and

measuring a patient's pain level to adapt drug injections

during general anesthesia is a major challenge.

Gonzalez-Cava et al. (18) aimed to evaluate the

performance of the pain index using ML classifiers;

however, another study (19) indicated that monitoring

the injectable drug dose using the pain level index

helped reduce postoperative pain. The Nociception level

(NOL) index is another multi-parameter AI-based index

designed to monitor pain during general anesthesia,

which was observed to reduce postoperative pain. In

another study (20), a new relief index was developed

using photoplethysmogram spectroscopy and a

convolutional neural network (CNN) to assess pain in

conscious patients.

Rebound pain is a common outcome that occurs

after a peripheral nerve block, usually subsiding 24 to 48

hours after the block was formed, often occurring after

outpatient operations for patients. To address this issue,

Barry et al. (21) used ML models to examine factors

associated with rebound pain in patients who received

peripheral nerve blocks for outpatient operations. A

metric called the numerical rating scale (NRS) was

defined to measure the level of pain in this study. The

logistic model tree attribute-selected classifier with

receiver operating characteristic (ROC) showed the best-

reported result at around 60%. Table 3 shows the main

points of the reviewed studies in this category.

3.3. Category C: Control of Mechanical Ventilation and
Weaning

Mechanical ventilation is a life-supporting treatment

that aids patients who are unable to breathe on their

own. It involves the use of a mechanical device, such as a

ventilator, artificial respiration device, or respiratory

system, to assist patients in breathing. Patients

requiring respiratory support due to a serious illness are

typically hospitalized in the intensive care unit (ICU).

However, mechanical ventilation can pose challenges,

such as patient restlessness caused by the use of lighter

anesthesia and inadequate oxygen supply to the

respiratory organs. Artificial intelligence models have

been employed to address these challenges effectively.

Two reviewed studies in this category utilized ML

algorithms to predict and manage challenges related to

patient restlessness due to lighter anesthesia and

insufficient oxygen supply to the respiratory organs.

The use of lighter sedatives with lighter anesthetics is

often recommended to improve aggressive mechanical

ventilation, reduce mortality, and enhance clinical

outcomes. However, this approach can lead to issues,

such as accidental extubation and patient-ventilator

asynchrony. Additionally, the use of lighter sedatives

might increase the risk of patient agitation in response

to other nervous stimulation. To tackle these challenges,

timely prediction of patient agitations and their

management is crucial when using lighter anesthesia.

Therefore, one study (23) developed a collective ML

model to predict patient agitation in the ICU over the

next 24 hours.

Another significant aspect of mechanical ventilation

is assessing spontaneous breathing (SB) attempts, which

is an essential criterion in respiratory drive. However, SB

levels can vary due to various factors, including evolving

pathology and sedation levels. Therefore, the

continuous assessment of SB is necessary. In a study (24),

a convolutional autoencoder (CAE) was developed to

quantify the amount of SB using airway pressure and

flow waveform data. The characteristics of each

reviewed study in this category are summarized in Table

4.

3.4. Category D: Event Prediction

This category examines studies that aim to predict

events, which involve estimating the probability of

specific occurrences in the future. Artificial intelligence

algorithms have been employed as tools to enhance the

accuracy, ease, and speed of predicting these events and

preventing related complications. The events are

categorized into three subcategories: Perioperative,

postoperative, and critical care, each of which will be

discussed in more detail below.

3.4.1. Subcategory D1: Perioperative

Perioperative events refer to occurrences that might

happen to a patient before, during, or immediately after

an operation. In this subcategory, the prediction of such

events is the focus (25, 26). A common perioperative

event is fluctuations in blood pressure, particularly

hypotension, which can lead to serious complications,

such as cardiovascular injury or even death. Several

articles in this subcategory predicted hypotension

before its occurrence to enable specialists to take

necessary tasks to prevent it (27-33). Another crucial

event is difficult laryngoscopy, defined as the inability to

visualize part of the vocal cords during multiple

laryngoscopy attempts by a trained anesthesiologist.

Predictive models for difficult laryngoscopy were
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Table 4. Category C: Control of Mechanical Ventilation and Weaning

No. Study Goal Type of
Anesthesia

Dataset
Availability

Number of
Case/Dataset

Feature(s) Algorithm(s) Winner
Algorithm

Winner
Algorithm

Performance
Interpretable?

1

Zhang
et al.

(2021)
(23)

Prediction of
agitation in
invasive
mechanical
ventilation
patients under
light sedation.

Sedation Unavailable 578/Some ICUs in 80
Chinese hospitals

Risk factors for
delirium
identified,
ventilator
parameters
that can
influence
asynchrony,
including
ventilation
mode, positive
end-expiratory
pressure,
plateau
pressure, Fio2,
respiratory
rate, and
minute
ventilation

Adaboost,
Linear SVM with
Class Weights,
C5.0, XGboost,
An ensemble
model
including four
mentioned
models

Ensemble
model

AUC: 0.918
Yes, using the
“BreakDown”
algorithm

2

Ang et
al.

(2021)
(24)

To quantify the
magnitude of
spontaneous
breathing (SB)
effort using
only bedside
(mechanical
ventilation)
MV airway
pressure and
flow waveform

- Unavailable

13.6M+1800/simulated
SB flow and normal
flow data
(NB)+National
University of Singapore
Hospital (test data)

SB flow
Convolutional
autoencoder

Convolutional
auto encoder MSE: 4.77 No

Abbreviations: ICU, intensive care unit; SVM, support vector machine; XGboost, extreme gradient boosting; AUC, area under the curve; SB, spontaneous breathing; NB, normal
breathing; MSE, mean square error.

developed ML techniques in the studies of this

subcategory (34, 35).

Additionally, Mathis et al. (36) utilized ML approaches

to identify patients who ultimately faced postoperative

heart failure with reduced ejection fraction (HFrEF). The

aforementioned study demonstrated that the extreme

gradient boosting algorithm outperformed other ML

algorithms in this prediction task. Other studies in this

subcategory applied DL to improve the detection of life-

threatening arrhythmia (37), classify ECG signals for

anesthesia assessment (38), and investigate the

elements of synaptic transmission based on the

anesthetized patient’s EEG data (39).

3.4.2. Subcategory D2: Postoperative

The postoperative period encompasses events

occurring at long intervals after an operation (40, 41). In

most of the reviewed articles in this subcategory,

predicted events include postoperative complications in

specific conditions or diseases.

Postoperative delirium was predicted in three

studies using ML algorithms (5, 42). In addition to

predicting delirium, several studies in this subcategory

utilized ML algorithms to predict blood pressure

fluctuations during the postoperative period. Palla et al.

(43) and Schenk et al. (44) predicted postoperative

hypotension; however, another study predicted an

increase in postoperative hypertension (45). Other

studies used ML techniques to predict postoperative

complications, such as cardiac events (46), cerebral

infarction and myocardial infarction (47), and acute

kidney injury (48). Cao et al. (49) employed DL

algorithms to predict serious complications after

bariatric surgery. Qian et al. (50) presented a study

evaluating the importance of operation time in

classifying surgical complications using interpretable

ML approaches.

Moreover, one study (41) introduced a tool called the

surgical and medical postoperative complications

prediction tool (SUMPOT) based on an artificial neural

network to identify patients at risk of postoperative

complications. Additionally, the relationship between

cannabis use and a slight increase in the risk of

postoperative nausea and vomiting was investigated

using ML (51). Two studies in 2021 by Lu et al. (52, 53)

focused on identifying patients in need of anterior

cruciate ligament reconstruction (ACLR) (52) and

predicting the cost of ACLR (53).

3.4.3. Subcategory D3: Critical Care
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Studies in this subcategory primarily focused on

predicting events related to clinical interventions for

patients frequently admitted to the ICU. The worst

postoperative event in this subcategory is patient death

(54, 55). Several studies, similar to the previous

subcategories, predicted hypotension by considering

clinical interventions. Cherifa et al. (56) predicted

hypotension in the ICU using deep neural networks;

nevertheless, two other studies employed different ML

algorithms for the same prediction (57, 58). Additionally,

Hu et al. (59) used ML techniques to develop a model for

predicting seizures in critically ill children. Myasthenia

gravis (MG), a neuromuscular disorder associated with

acquired autoimmunity causing muscle weakness, was

also investigated in this subcategory, where Chang et al.

(60) developed a decision tree-based model to predict

the severity of MG.

Furthermore, predicting tracheal intubations was

considered crucial in the ICU, especially for medical

personnel not familiar with the procedure. Hayasaka et

al. (61) designed an AI model using a CNN to classify

difficult intubations based on the patient's facial image.

Machine learning methods and statistical techniques

were also used to investigate the relationship between

positive cultures during hospitalization and long-term

outcomes in critically ill surgical patients (62), the

relationship between red cell distribution width (RDW)

and prognosis in patients with sepsis-associated

thrombocytopenia (SAT) (63), and the relationship

between primary brain magnetic resonance imaging

(MRI) data and functional outcomes of patients with

severe herpes simplex encephalitis (HSE) 90 days after

ICU admission (64). Moreover, a study (65) explored

parametric and non-parametric methods for predicting

cerebral performance category (CPC) using longitudinal

data after cardiac arrest. Further detailed information

about the reviewed studies in this category can be found

in Tables 5, 6, and 7.

3.5. Category E: Ultrasound Guidance

Determining the appropriate site for injecting an

anesthetic drug is a significant challenge in anesthesia,

particularly in regional anesthesia. Injecting the drug

around the relevant nerve is essential to achieve nerve

block, temporarily blocking pain signals. However,

injecting the drug at the wrong site or at a long distance

from the nerve can lead to dangerous complications.

Anesthesiologists often face difficulty in accurately

performing this task in real-time. To address this

challenge, AI techniques, particularly image processing,

have been employed to induce regional anesthesia

under ultrasound guidance. These techniques allow

physicians to visualize the internal structure of organs

and determine the correct injection site more easily.

The reviewed studies in this category can be divided

into two subcategories based on the AI algorithms used

for determining the appropriate injection site: DL-based

algorithms and tracking algorithms based on

correlation filters.

Most of the articles in this category fall into the first

subcategory. In one study (66), a novel algorithm was

proposed for accurate needle tip placement under

ultrasound guidance when the needle body is invisible

and the tip has low intensity. The algorithm first extracts

the needle tip properties in successive ultrasound

frames using a detection scheme and then predicts the

location of the needle tip using a deep neural network

consisting of CNN and LSTM recurrent units. The study

achieves an error rate of 0.06 ± 0.02 mm for the needle

entry point and a processing time of 0.064 seconds.

However, the limitations included using ex vivo data

and specific needle types.

In another study (67), the DL model was used to

determine the anesthesia site by dividing the patients

into control and algorithm groups. The algorithm

group used ultrasound guidance and a deep CNN

SegNet (68) to determine the anesthesia site, leading to

significant improvements in the average injection

duration and needle insertion depth, compared to the

control group.

In another study (69), a preliminary assessment of an

AI system was performed using a deep CNN network for

semantic segmentation of ultrasound images. The

aforementioned study focused on seven specific nerve

blocks, and the proposed model aimed to detect the

presence of these seven nerve blocks in the input

images.

Studies in the second subgroup focus on tracking

arteries instead of nerves in ultrasound images due to

the low quality of the images, making nerve detection

difficult. In one study (70), real-time tracking models

were designed using a modified kernelized correlation

filter (KCF) and modified discriminative correlation

filter with channel and spatial reliability method (CSR-

DST). The CSR-DST algorithm performed faster; however,

the KFC provided better results and was identified as the

superior algorithm. Table 8 shows the key

characteristics of the reviewed studies in this category.

3.6. Category F: Operating Room Logistics

The studies conducted in this category focused on

organizing and coordinating the affairs within the

operating room. Some of the studies in this category
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Table 8. Category E: Ultrasound Guidance

No. Study Goal
Type of

Anesthesia

Enhancement

Filter(s)
Nerve Block(s)

Dataset

Availability

Number of

Case/Dataset
Feature(s) Algorithm(s)

Winner

Algorithm

Winner

Algorithm
Performance

1

Paris and

Hafiane
(2021) (70)

To track arteries in

ultrasound

guidance to find a
proper place to

inject the anesthetic

drugs

Regional

Kernelized

Correlation filter,
Discriminative

Correlation filter

- Unavailable
71/not

reported

Fd is
introduced

as features

that are

extracted

from
images

after

applying

the

kernels.

Gradient descent

applied to the

search for

ellipses,
Modified KCF,

Modified CSR-

DST.

Modified CSR-
DST

Mean Error:

15.16 STD

Error: 25.51
FPS: 63.06

Precision ~

95%

2
Bowness et

al. (2021)

(69)

To perform

semantic
segmentation of the

input ultrasound

videos

Regional -

Supraclavicular level brachial
plexus: Subclavian artery, brachial

plexus nerves, first rib, pleura.

Erector spinae plane (thoracic

region): Trapezius/rhomboid/erector

spinae (group) muscles, vertebral
transverse process/rib, pleura.

Rectus sheath: Rectus abdominis

muscle, rectus sheath, peritoneal

contents. Adductor canal: Femoral

artery, saphenous nerve,
sartorius/adductor longus, femur

Unavailable

144 & 244/The

Royal Gwent

Hospital,

Ystrad

Mynach
Hospital,

StWoolos

Hospital &

Nevill Hall

Hospital

Extracted

features
from Deep

CNN

Deep CNN Based
on U-Net

Deep CNN Based
on U-Net

Using

statistical
analysis, the

Kruskal–

Wallis H-test

3

Liu and

Cheng

(2021) (67)

To locate the

anesthesia point of

patients during

scapular fracture

surgery treated with
the regional nerve

block

Regional
Gaussian low-

frequency filters
Scapula Regional Nerve Block Request

100/Jiangxi

Armed Police

Corps
Hospital

Ultrasound

Images of

the

Scapula of
the

Patients

SegNet (A brand-

new deep fully

CNN)

SegNet

Injection

Time: 7.7 ± 2.1

min Distance

between the

Puncture
Point and the

Scapula: 62.5

± 7.2 mm

4
Mwikirize

et al. (2021)

(66)

Needle tip

localization during

challenging

ultrasound-guided
insertions when the

shaft may be

invisible, and the tip

has a low-intensity

Regional - - Unavailable 80/SonixGPS
& Clarius C3

Enhanced

Tip Images
and B-

Mode

Images

DNN(CNN+LSTM) DNN(CNN+LSTM)

Tip

Localization

Error: 0.52 ±
0.06 mm

Overall

Computation

Time: 0.064 s

Abbreviations: KCF, kernelized correlation filter; CSR-DST, discriminative correlation filter with channel and spatial reliability method; FPS, frame per second; CNN,
convolutional neural network; DNN, Deep Neural Network; LSTM, long short-term memory.

aimed to predict the duration of each operation (71, 72);

however, others focused on addressing challenges that

lead to the wastage of hospital facilities and resources

(73). One significant challenge is day-of-surgery

cancellation (DoSC), which can be problematic for

hospital staff, patients, and their families, in addition to

being costly and time-consuming. To address this issue,

a study (73) analyzed the electronic file information of

approximately 88 000 patients, considering various

variables, including economic and social factors. The

study utilized several ML algorithms to understand the

reasons behind the DoSC.

In two other studies conducted by Gabriel et al. (71)

and Jiao et al. (72), ML algorithms were used to predict

the end time of surgery. Additionally, in Gabriel’s study
(71), predicting the patient's recovery period was

another goal. All studies in this category utilized AI

algorithms, particularly ML, to optimize hospital

facilities and staff management. Table 9 shows further

detailed information about the reviewed studies in this
category.

3.7. Category G: Depth of Anesthesia

The anesthesia process consists of three stages:

Anesthesia induction, maintenance of anesthesia, and

recovery. In the anesthesia induction phase, the patient

enters the initial phase of anesthesia when a specialist

physician injects induction drugs, either through

injection or inhalation. During the maintenance phase

of anesthesia, the patient is maintained at an

appropriate depth of anesthesia by administering the

proper dose of maintenance medication. In the last

stage, the patient recovers from anesthesia as the drugs

are metabolized and eliminated from the body.

Throughout these stages, the injection of relevant drugs

by the anesthesiologist requires accurate knowledge

and information about the depth of anesthesia and the

patient's level of consciousness. Measuring the patient's

physiological and clinical criteria simultaneously to

assess the depth of anesthesia is challenging for

physicians and prone to human errors. Artificial

intelligence techniques can be employed to reduce

these errors and improve performance in categorizing

and monitoring the depth of anesthesia.

The studies in this category are divided into three
groups based on the type of data used in each study.

These groups include studies based on EEG signals,
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Table 9. Category F: Operating Room Logistics

No. Study Goal Type of
Surgery

Dataset
Availability

Number of
Case/Dataset

Feature(s) Algorithm(s) Winner
Algorithm

Winner
Algorithm
Performance

Interpretable?

1

Gabriel
et al.

(2022)
(71)

To predict the
following
composite
outcome: 1.
surgery finished
by the end of the
operating room
block time and
2. the patient
was discharged
by the end of the
recovery room
nursing shift.

Outpatient
surgery

Unavailable
13447/not
reported

The surgical
procedure,
surgeon
identification,
ASA score, age,
Gender, weight,
surgical service
line, scheduled
surgical incision
time, scheduled
room time,
actual room
time, actual
PACU length of
stay

LR, RF Classifier,
Balanced RF,
Balanced Bagging,
Simplefeedforward
NN & SVM classifier

Balanced
Bagging
(Using
SMOTE)

Precision: 83%;
Recall: 77%;
Matthew’s
correlation
coefficient:
0.642;
Sensitivity:
77.3%;
Specificity:
87.1%; AUC:
0.905

Yes, the feature
importance
graph based on
the balanced
bagging
approach

2

Jiao et
al.

(2020)
(72)

To predict a
continuous
probability
distribution of
surgical case
durations

Various
surgical
services

Unavailable

52735/Central
operating

location at St.
Louis Children’s
Hospital, a free-

standing,
tertiary-care,

pediatric
hospital

Categorical (ASA,
inpatient status,
day of week),
Continuous
(scheduled
surgery
duration,
patient age),
Unstructured
text (procedure
name, surgical
diagnosis)
variables

A Neural Network
(Mixture Density
Network (MDN)),
Tree-based methods
(DT, RF, and GBT),
non-ML statistical
method (Bayesian
statistical method)

MDN

Continuous
Ranked
Probability
Score: 18.1
minutes

Yes,
permutation
importance was
calculated for
the MDN

3

Liu et
al.

(2021)
(73)

To understand
potential
underlying
contributors to
disparities in
DoSC rates
across
neighborhoods

- Unavailable

88013/Cincinnati
Children’s

Hospital Medical
Center and Texas

Children’s
Hospital

All features were
in one of these
categories:
Transportation,
Preoperative
phone calls,
Recent
healthcare use,
Prior
cancellation
behaviors,
Surgery-related
factors

Non-spatial
regression models
(GLM, L2-normalized
GLM, SVM with
polynomial kernels
and DT, Spatial
regression models
(SAR model, spatial
Durbin model, SEM,
spatial Durbin error
model, spatial
moving average, and
SAR confused
models), CNNs &
Graph Convolutional
Networks

An L2-
normalized
generalized
LR model

RMSE: 0.01305,
95% CI:
0.01257-
0.01352

Yes, using
feature
importance
generated from
the best-
performing L2-
normalized
generalized LR
model

Abbreviations: ASA, American Society of Anesthesiology; PACU, Post Anesthesia Care Unit; LR, logistic regression; RF, random forest; NN, neural network; SVM, support vector
machine; SMOTE, synthetic minority oversampling technique; AUC, area under the curve; MDN, mixture density network; DT, decision tree; GBT, gradient boosting-based tree;
ML, machine learning; DoSC, day-of-surgery cancellation; GLM, generalized linear model; SAR, spatial autoregressive; SEM, spatial error model; CNN, convolutional neural
network; RMSE, root mean square error.

physiological-clinical variables, and the combination of

EEG signals and physiological-clinical variables.

The brain is the main human organ and the first area

to be affected after injecting anesthetic drugs. Due to

the good reflection of brain activity in EEG signals, they
are used as supplement monitoring to determine the

level of consciousness more accurately.

In studies based on EEG signals, researchers have

developed monitoring systems using EEG-based criteria

to evaluate the depth of anesthesia more accurately (3,

74-88). The bispectral index (BIS) is a common diagnostic

index used to measure the depth of anesthesia based on

EEG signals. In one study (75), a combined DL structure

was proposed, consisting of three networks: CNNs using

an inception module, LSTM, and one attention layer. The

regression model’s output was a BIS index used to

determine the patient's depth of anesthesia, achieving

88.71% accuracy.

In other studies, new indices or improved versions of

the previous indices were defined to determine the

depth of anesthesia and enhance monitoring (78, 84).
For instance, the Poincaré index was introduced to

target a specific frequency range of 20 to 30 Hz, and it
was combined with the classical Poincaré 0.5 - 47 Hz

index using DL-improved anesthesia depth monitoring

(84).

Using EEG-based indices as complementary

monitoring can offer various benefits in assessing the

depth of anesthesia and the patient's level of

consciousness. However, there are certain limitations

associated with EEG, such as low performance with

volatile anesthetics, long latency, and susceptibility to
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interference from surgical stimulation. Apart from EEG-

based studies, other data types have been used to train

models and determine the level of consciousness in

articles in this category (89-91). Dubost et al. (89) and

Zhan et al. (90) utilized physiological or clinical and

functional magnetic resonance imaging (fMRI) data as

alternatives to EEG signals. Various methods, such as

hidden Markov models and deep neural models, were

employed as learning models in these studies (89, 90).

In the third group of studies, researchers combined

EEG signals with other signals, such as auditory evoked

potentials (AEP), to determine the level of consciousness

by creating a new index (92, 93). In another study (93),

several classification algorithms in ML were utilized to

construct the unified index, with each model trained

using EEG signal parameters as features. The support

vector machine (SVM) model exhibited the best

performance in this study, achieving a prediction

probability of 0.935. The reviewed studies in this

category are summarized in Table 10.

3.8. Category H: Control of Anesthesia Delivery

Managing the level of a patient’s anesthesia by

considering the appropriate dose of an anesthetic drug

is a critical goal in the control of anesthesia delivery.

Studies in this field focus on designing models to keep

patients at certain levels of anesthesia or suggest

measures to address challenges faced by

anesthesiologists in this area. Making critical decisions

about the patient's condition, such as determining the

proper dose of an injectable anesthetic drug and

controlling the patient's consciousness level by

considering several parameters, is considered one of the

most critical challenges for anesthesiologists during

surgery. Some studies indicated that AI models could

play an influential role in providing decision support

for anesthesia delivery. Artificial intelligence algorithms

can be utilized to determine the appropriate dose of an

anesthetic drug for each patient, aiming to achieve the

desired level of anesthesia.

In this category, many of the reviewed studies aim to

determine or predict the appropriate dose of anesthetic

drugs to achieve the desired level of anesthesia. For

instance, Ingrande et al. (94) compared two biological

models and a gated recurrent unit (GRU) network,

where the GRU model demonstrated superior

performance. Another study (95) designed a model to

predict whether the patient will need remifentanil in

the next n minutes using ML algorithms, such as SVM

and the LSTM network, with LSTM being identified as the

preferred model. Systolic blood pressure (SBP) was

identified as the most important feature using the

Shapley interpretability technique. In another study,

Wei et al. (96) developed a decision tree model to

determine the appropriate dose of local anesthetic

hyperbaric bupivacaine during a cesarean section. The

interpretability of the decision tree and the possibility

of analyzing the results were among the advantages of

this study.

Furthermore, Schamberg et al. (97) proposed a model

for determining the appropriate dose of propofol using

deep reinforcement learning based on the pain,

sedation, and intensity (PSI) index. Sharma et al. (98)

designed an optimal controller using type-2 fuzzy logic

to determine the appropriate dose of sodium

nitroprusside to maintain the patient's mean arterial

pressure (MAP) at an appropriate level.

By reviewing the studies focusing on determining or

predicting the appropriate dose of anesthetic drugs, it is
evident that using deep recurrent neural networks, such

as LSTM and GRU, and applying interpretable methods

to explain the output of these networks lead to desirable
outcomes, particularly when dealing with time series

data.

Another critical issue in the discussion of anesthesia

delivery control is the need for the physician to be

informed of the drug concentration level in the

patient’s blood to determine the appropriate drug dose.

Due to the challenges of performing complex

calculations under operating conditions, devices have

been designed and built to calculate the relevant drug

concentration and report it to the physician. For

instance, a study (99) used a model based on a support

vector regression algorithm to compensate for errors in

drug concentration measurements due to continuous

sensor exposure to propofol, which might lead to

sediment formation and inaccurate reporting of drug

concentrations to the physician. Table 11 shows further

details about each reviewed study in this category.

3.9. Category I: Monitoring

Monitoring involves the continuous assessment of a

patient's hemodynamic status, including their

cardiovascular and cerebral condition, in the operating

room or the ICU, using specialized devices. Monitoring

plays a crucial role in improving patient outcomes and

the success of surgeries by maintaining vital signs

within appropriate physiological ranges and quickly

diagnosing and treating side effects before they lead to

long-term complications. Therefore, designing highly

accurate monitoring devices using AI and ML

algorithms is necessary.
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Artificial intelligence has been applied to monitor

various aspects of a patient’s condition. For example,

blood pressure monitoring during anesthesia was

evaluated using ML models, such as lasso restrictive

logistic regression, neural networks, and SVM (100). The

SVM model demonstrated superior performance based

on the Kappa criterion, which measures the classifier's

conformity in classifying samples.

False alarms from ICU vital signs monitors can be

common, with rates ranging from 0.72 to 0.99. Machine

learning models have been utilized to reduce the

frequency of false alarms, and one study included

missing sensor values in the input data of the model

(101).

In the neurological critical care unit (NCCU), Unal et

al. (102) used statistical techniques to determine the

prevalence, types, and determinants of alarms. Liu et al.

(103) conducted a study in 2020 on armpit temperature

monitoring using an AI-enabled wireless, non-invasive

armpit thermometer called iThermonitor. This

thermometer provided accurate body temperature

readings, compared to mercury thermometers.

Additionally, a study (104) considered the validation of

clinically relevant values of the relevant compensatory

reserve measurement device with a dashboard view

using a simple color code to diagnose bleeding. Table 12

shows key details of the reviewed studies in this

category.

4. Discussion

This review study aimed to investigate the role of AI

in anesthesia while also exploring the challenges,

limitations, and opportunities in this field. It

emphasizes the importance of having a realistic

approach and appropriate expectations toward AI

technologies in improving the treatment process.

Setting realistic expectations from AI techniques

ensures that outcomes are well-defined and achievable,

avoiding disappointment and vague results in their use.

To facilitate an organized and coherent review, the

selected studies were categorized into nine groups.

Among these categories, event prediction and depth of

anesthesia are the largest, with 43 and 21 articles,

respectively.

The current review highlights the significant growth

in the number of articles on event prediction in recent

years, indicating the expanding research in this area. For

example, predicting hypotension during anesthesia

using ML models is a prominent topic in the

perioperative subcategory. On the other hand, the depth

of anesthesia category has a long history of research and

offers various opportunities for further investigations,

particularly in determining the depth of anesthesia

using EEG signals and indices, such as BIS, through deep

neural networks. However, certain categories, such as

control of mechanical ventilation and weaning and

operating room logistics, have limited studies and are

considered emerging fields in AI applications for

anesthesia.

One of the challenges revealed during the review is

the difficulty of comparing studies in a similar field,

mainly due to variations in research datasets and

evaluation criteria. Privacy concerns in medical datasets

often hinder accessibility and comparability.

Researchers are encouraged to use publicly available

datasets or release versions of the dataset while

preserving individuals' privacy to facilitate further

studies, result reproduction, and problem-solving.

Moreover, using multiple evaluation criteria in research

studies increases comparability and the validity of

systematic reviews and meta-analyses.

The interpretability of ML and DL models is essential

in informing the treatment team about prediction

methods, boosting confidence in the models. For

instance, in the ultrasound guidance category, where

CNN is commonly used with image data, interpretability

can be achieved through methods, such as Shapley and

local interpretable model-agnostic explanations (LIME).

Researchers should also employ feature ranking

techniques to identify the most influential features in

predictions for various ML models.

4.1. Conclusions

Using AI as a rapidly advancing technology can have

a significant impact on various fields, including

anesthesiology. This review highlights the role of AI

models in establishing monitoring and decision

support systems in the domain of anesthesia. The

studies reviewed were categorized into nine distinct

areas, and the materials in each study and category were

presented in an organized and tabular manner. Each

section also included suggestions for future work and

ideas.

The continuous progress in AI techniques offers great

potential to support anesthesiologists in enhancing

their performance. By carefully and judiciously

employing AI approaches, it is possible to improve

anesthesia-related tasks and patient care. Additionally,

given the importance of interpretability in medical

decision-making, using interpretable AI techniques is

strongly recommended for future studies. These

methods allow physicians to analyze and understand

the results, leading to more confident and informed
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Table 12. Category I: Monitoring

No. Study Goal Type of
Surgery

Dataset
Availability

Number of Case/Dataset Feature(s) Algorithm(s) Winner
Algorithm

Winner
Algorithm
Performance

1

Pasma
et al.

(2021)
(100)

Automated
artifact
removal in
anesthesia
blood
pressure data

Non-
cardiac
and non-
thoracic

Available
88(M:39,F:49)/University
Medical Center Utrecht

Feature Types: Systolic blood
pressure, diastolic blood
pressure, mean blood
pressure, heart rate, pulse
pressure (systolic–diastolic
blood pressure), ratios
between heartrate and blood
pressure (systolic blood
pressure divided by heartrate
and diastolic blood pressure
divided by heartrate), ratio
between systolic and mean
arterial blood pressure, and
ratio between mean and
diastolic arterial blood
pressure

Lasso Restrictive LR,
NN, SVM SVM

Kappa: from
0.524 to 0.651

2

Hever
et al.

(2020)
(101)

To analyze in
real-time
missing
sensor data
to minimize
false alarm
rate

- Available

481(M:325,F:156)/Shanghai
Jiao Tong University School
of Medicine affiliated Ruijin
Hospital

Age, Gender, NC, WC, BMI and
faciocervical measurements
(maximum interincisal
distance (MID)), height to
thyrosternum distance
(H/TSD))

SABIHC2 (It is a
machine learning
model based on
SVM) & STOP-BANG
(It is one of the
most widely used
questionnaires)

SABIHC2

AUC: 0.832;
Sensitivity:
91.6%;
Specificity:
74.9%

Abbreviations: LR, logistic regression; NN, neural network; SVM, support vector machine; NC, neck circumference; WC, waist circumference; BMI, body mass index; AUC, area
under the curve.

decisions. Overall, the integration of AI in anesthesia

holds promise for optimizing patient outcomes and the

overall efficiency of anesthesia management. As

technology advances, researchers and practitioners

should continue exploring innovative AI applications to

further revolutionize the field of anesthesiology.
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Table 2. Category A: Neurocritical Care
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Induction
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Number of
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Winner

Algorithm
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Algorithm
Performance
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1
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evacuation of the
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General
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and
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100/Yantai

Yuhuangding
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network (for

experimental
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brain
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indexes at
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and S100β
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and the
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postoperative
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corticospinal
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hind limb of

the internal

capsule of the

affected side
were better in

the

experimental

group than in

control group

No

2
Farzaneh et al.
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XGBoost
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“All

candidate
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specificity:
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Shapely
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hemorrhage
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cerebro spinal
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Patient demographic

and clinical
characteristics,

including World

Federation of

Neurological Surgeons
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of treatment, and

need for permanent

CSF diversion

Elastic Net ML

and
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partial least
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discriminant

analysis

EN and OPLS-
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EN ML and

OPLS-DA

analysis

identified 8

and 10
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respectively

No

4
Schweingruber

et al. (2022) (4)

To predict critical
phases of intracranial
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patients with invasive

ICP measurement

Evolution of
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External

datasets are
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PhysioNet.org,

and local
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available
upon request.
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III (998) and eICU
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reported

Descriptives (age,
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diagnosis) and most
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features in all

databases (vital signs,

laboratory,

medication, blood-gas
analysis)

LSTM LSTM
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this study had

good results.

No

5
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alerting and
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review
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University of
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electroencephalogram
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RF RF
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84% (cross-
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specificity:
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Narula et al.
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and generate burst-
per-minute estimates

for the purpose of

monitoring the

sedation level in an

ICU

Intracranial

hemorrhage
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F:13)/Neurocritical
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University

Hospital Zurich
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signals: Distance

between covariance
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BSUPP (new

unsupervised
burst

suppression

detection

algorithm)

BSUPP

Mean

absolute error

in bursts per

minute: 0.93,
average of
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81%, average
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0.82, average
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7
Fumeaux et al.

(2020) (14)
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detection approach
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112/focal epilepsy
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signal, coastline,

skewness, kurtosis,

autocorrelation
function, Hjorth

parameters (activity,

mobility, complexity

of EEG signal),

maximal cross-
correlation, and extra

GLM GLM

AUROC: 0.890

latency to

detection:

Under 5

seconds for
over 80% of

seizures and

under 12

seconds for

over 99% of
seizures

Yes, using the
logit link

function
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8
Farzaneh
et al.

(2020) (11)

To segment and

assess the severity
of subdural

hematoma for

patients with TBI

TBI Sedation
Sedation with Propofol
or dexmedetomidine,

analgesia with fentanyl

Unavailable

11/Michigan

Medicine
Neurological

Intensive Care Unit

or Emergency

Department

Computed tomography scans: Age,

location-based (radial distance,

Azimuth angle, elevation angle,
distance to skull), histogram-based

(minimum, maximum, average, SD,

skewness, kurtosis, entropy), filtering-

based (Gabor, Laplacian of Gaussian),

deep features

RF
RF+Post-

processing

Recall: 98.81%,
specificity:

92.31%, F1-

score: 98.22%

No

9
Elmer et
al. (2020)

(16)

To detect early

post-cardiac-arrest
brain injury

phenotypes

Hypoxic-

ischemic
brain

injury

Sedation
Sedation with propofol
or dexmedetomidine,

analgesia with fentanyl

Available 1086 (M: 613,
F:437)/not reported

Neurological examination, EEG, and
brain CT imaging

K-
prototypes

K-
prototypes

Survival to
hospital

discharge: 27%

Yes, using

the center
of

clusters

Abbreviations: MRI, magnetic resonance imaging; DL, deep learning; FA, fractional anisotropic; NHISS, National Institute of Health Stroke Scale; NSE, neuron-specific

enolase; TBI, traumatic brain injury; EHR, electronic health records; XGBoost, extreme gradient boosting; AUC, area under the curve; aSAH, aneurysmal subarachnoid

hemorrhage; CSF, cerebrospinal fluid; ML, machine learning; EN, elastic Net; OPLS-DA, orthogonal partial least squares-discriminant analysis; ICP, intracranial pressure; ICU,

intensive care unit; LSTM, long short-term memory; EEG, electroencephalogram; RF, random forest; BSUPP, unsupervised burst suppression detection algorithm; AUROC, area

under the receiver operating characteristics; NPV, negative predictive value; GLM, generalized linear model; CT, computed tomography.
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Table 3. Category B: Pain Management

No. Study Goal Type of Surgery
Type of

Anesthesia

Induction

Drug(s)

Evaluation

Pain Index

Dataset

Availability

Number of

Case/Dataset
Feature(s) Algorithm(s)

Winner

Algorithm

Winner

Algorithm
Performance

1
Tan et al.

(2021) (17)

Identifying

parturients at

increased risk of

breakthrough pain

during labor
epidural analgesia

Parturition Regional
Fentanyl and

ropivacaine.
- Unavailable

20798/KK

Women’s and

Children’s

Hospital, a

tertiary obstetric
hospital

Maternal age, race/ethnicity,
BMI, ASA PS score, parity,

twins, pre-neuraxial

analgesia pain score, pre-

neuraxial analgesia cervical

dilation, post-neuraxial
analgesia highest pain score

(0-10), analgesia use prior to

neuraxial analgesia,

neuraxial technique,

combined spinal-epidural,
number of neuraxial

attempts, median, neuraxial

procedure total time,

median, depth to epidural
space, median, length of

catheter in epidural space,

median and etc.

RF, XGBoost &

LR
LR

Sensitivity:

69.4%,

specificity:

73.3%, PPV:

30.1%, NPV:
93.5%

2
Barry et al.

(2021) (21)

To investigate the

incidence and

factors associated

with rebound pain
in patients who

received a PNB for

ambulatory surgery

Ambulatory

surgeries

Local

(peripheral

nerve
block)

Ropivacaine

(or

bupivacaine)
with

lidocaine.

Numerical

rating scale
(NRS)

Unavailable

972/Hospital

databases

Draagerwerk AG &
Co

Age, BMI, gender, surgery

duration, local anesthetic

volume, local anesthetic

dose, sensory block
duration, motor block

duration, ASA physical

status, surgical site, surgical

site (specific), surgery type,

general anesthesia,
peripheral nerve block type,

local anesthetic drugs,

analgesia adjuncts,

postoperative NSAID use,

postoperative
acetaminophen use,

postoperative opioid use

Univariate

linear

regression,

multivariable

LR, logistic
model tree

attribute-

selected

classifier

Logistic

model tree

attribute-
selected

classifier

ROC: 0.6

3
Choi et al.

(2021) (20)

Develop a new

analgesic index to

objectively assess
pain in conscious

patients.

Breast, colorectal,

hepatobiliary,
stomach, thyroid

General
Propofol and

remifentanil

Spectrogram–

CNN index
Unavailable

100 (M:44, F:

56)/not reported

Photoplethysmogram
spectrograms, gender, age,

height, weight, ASA ,

type of surgery,
Postoperative pain intensity

at 

CNN CNN

AUC: 0.76

balanced

accuracy: 71.4%,

sensitivity:
68.3%,

specificity:

73.8%

4

Gonzalez-

Cava et al.

(2020) (18)

Evaluate the

suitability of the

analgesia

Nociception index
as a guidance

variable to replicate

the decisions made

by the experts when

a modification of
the opioid infusion

rate is required.

Cholecystectomy

surgery
General

Remifentani

and propofol

Analgesia

Nociception

index (ANI)

Unavailable

17 (M: 4,

F:13)/Hospital

Universitario de

Canarias

Feature vector proposal 1:

Hemodynamic information

(SP, SP5, SP10 DP, DP5 DP10
HR, HR5, HR10 Remi, Remi5,

Remi10) Feature vector

proposal 2: Minimum ANI

information (SP, SP5, SP10,

DP, DP5 DP10, HR, HR5, HR10,
Remi, Remi5, Remi10, and

extra,

KNN, DT, LDA,

SVM, LR,

ensemble

classifiers

SVM

Accuracy:

86.21%,

precision:
86.11%, recall:

91.18%,

specificity:

79.17%, AUC:

0.89 Kappa
index: 0.71

5

Teichmann

et al.

(2020) (22)

Detection of dental

pain sensation

based on

cardiorespiratory

signals using a
machine learning

classifier

Dental treatment General - - Unavailable

20 (M: 16,
F:4)/Department

of Prosthodontics

and Biomaterials-

Center of

Implantology,
Medical Faculty,

RWTH Aachen

University

Frequency spectral bins,

levels of the discrete wavelet

transform, average height,

maximum deviation in
height, average pulse beat-

to-beat time, maximum

deviation in beat-to-beat

times, average area, the

maximum deviation of
areas, the average ratio

between pulse width and

height, the maximum

deviation of the ratio

between pulse width and
height

RF RF

Sensitivity: 87%,

specificity: 63%,

AUC: 0.828

6

Meijer et

al. (2020)

(19)

To reduce

postoperative pain

using Nociception

level-guided opioid
dosing during

general anesthesia

Abdominal

surgery
General

Fentanyl &

sevoflurane

Nociception

level (NOL)

index

Unavailable

50 (M: 22,

F:28)/Leiden

University

Medical Centre,
Alrijne Hospital

Age, gender, weight, height,

BMI, MAP, HR, ASA physical

status, general surgery,
gynecology, urology

NOL-guided

dosing,

standard care
dosing

NOL-guided

Dosing

Median

postoperative

pain score: 3.2

postoperative

morphine
consumption

(SD): 0.06

(0.07)

Abbreviations: BMI, body mass index; ASA, American Society of Anesthesiology; CSF, cerebrospinal fluid; CSE, combined spinal-epidural analgesia; RF, random forest;

XGBoost, extreme gradient boosting; LR, logistic regression; PPV, positive predictive value; NPV, negative predictive value; HER-2, human epidermal growth factor receptor-2; DT,

decision tree; GB, gradient boosting; LightGBM, light gradient boosting machine; AUC, area under the curve; PNB, peripheral nerve block; ROC, receiver operating characteristics;

CNN, convolutional neural network; ASA PS, American Society of Anesthesiologists Physical Status; PACU, post anesthesia care unit; ANI, analgesia nociception index; KNN, K-

nearest neighbor; LDA, linear discriminant analysis; SVM, support vector machine; NOL, nociception level; MAP, mean arterial pressure; HR, heart rate.

PSa

PACU
b
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Table 5. Subcategory D1: Perioperative

No. Subcategory Study Goal Type of Surgery
Type of

Anesthesia

Dataset

Availability

Number of

Case/Dataset
Feature(s) Algorithm(s)

Winner

Algorithm

Winner

Algorithm

Performance

Interpretable?

1 D1

Maheshwari

et al. (2020)
(27)

To evaluate the

performance of

the hypotension

(MAP < 65
mmHg for at

least 1 min)

prediction index

algorithm

derived from
non-invasive

arterial pressure

waveforms in

moderate-to-
high-risk non-

cardiac surgical

patients

Non-cardiac General Unavailable
305/ClearSight,

Edwards Lifesciences

Waveform features

and the patient

demographics,

including age,
gender, height, and

weight.

HPI algorithm

for the 5, 10, and
15 minutes of

prediction time

points before

each

hypotensive
episode for

blinded arm,

unblinded arm,

combined
groups

HPI

algorithm for

5 min

prediction

time point
before

hypotension

episode for

blinded arm

AUC: 0.94,

sensitivity: 86%,
specificity: 87%

No

2 D1
Li et al.

(2021) (28)

Prediction of

post-induction

hypotension

(SBP < 90 mmHg
or MBP < 65

mmHg) in

patients

undergoing

cardiac surgery

Cardiac General Unavailable

3030/The Second
Affiliated Hospital of

Hainan Medical

University

Preoperative

variables including

age, gender, BMI,

underlying disease,
EuroSCORE I, and ASA

score; experimental

findings including

hemoglobin, serum

creatinine, and total
bilirubin; data on the

patient's preoperative

medications, such as

the use of beta-

blockers, insulin,
aspirin,

intraoperative

medications and data

on perioperative

blood pressure

RF RF AUC: 0.843
Yes, using the
interpretability

of RF

3 D1

Frassanito

et al. (2020)
(29)

To assess the
diagnostic

ability of

Hypotension

Prediction Index

(HPI) working
with non-

invasive

ClearSight

system in

predicting
impending

hypotension

(MAP < 65

mmHg for > 1

min) in patients
undergoing

major

gynecologic

oncologic

surgery

Gynecologic

oncologic
General Unavailable

28/Edwards

Lifesciences

HemoSphere
platform

Extracted features

from non-invasive

arterial pressure
waveform of

ClearSight

HPI algorithm

for the 5, 10, and

15 minutes of

prediction time

points before
each

hypotensive

episode.

HPI

algorithm for

15 min

prediction

time point
before

hypotension

episode

AUC [95% CI]:
0.95, sensitivity

[95% CI]: 85%,

specificity [95%

CI]: 85%, positive

predictive value
[95% CI]: 75%,

negative

predictive value

[95% CI]: 91%

No

4 D1 Gratz et al.
(2020) (30)

To predict the
likelihood of a

given patient

developing

significant

hypotension
(SBP < 90

mmHg) under

spinal anesthesia

when

undergoing a
cesarean section

(C/S)

Cesarean Local Unavailable 45/not reported

Extracted features

from signals using

neural network

model physiological

data, including
systole, diastole,

mean arterial

pressure (MAP), heart

rate, and the AS

parameter, on a beat-
by-beat basis.

NN NN AUC: 0.87 No

5 D1
Lee et al.

(2020) (31)

To predict
hypotension

(SBP < 90 mmHg

or MBP < 65

mmHg) after

tracheal
intubation after

intubation one

minute in

advance

Underwent

laparoscopic
cholecystectomy

General Unavailable

282/Soonchunhyang

University Bucheon
Hospital

Totally we had two

kinds of features in

this study: Raw

features and

statistical features,
including electronic

health records

(demographic data,

comorbidities,

baseline) and vital
recorder (mechanical

ventilation data,

bispectral index,

anesthetic drug,

vasoactive drug
administration, Some

information about

hypotension)

Meta-learning

models, such as

RF, XGboost, DL

models,
especially CNN

and DNN

Raw features:

CNN

Statistical
features: RF

Accuracy of

CNN for raw

features: 72.6%,

accuracy of RF
for statistical

features: 74.8%

Yes, using the

feature

importance of
RF

6 D1 Kang et al.

(2021) (32)

To predict

hypotension

(SBP < 90 mmHg
or MBP < 65

mmHg) in late

Post Induction

Laparoscopic

cholecystectomy

General Available 222/Soonchunhyang

University Bucheon

Hospital

In this study, 4

feature sets were

created by different
methods of feature

selection, including

feature set A (Min
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(hypotension

frequency, Max

plasma

concentration of

propofol), all
features (Min

effect-site

concentration of

propofol, Max

target
concentration of

propofol)

Four ML

models,
including NB,

LR, RF, ANN

RF

Accuracy
(Feature set C):

79.4%, precision

(Feature set C):

81.1%, recall

(Feature set B):
84.5%, AUC

(Feature set C):

0.842, 95% CI

(Feature set C):

0.736-0.948

Yes, using

the feature
importance

of RF

7 D1
Wijnberge
et al. (2020)

(33)

To predict

hypotension

(MAP < 65 mmHg

for at least 1 min)
shortly before it

occurs has been

developed and

validated

Elective
noncardiac

General Unavailable

60 (M: 36, F:

24)/Amsterdam

University
Medical

Centers,

Location

Extracted

features from

the signal

(patients based
on

characteristics

divided into

intervention and

control groups)

HPI algorithm

for the 5, 10,

and 15

minutes of
prediction

time points

before each

hypotensive

episode.

HPI

algorithm for

15 min

prediction
time point

before

hypotension

episode

The median

time-weighted

average of

hypotension:
0.10 mm Hg

(intervention

group); 0.44

mm Hg

(control group)

No

8 D1

Solomon et

al. (2021)

(25)

To predict the

occurrence of
clinically

significant

intraoperative

bradycardia at

time points
during an

operative course

by utilizing

available

preoperative
electronic

medical records

and

intraoperative
anesthesia

information

management

system data

Non-cardiac General Unavailable

62182/

University of

Washington

Medical Center

Extracted

features from

time series

signal

Build three

models

named TP1,

TP2 & TP3 by

using: GBM &
LR

GBM

AUC: 0.89,

specificity: 95%,

sensitivity: 53%,

PPV: 15%, NPV:
99%

Yes, using

predictor

variables of

GBM

9 D1
Jalali et al.

(2021) (26)

To predict blood
product

transfusion

requirements for

individual

pediatric patients
undergoing

craniofacial

surgery

Craniofacial

surgery
- Request

2143/Pediatric

Craniofacial

Surgery

Perioperative
Registry

Demographic

and preoperative

features

Six ML
classification

and

regression

models,

including RF,
AdaBoost, NN,

GBM, SVM,

Elastic Net

methods

GBM

In

classification:

Sensitivity: 92%
± 3%, specificity:

89% ± 4%, F1-

score: 91% ± 4%,

AUROC: 0.87 ±

0.03, in
regression:

MSE: 1.15 ± 0.12,

R-squared: 0.73

±0.02, RMSE:

1.05 ± 0.06

Yes, using

the feature

ranking of
GBM

10 D1
Kim et al.

(2021) (34)

To develop and
validate practical

predictive models

for difficult

laryngoscopy

- - Unavailable

616/Hallym
University

Chuncheon

Sacred Heart

Hospital

Age, Mallampati
grade, BMI,

Sternomental

distance, neck

circumference

MLP, LR, SVM,

RF, XGBoost,

LightGBM

LGBM
AUROC: 0.71

Sensitivity: 85%
No

11 D1
Kim et al.

(2021) (35)

To predict

difficult

laryngoscopy of
neck

circumference

and thyromental

height

- General Request

1677 (M: 925, F:

752)/Hallym
University

Chuncheon

Sacred Heart

Hospital

Age, gender,

height, weight,
BMI, neck

circumference,

thyromental

height

MLP, LR, SVM,
RF, XGBoost,

LightGBM

RF
AUROC: 0.79

AUPRC: 0.32
No

12 D1

Bollepalli et

al. (2021)
(37)

To improve life-

threatening

arrhythmia
detection in the

ICUs

- -
Request+https://physionet.org/content/challenge-

2015/1.0.0/

410/ICUs of

Massachusetts

General
Hospital and

PhysioNet

Deep

features+ECG,
blood pressure,

PPG features

(periodicity

measure,

sharpness
measure,

correlation

measure, peak

height stability

measure, and
extra.

Hybrid CNN Hybrid CNN

Accuracy: 87.5%

± 0.5%, score:

81% ± 0.9%,

evaluation on

PhysioNet 2015
Challenge

database:

Accuracy: 84.3%,

score: 93.9%

No

13 D1
Yeh et al.

(2021) (38)

To classify ECG

image types to

assist in

anesthesia

assessment

- - Available

54190/MIT-BIH

Arrhythmia

Database

2D ECG images

ResNet,

AlexNet,

SqueezeNet

ResNet

Accuracy: 97%,
recall: 97%,

precision: 97, F1-

score: 97%,

Kappa

statistics: 0.96

No

14 D1

Hadjipavlou

et al. (2021)
(39)

Exploring
elements of

synaptic

transmission,

looking for

possible
contributions to

the
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anesthetized EEG - General Unavailable

Not reported/ Oxford

University Clinical
Academic Graduate

School

Simulated electrocorticography:

Alpha band at rest, loss of

frequencies at induction, alpha and
slow wave bands at maintenance,

and broad spectral activity at

emergence. AG, anesthetic GABA

Hodgkin-

Huxley-type
NN computer

simulation

Hodgkin-

Huxley-type
NN computer

simulation

- No

15 D1

Mathis

et al.
(2020)

(36)

Identifying patients

ultimately diagnosed with

heart failure with reduced
ejection fraction following

surgery using preoperative

and intraoperative data

Noncardiac
surgery General Unavailable

67697 (M: 32200, F:

35497)/ Multicenter

Perioperative
Outcomes Group

(MPOG) database+Epic

Systems

628 preoperative and 1195
intraoperative features

L1 Regularized
LR, RF, XGBoost XGBoost

AUROC: 0.873,

AUPRC: 0.040,

accuracy: 80.82%,

sensitivity: 80.84%,
specificity: 80.82%,

PPV: 1.78%, NPV:

99.90%

Yes, using the

feature
importance

Abbreviations: MAP, mean arterial pressure; HPI, hypotension prediction index; AUC, area under the curve; SBP, systolic blood pressure; MBP, mean blood pressure; BMI, body

mass index; ASA, American Society of Anesthesiology; RF, random forest; AS, arterial stiffness; NN, neural network; XGboost, extreme gradient boosting; DL, deep learning; CNN,
convolutional neural network; DNN, deep neural network; PIH, post induction hypotension; ML, machine learning; NB, naïve bayes; LR, logistic regression; GBM, gradient

boosting machine; PPV, positive predictive value; NPV, negative predictive value; SVM, support vector machine; AUROC, area under the receiver operating characteristics; MSE,

mean square error; RMSE, root mean square error; MLP, multi-layer perceptron; LGBM, light GBM; AUPRC, area under the precision-recall curve; ICU, intensive care unit; ECG,

electrocardiogram; PPG, photoplethysmography; HR, heart rate; EEG, electroencephalogram; GABA, gamma-aminobutyric acid.
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Table 6. Subcategory D2: Postoperative

No. SubCat. Study Goal Type of
Surgery

Type of
Anesthesia

Dataset
Availability

Number of
Case/Dataset Feature(s) Algorithm(s) Winner

Algorithm

Winner
Algorithm
Performance

Interpretable?

1 D2

Racine
et al.

(2021)
(42)

To predict delirium
in a rigorous and
well-characterized,
prospective,
observational
cohort study of
delirium

Elective non-
cardiac
including

- Unavailable

560/Beth Israel
Deaconess Medical
Center, Brigham and
Women’s Hospital,
and Hebrew
SeniorLife

Medical records includig:
Surgical procedure,
anesthesia type and
duration, baseline
diagnoses and comorbidity,
abnormal laboratory
results, development of
delirium, precipitating
factors for delirium (e.g.,
medications, iatrogenic
events, catheters, or
physical restraints),
postoperative
complications, and
intercurrent illnesses

GB, Cross-
validated LR, NN,
RF, and
Regularized
Regression (least
absolute
shrinkage and
selection and
ridge
regularization) &
two ensemble
approaches

Cross-
validated
LR for full
feature set

AUC: 0.7;
Sensitivity: 46%;
Specificity: 81%;
PPV: 43%; NPV: 83%

No

2 D2

Lu et
al.

(2021)
(52)

To identify patients
requiring
admission
following elective
anterior cruciate
ligament
reconstruction

Non-elective

Different type
of anesthesia

were used,
including:
Epidural,
General,
MAC/IV

sedation,
Regional,

Spinal,
Operative

time

Unavailable

4709/The ACS
National Surgical
Quality Improvement
Program database

age, Gender, BMI, functional
status, level of dyspnea, ASA
Physical Status
Classifcation, location from
which patient was
admitted, anesthesia type,
operative time, admission
quarter, diabetes mellitus,
congestive heart failure,
chronic obstructive
pulmonary disease,
smoking history,
preoperative sepsis,
preoperative use of a
ventilator, ascites, wound
infection, weight loss>10%,
etc.

RF, XGBoost, LDA,
AdaBoost & An
additional model
was produced as a
weighted
ensemble of the
four fnal
algorithms

Ensemble
model AUC: 0.76 Yes

3 D2

Lee et
al.

(2021)
(40)

To learn patterns
related to risk of
in-hospital
mortality for
patients
undergoing
surgery under
general anesthesia

- General Unavailable
59985/UCLA Medical
Center’s Perioperative
Data Warehouse

Medical information
including: Age, Estimated
blood loss, Presence of
arterial line, Presence of
pulmonary artery line,
Presence of central line, ASA
score and other &
Healthcare Cost and
Utilization Project (HCUP)
Code Descriptions
including: UPPER
GASTROINTESTINAL
ENDOSCOPY, BIOPSY 3864,
COLONOSCOPY AND BIOPSY,
LAMINECTOMY, EXCISION
INTERVERTEBRAL DISC and
other

Generalized
Additive Models
with NN (GAM-
NN) & LR

GAM-NN
AUC: 0.921; AP:
17.6%

Yes, using
Interpretable
model (GAM-

NN)

4 D2

Schenk
et al.

(2021)
(44)

To investigate the
effect of
Hypotension
Prediction Index-
guided
intraoperative
haemodynamic
care on depth and
duration of
postoperative
hypotension

Elective
noncardiac General Unavailable

54/Amsterdam
University Medical
Centers

Extracted features from the
invasive Blood Pressure
signals

HPI algorithm
HPI
algorithm

Intraoperative
HPI-guided
haemodynamic
care did not
reduce the TWA
of postoperative
hypotension

No

5 D2

Tan et
al.

(2021)
(45)

Prediction of early
phase
postoperative
hypertension
requiring the
administration of
intravenous
vasodilators after
carotid
endarterectomy

- General Unavailable 367/Huashan Hospital
of Fudan University

Patient demographics, CEA
procedure details,
parameters of laboratory
examination, imaging
study & perioperative blood
pressure

GBR Trees GBR Trees

Average AUC:
0.77; Average
Specificity: 52%;
Sensitivity ~ 90%

Yes, using
feature

importance of
GBRT

6 D2

Lu et
al.

(2021)
(53)

To predict cost
after anterior
cruciate ligament
reconstruction

Ambulatory
ACLR

Different
types of

anesthesia
were used,
including:

MAC/IV
sedation,

Local
anesthesia,

General
anesthesia &

Regional
anesthesia

Unavailable
7311/New York State
Ambulatory Surgery
and Services database

Features included in initial
models consisted of patient
characteristics (age, Gender,
insurance status, income,
medical comorbidities as
classified by the Clinical
Classifications Software
diagnosis code) as well as
intraoperative variables
(type of anesthesia and
procedure-specific factors)

Four ML models
including: RF,
XGBoost, Elastic
Net Penalized
Regression &
SVMs with radial
kernels

RF

Accuracy: 87.8%;
AUC: 0.848;
Calibration and
the Brier score:
20.8%

Yes, using
interpretability

of RF

7 D2

Palla et
al.

(2022)
(43)

To predict
hypotension in the
recovery area
better than
clinicians using
readily available
clinical
information

Different type
of surgery like
Orthopaedic,
General,
Urology, ENT,
etc

- Unavailable 121904/Two UW
hospitals

Demographics data,
Procedure details,
Comorbidities, Vitals, Drugs
& other

GBRT GBRT AUROC: 0.82;
AUPRC: 0.4

Yes, using ShAP
Value

8 D2

Jeong
et al.

(2021)
(46)

To predict
postoperative
complications,
major adverse
cardiac events, for
patients who
underwent any
type of surgery

Any type of
surgery General Request

586/Soonchunhyang
university Seoul
hospital

pre-op EMR features:
demographic values (e.g.,
height, weight, Gender, age,
BMI), several pre-op
evaluation results (e.g., EF,
PFT), pre/post hemodialysis
evaluations (e.g., Na, K, Cl),
and comorbidities (e.g.,
hypertension, atrial
fibrillation) peri-op
features: Anesthesia-related
values (e.g., ASA, EM
emergency operation,
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anesthesia method), and other
operation-related values (e.g.,
anesthesia time, operation
time, infusion of crystalloid or
colloid) text features:
Generated by applying NLP
techniques to preanesthetic
assessment documents

SVM, DT, RF,
Gaussian NB,
ANN, LR,
XGBoost

RF F1-score: 79.7%

Yes, using
Recursive

Feature
Elimination
(RFE) and K-

best

9 D2
Qian et

al. (2021)
(50)

To assess the
significance of
operative timing
on classifying
surgical
complications

Different type of
surgery like
Obstetric,
Gynecological,
Liver, etc.

All types
of

anesthesia
Request

107481(M:55515,F:51966)/University-
affiliated, tertiary teaching hospital

Date and Time the Surgery,
Duration of Surgery, Length of
Stay, Surgical Discipline,
Patient Age and Gender,
Admission and Discharge
Consultation Summaries,
Preoperative Comorbidity (if
any), Postoperative
Complications (if any)

LR, NB CART,
RF, GBDT,
AdaBoost,
XGBoost,
LightGBM,
CatBoost

XGBoost

Accuracy: 95%;
Precision: 96%;
Recall: 94%; F1-
score: 95%; AUC:
0.98

Yes, using
interpretable

classifiers

10 D2

Chelazzi
et al.

(2021)
(41)

To identify
patients at risk
for postoperative
complications

Different type of
surgery like
Breast surgery,
Dental surgery,
Endocrine
surgery, etc.

- Request
560/Tertiary care teaching hospital
of Careggi (Azienda Ospedaliero-
Universitaria di Careggi)

Patients comorbidity factors:
Abnormal ECG (lef bundle
branch block, lef ventricular
hypertrophy, repolarization
abnormalities, non-sinus
rhythm), Untreated
hypertension or hypertension
not controlled by medical
therapy, Previous
thromboembolism, Stable or
controlled angina, Previous
myocardial infarction with no
clinical or diagnostic evidence
of residual ischemia,
Compensated heart failure or
previous heart failure,
Diabetes mellitus, and etc.

Single Layer
Feedforward
Network with
the training
algorithm.

DEC

Average
Classifcation
Accuracy: 90%;
Balanced
Accuracy:
90.45%;
Sensitivity:
88.9%;
Specificity:
90.2%; PPV:
61.5%; NPV:
97.9%

No

12 D2

Bishara
et al.

(2022)
(5)

To develop a
postoperative
delirium risk
prediction model

Different type of
surgery like
Neurological
Surgery,
Orthopedics
Surgery, General
Surgery, etc.

- Request.
24885(M:12276,F:12609)/Moftt-Long
Hospital, Mission Bay Hospital

Demographics, Comorbidities,
Nursing Assessments, Surgery
Type, and other preoperative
pre-operative electronic health
data

NN, XGBoost,
Clinician-
Guided
Regression, ML
Hybrid
Regression,
AWOL-S

XGBoost AUC-ROC: 0.851
Yes, using
XGBoost

13 D2
Bai et al.
(2020)

(47)

To provide
clinical data for
the prevention of
postoperative
cerebral
infarction and
myocardial
infarction

- General Request
443(M:351,F:92)/Peking University
Third Hospital

Demographic Data, Previous
Medical History, Degree of
Neck Vascular Stenosis, Blood
Pressure at time points during
the perioperative period, the
Time of Occlusion, whether to
Place the Shunt, and the time
of Hospital Stay, whether to
have Cerebral Infarction and
Myocardial Infarction

SVM, DT, RF,
ANN,
Quadratic
Discriminant
Analysis,
XGBoost

XGBoost Accuracy: 94% No

14 D2
Ko et al.
(2020)

(48)

Identification of
preoperative risk
factors for
postoperative
acute kidney
injury

Knee
arthroplasty

General,
Spinal Unavailable 5757(M:682,F:5075)/not reported

Preoperative serum creatinine
levels, use of TXA, general
anesthesia, use of RAASis, ASA
class, and Gender

GBM GBM AUC: 0.78 No

15 D2

Suhre et
al.

(2020)
(51)

Association of
cannabis use with
a small increase
in the risk of
postoperative
nausea and
vomiting

- General Available
43633/University of Washington
Medical Center, Harborview Medical
Center

Age, ASA, Outpatient, Gender,
Non-smoker, Prior
PONV/Motion Sickness,
Procedure Duration, Exposed
to Nitrous Oxide, Surgery
Higher Risk for Nausea, Total
Number of Prophylactic
Agents, PACU Opioids, Apfel
Score

Bayesian
Additive
Regression
Trees

Bayesian
Additive
Regression
Trees

Mean Relative
Risk: 1.19 No

16 D2

Cao et
al.

(2020)
(49)

To explore
whether serious
postoperative
complications of
bariatric surgery
recorded in a
national quality
registry can be
predicted
preoperatively

Bariatric
Surgery

General Unavailable
44061/Scandinavian Obesity Surgery
Registry

5 continuous features (age,
hemoglobin A1c, BMI, WC, and
operation year) and 11
dichotomous features (Gender
sleep apnea hypertension
diabetes dyslipidemia
dyspepsia depression
musculoskeletal pain previous
venous thromboembolism
revisional surgery and the
outcome, serious
postoperative complications)

MLP, CNN,
RNN

CNN AUC: 0.57 No

Abbreviations: GB, gradient boosting; LR, logistic regression; NN, neural network; RF, random forest; AUC, area under the curve; PPV, positive predictive value; NPV, negative
predictive value; BMI, body mass index; ASA, American Society of Anesthesiology; XGBoost, extreme gradient boosting; LDA, linear discriminant analysis; GAM, generalized
additive model; AP, average precision; HPI, hypotension prediction Index; TWA, time-weighted average; CEA, carotid endarterectomy; GBR, gradient boosted regression; GBRT,

gradient boosted regression trees; ACLR, anterior cruciate ligament reconstruction; ML, machine learning; SVM, support vector machine; AUROC, area under the receiver

operating characteristics; AUPRC, area under the precision-recall curve; ICU, intensive care unit; EMR, electronic medical record; NLP, natural language processing; DT, decision
tree; NB, naïve bayes; ANN, artificial neural network; GBDT, gradient boosted decision trees; ECG, electrocardiogram; ROC, receiver operating characteristics; TXA, tranexamic

acid; RAASis, renin–angiotensin–aldosterone system inhibitors; GBM, gradient boosting machine; PONV, postoperative nausea and vomiting; PACU, post anesthesia care unit; WC,
waist circumference; MLP, multi-layer perceptron; CNN, convolutional neural network; RNN, recurrent neural network.
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Table 7. Subcategory D3: Critical Care

No. SubCat. Study Goal
Dataset

Availability
Number of Case/Dataset Feature(s) Algorithm(s)

Winner

Algorithm

Winner

Algorithm

Performance

Interpretable?

1 D3

Magunia et

al. (2021)
(54)

To stratify patient risk and

predict ICU survival and
outcomes

Request
1039(M:853,F:333)/27

German hospitals

A total of 49 variables were used

for the ML models, including:

Demographic data, Past medical

history, Previous medications,
Current illness data, Laboratory

values as well as outcome data

Explainable Boosting

Machine (EBM), EBM

with 10 interactions,
SVC & RF

EBM with 10

interactions

Balanced

Accuracy: 64%,
PR-AUC: 0.81

Yes, using

interpretable
model

2 D3
Hu et al.

(2021) (59)

To incorporate key variables

into a parsimonious model

for
electroencephalographic

seizure prediction in

critically ill children

Unavailable
719/Research Electronic Data
Capture database

Clinical data included age,

Gender, prior

neurodevelopmental disorders,

medications, CEEG indication,
hospital and PICU admission

and discharge dates, presence

of clinically evident seizures

prior to CEEG, acute

encephalopathy category
(epilepsy-related, acute

structural, or acute non-

structural) based on the

primary presenting

problems/diagnoses available at
the time of admission, and

mental status (comatose or not

baseline or not)

RF, Least Absolute

Shrinkage and Selection
Operator & DL

Important Features

RF

Training

Accuracy: 96.3%;

Validation
Accuracy: 74%;

AUROC: 0.706; F1-

score: 73.2%

Yes, using

ranking

algorithm based
on the relative

importance

3 D3

Cherifa et

al. (2021)

(56)

To predict simultaneously

the Mean Arterial Pressure

and the Heart Rate

Available

22247(M:1424,F:884)/
MIMICIII waveform

matched subset from the

five ICUs of Boston's Beth

Israel deaconess medical

center

Patients characteristics (age,

gender, ...), Initial severity scores

(SOFA, SAPS-II), Type of intensive
care unit, Treatment (sedation,

vasopressors, mechanical

ventilation) & Physiologic

signals (pulse, oximetry, heart

rate, systolic arterial pressure,
mean arterial pressure and

diastolic arterial pressure)

Multi-task Learning
Physiological Deep

Learner (MTL-PDL) &

Single-task Learning

Physiological Deep

Learner (STL-PDL)

MTL-PDL

RMSE of MTL-PDL

was less than

RMSE of STL-PDL

Yes

4 D3

Moghadam

et al (2020)

(57)

To predicts hypotension up
to 30 min in advance based

on the data from only 5 min

of patient physiological

history in ICU

Unavailable
1000(M:604,F:396)/MIMIC III

database

A set of 33 scalar features are

used to represent each data

point. At each data point,

including: Arterial blood

pressure, Heart rate, Systolic
blood pressure, Diastolic blood

pressure, Respiration rate,

Peripheral capillary oxygen

saturation, Pulse pressure,

Mean arterial pressure, Cardiac
output, MAP to HR ratio, and

etc.

LR, a variety of SVM

algorithms, and KNN

with different kernels

LR

Accuracy: 94%,
sensitivity: 85%,

specificity: 96%,

PPV: 81%

Yes, using

feature

importance

5 D3
Cherifa et
al. (2021)

(58)

To predict an Acute
hypotensive episodes, 10

minutes in advance

Available

1320/MIMIC II database(1151)

& External dataset from
Lariboisière hospital was

used for external

validation(169)

Age, Gender, type of care unit,

severity scores, and time-

evolving characteristics such as

Mechanical ventilation,
vasopressors, or sedation

medication as well as features

extracted from physiological

signals: heart rate, pulse

oximetry, and arterial blood
pressure

For Random partial

sample: Bayesian

Generalized Linear

Regression, XGBoost,
Gradient Boosting,

Interaction LR, LR, NN,

Penalized LR, RF,

Recursive Partitioning,

Discrete Super learner
and Super Learner & For

full sample: Generalized

Linear Mixed

algorithms via PQL,

Generalized Linear
Mixed algorithms via

ML, Linear regression

using Generalized Least

Squares, Discrete Super

learner and Super
Learner

For the first task,

that is, AHE
prediction based

on 1 random

period per

patient (random

partial sample):
RF & For AHE

prediction based

on all periods

(full sample): The
Generalized

Linear Mixed

ensemble weight

of 0.70

RF: BS: 0.086 &
The Generalized

Linear Mixed

ensemble: 0.082

No

6 D3
Yun et al.

(2021) (55)

To predict in-hospital death

of critically ill patients with

considerable accuracy and
identify factors

contributing to the

prediction power

Request
1384/Surgical Intensive Care
Unit of their institution

Demographic variables (Age,

gender, BMI, ...), Disease-specific

variables (Disease diagnosis,

origin, ...), Surgical variables

(Type of surgery, operation
name, ...), Laboratory variables

(Blood gas analysis, WBC, ...) &

Hemodynamic variables (Use of

inotropes and use of

vasopressors)

DT, NN, NB, RF and

Hellinger Distance
Estimates

RF

F1-score: 84%;

Precision: 78%;
Recall: 90%; AUC:

0.77

Yes

7 D3
Chang et al.

(2022) (60)

To predict ICU admission of

patients with Myasthenia
Gravis

Request
228/Shin-Kong Wu Ho-Su

Memorial Hospital

Medical records including

information on the age, Gender,
age at diagnosis, disease

duration, autoantibodies

present, medications used,

maximum dosage of

corticosteroid before
admission, thymic histology,

history of thymectomy,

treatment during

hospitalization and length of

ICU admission

Classification and

regression tree, C4.5 &
C5.0

C5.0 DT

Accuracy Mean

(SD): 94.2%;

Sensitivity Mean

(SD): 99.4%;

Specificity Mean
(SD): 63.9%; AUC

Mean (SD): 0.814;

F1-score Mean

(SD): 96.7%

Yes

8 D3
Hayasaka et

al. (2021)

(61)

To classify intubation
difficulties from the

patient’s facial image

Request
202(M:92,F:110)/Yamagata

University Hospital
Facial Images

Classification and
regression tree, C4.5 &

C5.0

CNN

Accuracy: 80.5%;
Sensitivity: 81.8%;

Specificity: 83.3%;

AUC: 0.864

No
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9 D3

Wu et

al.
(2021)

(62)

To investigate the association

between culture positivity

during admission and long-
term outcome in critically ill

surgical patients

Request

6748/Taichung Veterans

General Hospital, Taiwanese
National Health Insurance

Research Database

Age, Gender, BMI, Comorbidities,

Severity Score, Shock, Early Fuid

Overload, Receiving Mechanical
Ventilation, the Need of Renal

Replacement Therapy for Critical

Illness

Log-rank test +

multivariable Cox
proportional hazards

regression model

Log-rank test +

Multivariable Cox

proportional
hazards

regression model

Hazard Ratio:
1.579

No

10 D3

Ling et

al.
(2021)

(63)

Investigate the relationship

between the red cell

distribution width and the
prognosis of patients with

Sepsis-associated

thrombocytopenia

Request
809(M:444,F:365)/MIMIC-III
database

Age, Gender, Hypertension, Diabetes,

Stroke, Heart diseases, Red Cell

Distribution Width, Hemoglobin,

Hematocrit, White Blood Cells, Platelet
count, Prothrombin Time, Activated

Partial Thromboplastin Time, Lactate,

Sequential Organ Failure Assessment

score

XGBoost XGBoost
Sensitivity: 70%;
Specificity: 57%;

AUC: 0.646

Yes, using

SHapley
Additive

exPlanations

11 D3

Sarton
et al.

(2021)

(64)

Investigate the association

between early brain MRI data
and functional outcomes of

patients with severe herpes

simplex encephalitis at 90 days

after ICU admission

Unavailable 138(M:75,F:63)/34 ICUs in France
Patient’s history, clinical, laboratory,

and brain electrophysiologic data
Multivariable LR Multivariable LR

AUC: 0.87;

Goodness of fit
(Hosmer and

Lemeshow test):

0.75; Accuracy:

81.4%

No

12 D3

Elmer
et al.

(2020)

(65)

To predict Cerebral
Performance Category using

longitudinal data after cardiac

arrest

Unavailable 1010(M:626,F:384)/not reported EEG data

Group-Based Trajectory

Modeling (GBTM)-

unadjusted, GBTM-Ocov,
GBTM-Risk, GBTM

Ocov+Risk, K-means-

unadjusted, K-means-

Adjusted, Bayesian
regression

GBTM-Risk
Sensitivity:

38.3%

Yes, using

Centers of

Clusters

Abbreviations: ICU, Intensive Care Unit; ML, machine learning; EBM, explainable boosting machine; SVC, support vector classifier; RF, random forest; PR-AUC, precision recall

area under the curve; CEEG, continuous electroencephalogram; PICU, Pediatric Intensive Care Unit; DL, deep learning; AUROC, area under the receiver operating characteristics;
MTL-PDL, multi-task learning physiological deep learner; STL-PDL, single-task learning physiological deep learner; RMSE, root mean square error; MAP, mean arterial pressure;

HR, heart rate; RR, respiratory rate; ECG, electrocardiogram; ABP, arterial blood pressure; Resp, respiration rate; SpO2, peripheral oxygen saturation; PP, pulse pressure; CO,

cardiac output; LR, logistic regression; SVM, support vector machine; KNN, K-nearest neighbor; PPV, positive predictive value; XGBoost, extreme gradient boosting; NN, neural

network; AHE, acute hypotensive episodes; BS, brier score; BMI, body mass index; DT, decision tree; NB, naïve bayes; AUC, area under the curve; CNN, convolutional neural
network; MRI, magnetic resonance imaging; EEG, electroencephalogram; GBTM, group-based trajectory modeling.
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Table 10. Category G: Depth of Anesthesia

No. Study Goal
Type of

Anesthesia

Induction

Drug(s)

Depth of

Anesthesia Levels

Dataset

Availability

Number of

Case/Dataset
Feature(s) Algorithm(s)

Winner

Algorithm

Winner

Algorithm
Performance

1

Abel et
al.

(2021)

(74)

To construct

classification

models for real-
time tracking of

anesthesia

unconscious

state during

anesthesia

General
Propofol &

Sevoflurane

Consciousness &

Unconsciousness
Request

Not reported/

Massachusetts

General Hospital

The feature sets used were the
multi-tapered EEG spectral

power, EEG bendwise power,

the first three principal

component scores of the

multitaper spectrogram, the
linear discriminant score of

the multitaper spectrogram

(LDA, with supervised

learning performed by

including the labels), and the
first ten principal component

scores of a set of features

generated by a deep CNN.

Use the below

algorithms in 3

ways: Without

HMM, with 2-State-
HMM, and With 6-

State-HMM. The

algorithms are

Multitaper

Spectrogram, BWP,
PCA, LDA, and CNN.

LDA+HMM2 AUC ~ 0.99

2

Dubost

et al.

(2021)

(89)

To predict and

assess states

based on four
physiological

variables: Heart

Rate, Mean Blood

Pressure,

Respiratory Rate,
AA Inspiratory

Concentration

General
Propofol &

Ketamine

Awake, The Loss of
Consciousness

(LOC), The

anesthesia, The

Recovery of

Consciousness
(ROC), Emergence.

Unavailable

30 (M: 20, F: 10)/Begin

military teaching

hospital

Heart Rate, Systolic arterial

blood pressure, Diastolic

arterial blood pressure, Mean
arterial blood pressure,

Saturated percentage of

dioxygen, End-tidal carbon

dioxide, Anesthesia agent, AA

expiratory concentration, AA
inspiratory concentration,

Total minimum alveolar

concentration, Fraction

inspired of dioxygen, Mean

alveolar concentration,
Fraction inspired nitrous

oxide, End-tidal nitrous oxide,

Respiratory rate, BIS, BIS burst

suppression ratio, BIS

electromyography &
Demographic Features (Age,

Gender, etc)

HMM HMM
Error Prediction:

0.18

3

Afshar

et al.

(2021)
(75)

To get EEG

signals and

continuously
predict the BIS

General with

few cases

receiving

Sedation/
Analgesia

and Local

anesthesia

Propofol

and/or
Remifentanil

Deep Anesthesia

(DA, BIS: 0-40),

General Anesthesia

(GA, BIS: 40-60),
Light Sedation (S,

BIS: 60-80) & Awake

(W, BIS: 80-100)

Unavailable

176 (M: 102, F:

74)/Department of

Anesthesiology and

Pain Medicine, Seoul
National University

Hospital, College of

Medicine

Extracted features from EEG

signals by DNN age, height,

weight, and anesthesia
duration

Combinatorial DL

structure involving

CNN (inspired by

the Inception
module),

Bidirectional LSTM,

an Attention Layer

Combinatorial

DL structure

AUC: 0.811 ± 0.527,

sensitivity: 77.62%,
accuracy: 88.71%

4

Zhan et

al.
(2021)

(90)

To distinguish

different

anesthesia states,

providing a
secondary tool

for DoA

assessment

General

Intravenous

Midazolam,

Propofol,
Sufentanil &

Cisatracurium

Anesthesia

Induction,

Anesthesia
Maintenance,

Anesthesia

Recovery

Request

23/Second Affiliated

Hospital of the Army

Medical University

Four Heart Rate Variability-

derived features in the time

and frequency domain were

extracted from an
electrocardiogram, including

HRV high-frequency power,

Low-frequency power, High-to-

low-frequency power ratio,

and Sample entropy and age,
Height, Weight, BMI, Duration

of surgery, Anesthetic

management, Maintenance

drugs infusion rate,

Additional drugs
administrated when

approaching the end of

surgery.

LR, SVM, DT & DNN DNN

Precision of

anesthesia

induction: 58.1%,

recall of anesthesia
induction: 88.1%,

precision of

anesthesia

maintenance: 96%,

recall of anesthesia
maintenance:

94.7%, precision of

anesthesia

recovery: 56.6%,

recall of anesthesia
recovery: 57.8%,

classification

accuracy: 90.1%

5

Duclos

et al.

(2021)

(76)

To classify

different states

of AEC and wPLI

measure of FC

- Propofol

Baseline, Light

Sedation,

Unconscious, Pre-

ROC & Recovery

Request 9/not reported

Extracted features from

Functional Connectivity time-

series signals by AEC & wPLI

Use the below

algorithms in 3

ways: With AEC
Features, with wPLI

Features, and with

both AEC and wPLI

Features. The

algorithms are
Linear kernel SVM,

RBF kernel SVM, LDA

Linear kernel
SVM (C=0.1)

with AEC

Feature for

Unconscious

class

Accuracy ~ 85%

6

Avilov

et al.
(2021)

(77)

Detection of

intraoperative

awareness
during general

anesthesia,

especially

General Propofol - Unavailable 22 (M: 10, F: 12)/Inria

Extracted features from EEG

signal by CSP filters,
Riemannian geometry, linear

discriminant analysis

CSP+LDA, Minimal

Distance to the

Riemannian Mean,

Tangent Space+LR,
DeepConvNet,

ShallowConvNet,

EEGNet-2.32 & EEG-

4.8

EEGNet-4.8

with 128
Electrodes

Accuracy: 94.5%,

false-positive rate:
6.1%

7

Sook

Ra et al.
(2021)

(78)

Develop a new

DoA index for
monitoring the

DoA

- Propofol
Consciousness,

Light Anesthesia,

Deep Anesthesia

Request

Not

reported/University
of Southern

Queensland

Extracted features from EEG

signals by entropy methods

(SE and PE) and age, Weight,
Height, Gender, Midazolam,

Alfentanil, Propofol,

Parecoxib, Fentanyl

SVM, DL Algorithm
& NN, LR

LR

The Pearson

correlation
coefficient, RMSE,

and execution time

of LR were the best.
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8
Sanz Perl et

al. (2021) (92)

To develop whole-brain

computational models to

show that the stability of
conscious states provides

information complementary

to their similarity to

conscious wakefulness

- Propofol

Sleep, Propofol
Anesthesia & Post-

Comatose Disorders

of Consciousness

Part of the
Dataset

(Sleep data)

is available

43 (M: 27, F:

16)/Medical
School of the

University of

Liège

Extracted features from fMRI

and EEG data & Gender, Age at

Scan, Etiology, Days since
Injury, Aud. Function, Vis.

Function, Mot. Function,

Oro/Ver Function,

Communication, Aurosal,

#CRS-R assessment

RF RF
RF has good
performance in

this study.

9
Madanu et

al. (2021) (3)

To extract features from EEG

signals to predict DoA
General Propofol

Anesthesia Deep,

Anesthesia OK,

Anesthesia Light

Unavailable

50/National

Taiwan

University

Hospital

EEG data

CNN with 5, 6 &

10 layers, AlexNet,
Pre-Trained

VGG16, Pre-

trained VGG19,

Pre-trained

InceptionRESV2

CNN with

10 layers
Accuracy: 83%

10
Fali Li et al.
(2021) (79)

To detect the time onset at

which patients lost their

consciousness within the
duration of (10, 61) after

being injected with Propofol

General Propofol

The Loss of

Consciousness
(LOC), Resting

Unavailable

30/Shanghai

Sixth People’s
Hospital

Features extracted from EEG

signals time-series by multi-
channel cross-fuzzy entropy

Corresponding

time-varying

cross-fuzzy

networks(C-
FuzzyEn) time-

varying

coherence

networks

C-FuzzyEn

The Long-Range
Connectivity

(LRC) of C-

FuzzyEn is better

than the LRC of

COH (LRC is a
parameter that

measures the

number of

frontal-occipital

connectivity)

11

Yuqin Li et

al. (2021)

(80)

To track the loss of
consciousness and recovery

of consciousness under

General Anesthesia, using

EEG signals

General Propofol

Anesthesia
Induction (i.e.,

LOC), Anesthesia

Recovery (i.e., ROC),

the Resting State

(i.e., Resting)

Request

30 (M: 14, F:

16)/Shanghai

Sixth People's

Hospital

Three Feature sets, including

Spatial Pattern of the Network

features, Properties & SPN

features + Properties

SVM SVM

Accuracy: 95%,
sensitivity:

93.33%,

specificity:

96.67%

12
Tacke et al.

(2020) (93)

Construct a combined
electroencephalographic

anesthesia index that

predicts responsiveness in

anesthetized patients.

General

Remifentanil,
Sevoflurane,

Propofol &

Succinylcholine

- Unavailable 39/not reported

EEG Parameters: Weighted

Spectral Median Frequency,
quotient of WSMF, Spectral

Entropy, Hurst Exponent,

Approximate Entropy, Lempel-

Ziv Complexity, Permutation

entropy Auditory Evoked
Potentials Parameters: Wavelet

Coefficients, Amplitudes and

latencies of Wavelet

Coefficients, Signal Energies

based on Wavelet Coefficients,
Maximum Amplitude of

Retransformed AEPs, Variance

of the Second Derivative of

Wavelet Coefficients

SVM, NB
Classifier, LR,

MLP, Bayesian

Net, J48

SVM Pk: 0.935±0.11

13
Campbell et

al. (2020)

(91)

Identifying degrees of

pathological
unconsciousness in clinical

patients under anesthesia

via resting-state fMRI

General
Propofol,

Remifentanil &

Succinylcholine

Anesthesia-SHH:

Awake, Light
Sedation, Deep

Sedation or General

Anesthesia

Anesthesia-WI:

Wakefulness
Baseline, Light

Sedation, Deep

Sedation, Recovery

DOC: Healthy,

Unresponsive
Wakefulness

Syndrome,

Minimally

Conscious State

Available
93/Anesthesia-
SHH, Anesthesia-

WI, DOC

Resting-State fMRI Feature

Data: 32 features, including

Amplitude of Low-Frequency
Fluctuations (3), Within

Network Functional

Connectivity FC(8), Between

Network Functional

Connectivity FC(21)

SVM, Extra Trees,

ANN
All AUC>0.95

14

Ramaswamy

et al. (2020)

(81)

Estimate the depth of

sedation via frontal EEG

signals

-

Propofol,

Dexmedetomidine,

Sevofurane &

Remifentanil

Awake, Sedated Unavailable

66/Using a 16

channel

Neuroscan® EEG

monitor

(Compumedics
USA, Limited,

Charlotte)

EEG Signals: Nonlinear energy

operator, Activity, Mobility,

Complexity, Root Mean Square
Amplitude, Kurtosis, Skewness,

Mean of Amplitude

Modulation, Standard

Deviation of AM, Skewness of
AM, Kurtosis of AM, Burst

Suppression ratio/min,

Pδ=mean power in delta band,

Pθ=mean power in theta band,

Pα=mean power in alpha
band, Pσ=mean power in

spindle band, Pβ=power in

beta band, PT=total spectral

power, Pδ/PT, Pθ/PT, Pα/PT,

Pσ/PT, Pβ/PT, Pδ/Pθ, Pα/Pθ,
Pσ/Pθ, Pβ/Pθ, Pα/Pθ, Pσ/Pθ,

Pβ/Pθ, Mean of Frequency

Modulation, Standard

Deviation of FM, and extra.

Elastic Net LR,

SVM with

Gaussian Kernel,

RF, Ensemble Tree
with Bagging

Ensemble

Tree with

Bagging

AUC: 0.88

15

Kashkooli et

al. (2020)

(82)

Design drug-specific models
to improve the performance

of automated anesthetic

state monitors

General
Sevoflurane &

Ketamine

Awake, Sedation,

General Anesthesia
Unavailable

12 (M: 7, F:

5)/Waveguard
system with a

standard EEG

cap(64 channels,

ANT Neuro)

EEG data: Mean Power of Slow,

Mean Power of Theta, Mean

Power of Low-Beta, Mean
Instantaneous Frequency,

Kurtosis of Instantaneous

Frequency, Hjorth Mobility,

Permutation Entropy, Higuchi

Fractal Dimension

KNN KNN F1-score: 94%



Hashemi S et al.

28 J Cell Mol Anesth. 2024; 9(1): e145369.

16

Lee et al.

(2020)
(83)

To identify brain states

independent of the
actual anesthetic

concentration

- Desflurane - Unavailable

7 Rats (M: 7, F:

0)/SmartBox
(NeuroNexus

Technologies)

Spike Rate, Local

Variation, Total

Number of Spikes,
Longest Period Below

Mean, Sample

Entropy

Hierarchical

Agglomerative

Algorithm with
Ward’s Linkage

Method

Hierarchical

Agglomerative

Algorithm with
Ward’s Linkage

Method

-

17

Hayase et

al. (2020)
(84)

Improve anesthesia

depth monitoring using

the 20-Hz to 30-Hz
hierarchical Poincaré

analysis.

General,

Local

Propofol,

Sevofurane,

Remifentanil
& Fentanyl

Lighter Anesthesia,

Deeper Anesthesia
Unavailable

30 (M: 16, F:

14)/Kyoto Chubu
Medical Center

Poincaré-index20–30

Hz, Poincaré-

index0.5–47 Hz,

Electromyogram
EMG70–110 Hz,

Suppression Ratio

MLPNN MLPNN

Correlation

Coefficient: 0.87
RMSE: 7.09

18

Shalbaf et

al. (2020)

(85)

To assess the level of

hypnosis with

Sevoflurane

- Sevoflurane

Awake, Light

Anesthesia, General

Anesthesia, Deep
Anesthesia

Unavailable 17/not reported

EEG data: Frequency

Index (Beta), Sample

Entropy, Shannon

Permutation Entropy,
Detrended

Fluctuation Analysis

SVM SVM Accuracy: 94.11%

19

Park et al.

(2020)

(86)

To present a real-time

EEG-based DoA

monitoring system

General
Sevoflurane &

Propofol
- Available

374/VitalDB

constructed at

Seoul National

University
Hospital

EEG data ANESNET ANESNET

MSE: 0.048 MAE:

0.05 Pearson

Correlation

Coefficient: 0.676

Concordance
Correlation

Coefficient: 0.566

20

Li et al.

(2020)

(87)

To monitor DoA - Sevoflurane - Request

20/Waikato

Hospital in

Hamilton

EEG data

LSTM and Sparse

Denoising

Autoencoder

LSTM and Sparse

Denoising

Autoencoder

P_k: 0.8556±0.0762

21

Ihalainen

et al.

(2021) (88)

Evaluate the evidence

for the posterior hot

zone theory of
consciousness by

modeling the relative

contributions of three

resting-state networks
for Propofol-induced

loss of consciousness.

General Propofol

Behavioural

Responsiveness,
Sedation, Loss of

Consciousness with

Clinical

Unconsciousness,

Recovery of
Consciousness

Request

10 (M: 4, F:
6)/Faculty of

Medicine of the

University of

Liège

EEG data

Dynamic Causal

Modelling (DCM)

(Combination of 3
Networks: Default

Mode Network (DMN),

SAlience Network

(SAN), Central
Executive Network

(CEN))

In Frontoparietal

Connections: DMN In
Frontal Connections:

SAN In Parietal

Connections: SAN All

Connections:

Combination of 3
Networks

AUC: 0.78,
accuracy: 80%,

mean posterior

probabilities: 0.67,

recall: 78%

Abbreviations: EEG, electroencephalogram; LDA, linear discriminant analysis; CNN, convolutional neural network; HMM, hidden markov model; BWP, bandwise power; PCA,
principal component analysis; AUC, area under the curve; AA, anesthesia agent; BIS, bispectral index; ASA, American Society of Anesthesiology; DNN, deep neural network; DL,

deep learning; LSTM, long short-term memory; DoA, depth of anesthesia; BMI, body mass index; LR, logistic regression; SVM, support vector machine; DT, decision tree; AEC,
amplitude envelope correlation; wPLI, weighted phase lag index; FC, functional connectivity; RBF, radial basis function; CSP, common spatial pattern; NN, neural network; RMSE,

root mean square error; RF, random forest; SPN, spatial pattern of the network; WSMF, weighted spectral median frequency; AEPs, auditory evoked potentials; NB, naïve bayes;
MLP, multi-layer perceptron; P_k, prediction probability; DOC, disorders of consciousness; ANN, artificial neural network; AM, amplitude modulation; FM, frequency

modulation; KNN, K-nearest neighbor; MLPNN, multi-layer perceptron neural network; MSE, mean square error; MAE, mean absolute error; DMN, default mode network; SAN,

SAlience network.
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Table 11. Category H: Control of Anesthesia Delivery

No. Study Goal
Type of

Anesthesia

Induction

Drug(s)

Dataset

Availability

Number of

Case/Dataset
Feature(s) Algorithm(s)

Winner

Algorithm

Winner

Algorithm
Performance

Interpretable?

1
Ingrande et

al. (2020)

(94)

To predict the dose of
propofol anesthetic

during surgery

General Propofol Unavailable
24 (M: 6, F:

18)/not reported

Gender, Age, Lean Body
Weight, Total Body Weight,

BMI, Cardiac Output

4-compartment
Model, Recirculatory

Model, GRU

GRU
MPE: 0.161 MSE:

20.83
No

2

Sharma et

al. (2020)
(98)

To improve the drug

infusion to the

automatic control of

mean arterial blood
pressure for maintaining

the mean arterial

pressure to 100 mmHg

General
Sodium &

Nitroprusside
Unavailable

Not

reported/not
reported

-

Type-2 fuzzy logic,

Cuckoo Algorithm
(Optimization)

Type-2 fuzzy

logic,

Cuckoo
Algorithm

Error ≈ 0 No

3

Miyaguchi

et al. (2021)

(95)

To determine whether

Remifentanil will be

given to the patient in
the next n minutes.

General Remifentanil Unavailable

210 (M: 103, F:

107)/Okayama

University
Hospital

Static Features: Patient

Information (age, weight,

height, gender) & Dynamic

Features: Vital Records (HR,
SBP, DBP, MAP, RR, SpO2,

ETCO2) and Drug Records

(Remifentanil flow)

SVM, LR, RF, ANN,

LightGBM, LSTM
LSTM

Accuracy: 73%,

sensitivity: 65%,

specificity: 73%,

precision: 2.3%,
AUC: 0.75

Yes, using

Shapley

4
Aiassa et al.

(2021) (99)

Build a learning model

for electrochemical

sensing, which

compensates for the

fouling effect of
propofol.

General Propofol Unavailable
480/not

reported

Using 4 chemical feature sets

including 1. ip, Ep, 2. ip, Ep,

nmeas, 3. ip, Ep, Q , 4. ip, Ep, Q ,

nmeas

SVC with different

kernels (Linear,

polynomial, RBF, and

sigmoid) & C=10 for
all models

SVC (RBF) Accuracy: 95% No

5
Wei et al.

(2021) (96)

To determine the

appropriate dose of

hyperbaric bupivacaine

based on physical

variables during
cesarean section in the

next 10 minutes

Neuraxial
Hyperbaric

bupivacaine
Request

684/Ethical

Committee of

Jiaxing
Maternity

Parturient demographic

Features: Age, Weight, Height,

Fundal height, Demographic

Features: Vertebral column

length, Abdominal girth,
Fetal biparietal diameter,

Fetal weight, Bupivacaine

dosage

DT with different

hyperparameters

DT (λ Value =

0.2)
MSE: 0.084

Yes, using

Decision Tree

Rules

6

Schamberg

et al. (2022)
(97)

To suggest the

appropriate dose of

anesthetic drug to

automatically control
the level of anesthesia

during surgery

General Propofol Unavailable 9/not reported

Level of Unconsciousness

(LoU) error, predicted effect-

site concentration, LoU
change, LoU target.

DRL DRL
Performance

Error: 0.011±0.005

Yes, using

Shapley additive
explanations

Abbreviations: BMI, Body Mass Index; GRU, Gated Recurrent Unit; MPE, mean percentage error; MSE, mean square error; HR, heart rate; SBP, systolic blood pressure; DBP,

diastolic blood pressure; MAP, mean arterial pressure; RR, respiratory rate; SpO2, peripheral oxygen saturation; ETCO2, end-tidal carbon dioxide; SVM, support vector machine;

LR, logistic regression; RF, random forest; ANN, artificial neural network; LightGBM, light gradient boosting machine; LSTM, long short-term memory; AUC, area under the curve;

SVC, support vector classifier; RBF, radial basis function; DT, decision tree; LoU, level of unconsciousness; DRL, deep reinforcement learning.


