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Abstract

Background: Congenital heart defects (CHDs) are among the most common birth disorders worldwide. Human research has
produced mixed results regarding the impact of zinc on this population. Children with CHD often exhibit hyperparathyroidism
and vitamin D deficiency.
Objectives: This study aims to assess the levels of serum vitamin D and zinc in children with CHD and compare them to those of a
control group.
Methods: In this case-control study, we included children with CHD (N = 53) who were admitted to Bandar Abbas Children’s
Hospital from June 22 to December 21, 2018. The study’s inclusion criteria were an age range from one month to 14 years and a CHD
confirmation via echocardiography. A control group of children without CHD (n = 53) was also evaluated. We collected demographic
information from participants and took 4cc blood samples from the children to measure their serum levels of vitamin D and zinc.
Results: The study found no significant difference in serum vitamin D levels between the two groups (P = 0.242). However, the
mean serum zinc level was significantly lower in CHD patients compared to the controls, indicating a moderate effect size (SMD =
-0.67, 95% confidence interval [CI] -1.06 to -0.28). The frequency of deficiency and insufficiency in serum vitamin D levels was similar
between both groups (P = 1.000 and P = 0.767, respectively). Nevertheless, CHD children were 4.31 times more likely to suffer from
zinc deficiency than the control group (OR = 4.31, 95% CI 1.52 to 13.31). Moreover, a simultaneous insufficiency of zinc and vitamin D
levels was observed exclusively in CHD children (P = 0.006).
Conclusions: The study observed a zinc deficiency in children with CHD, while no significant differences were found in the
deficiency and insufficiency of serum vitamin D levels between children with CHD and the control group. Future longitudinal
studies are necessary to verify these findings.
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1. Background

With an estimated birth incidence of 9.4%, congenital
heart defects (CHDs) rank among the most prevalent birth
disorders globally (1). These disorders remain the leading
cause of disability and mortality in neonates and children,
resulting in significant physical and mental comorbidities
that heavily burden families and society (2). The etiology
of CHDs is identifiable in approximately 15% of cases,
with factors such as maternal diabetes mellitus, genetic
predispositions, poor nutrition, certain medications, and

obesity playing a role (3). The pathophysiology of most
CHDs is greatly influenced by the interplay between
environmental and genetic factors, especially modifiable
aspects of maternal lifestyle and diet (4, 5).

Animal studies suggest that cardiac abnormalities
in newborns may be associated with zinc deficiency
during pregnancy (6). However, human studies on serum
zinc levels in these patients have produced inconsistent
results. One study found no association between zinc
levels and CHDs (4), while another showed an inverse
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relationship between serum zinc levels and the occurrence
of ventricular septal defects (VSD) (7). Another piece of
research indicated that patients with CHD had higher zinc
levels compared to healthy controls (8).

Conversely, studies indicate that a deficiency in
maternal vitamin D levels is associated with an increased
incidence of CHDs in offspring (9). In the general
population, vitamin D deficiency is linked to a heightened
risk of cardiovascular events and is associated with
increased cardiovascular morbidity and mortality (10).
Moreover, in individuals with CHD, occurrences of
secondary hyperparathyroidism and vitamin D deficiency
have been noted (8, 11). Thus, it can be argued that
hypoxemia, cyanosis, and the use of certain medications
for CHD may impact the kinetics of vitamin D and the
functioning of the parathyroid gland (11-13).

2. Objectives

The current study aims to assess the serum levels of
vitamin D and zinc in children with CHD and compare
them with those in a control group.

3. Methods

3.1. Participants and Study Design

This case-control study included children with CHD
who were admitted to the Children’s Hospital in Bandar
Abbas in 2018, from June 22 to December 21. The inclusion
criteria were an age range of one month to 14 years
and echocardiography-confirmed CHD. A control group of
children without CHD was also evaluated. The sample size
of this study was set at 25 patients for each group, based on
serum vitamin D levels estimated from the study by Noori
et al. (22). The sample size calculation used a type I error
rate of 0.05 and a power of 90%.

The Ethics Committee of Hormozgan University of
Medical Sciences approved this study under the ethics code
IR.HUMS.REC.1397.018, in accordance with the principles of
the Declaration of Helsinki. Parents or guardians of the
participating children provided written informed consent
for their children’s participation and for the publication of
the study data.

After recording the demographic variables of the
participants, 4cc of blood was drawn from each child
to measure serum levels of vitamin D and zinc. Serum
25-hydroxy vitamin D levels were assessed using the
chemiluminescence method (Abbot Architect i1000SR,
USA), and serum zinc levels were measured using
the absorption method with a standard photometer.
Vitamin D levels between 20 to 30 ng/mL were considered

insufficient, and levels less than 20 ng/mL were considered
deficient. Zinc levels below 70 mcg/dL were categorized
as zinc deficiency. Additionally, patients with CHD were
classified into cyanotic and non-cyanotic groups.

3.2. Data Analysis

The data were analyzed using Stata software (version
14.2). Continuous quantitative variables were described
using means and standard deviations, while qualitative
variables were categorized by frequency and percentage.
Independent t-tests were utilized to compare continuous
variables between the two groups, with this approach
being justified by the central limit theorem (14). Moreover,
Cohen’s d was employed to calculate the standardized
mean difference (SMD), with interpretations as follows:
Less than 0.19 was considered trivial; between 0.20 to 0.49,
a small effect; between 0.50 to 0.79, a medium effect; and
more than 0.80, a large effect (15). The chi-squared test was
used to compare categorical data between the two groups.
Effect sizes for a 50% CHD prevalence were reported as odds
ratios (ORs), with interpretations ranging from 0 - 1.48 for
a trivial effect, 1.49 to 3.44 for a small effect, 3.45 to 8.99 for
a medium effect, and more than 9.00 for a large effect (16).
The significance level was set at P-values ≤ 0.05.

4. Results

Overall, the study assessed 106 children, with each
group—CHD and controls-comprising 53 participants.
Among the children with CHD, 43 (81.1%) had non-cyanotic
and 10 (18.9%) had cyanotic conditions. Table 1 displays the
general characteristics of the study groups.

The statistical analysis revealed no significant
differences in the serum vitamin D levels between the
groups (P = 0.242). Conversely, the serum zinc levels
were significantly lower in children with CHD compared
to the controls, showing a medium effect (SMD = -0.67,
95% confidence interval [CI] -1.06 to -0.28) (Table 2).
Regarding the frequency of vitamin D deficiency and
insufficiency, both groups were similar (P = 1.000 and
P = 0.767, respectively). However, the likelihood of zinc
deficiency was 4.31 times higher in children with CHD than
in the controls (OR = 4.31, 95% CI 1.52 to 13.31) (Table 3).

5. Discussion

This study aimed to compare serum levels of vitamin
D and zinc in children with CHD against those of a
control group. We found that the serum zinc levels
were significantly lower in the CHD group, exhibiting
a medium effect. Similarly, Yalçin et al. investigated
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Table 1. Comparison of General Characteristics Between Groups a

Variables Congenital Heart Defect (n = 53) Control (n = 53)

Age

1 month - 1 year 26 (49.1) 24 (45.3)

1 - 5 year 23 (34.4) 25 (47.2)

6 - 14 year 4 (7.5) 4 (7.5)

Sex

Male 31 (58.5) 22 (41.5)

Female 22 (41.5) 31 (58.5)

a Values are expressed as No. (%).

Table 2. Comparison of 25-Hydroxy Vitamin D and Zinc Levels Between Groups a

Variables CHD (n = 53) Control (n = 20) SMD (95% CI) b P-Value c

25-hydroxy vitamin D, ng/mL 30.3 (15.1) 33.9 (16.8) -0.23 (-0.61; 0.16) 0.242

Zinc,mcg/dL 75.9 (24.4) 91.6 (22.5) -0.67 (-1.06; -0.28) < 0.001

Abbreviations: CHD, congenital heart defect; SMD, standardized mean difference.
a All values are adjusted means (95% CI) in adjusted models and means (95% CI) in crude models and expressed as mean (standard deviation).
b Calculated using Cohen’s d.
c Analyzed by the independent t-test.

Table 3. Comparison of Zinc Deficiency and Vitamin D Deficiency and Insufficiency Between Groups a

Variables CHD (n = 53) Control (n = 53) OR (95% CI) P-Value b

Vitamin D deficiency 14 (26.4) 14 (26.4) 1.00 (0.39; 2.60) 1.000

Vitamin D insufficiency 7 (13.2) 6 (11.3) 1.000 1.19 (0.32; 4.64) 0.767

Zinc deficiency 21 (39.6) 7 (13.2) 0.767 4.31 (1.52; 13.31) 0.002

Zinc and vitamin D deficiency 7 (13.2) 0 (0.0) - 0.006

Abbreviations: CHD, congenital heart defect; OR, odds ratio; CI, confidence interval.
a Values are expressed as No. (%).
b Analyzed by the chi-squared test.

the blood and tooth content profiles in children with
CHD, finding that zinc levels were lower in patients,
though not to a statistically significant degree (17). Sadoh
and Sadoh reported comparable outcomes, noting lower,
albeit not statistically significant, serum zinc levels in
children with CHD (18). The disparity between these
studies and our own may be due to the smaller sample
sizes used in their research. Additionally, other factors,
such as the nutritional status of the children with CHD and
their medications—especially diuretics used for treating
congestive heart failure-could affect serum zinc levels (18).
Our study did not examine these potential influencing
factors.

Thus, zinc deficiency in children increases the
likelihood of CHD compared to those with adequate serum
zinc levels. Similarly, Zhu et al. observed zinc deficiency
in children with isolated VSDs (7). Zinc is known to be
a crucial component of proteins and plays a significant

role in cell signaling due to its coordination geometry’s
flexibility and its ability to rapidly change protein shapes
required for biological interactions (19). Key targets of zinc
include various proteins involved in signaling pathways,
ion channels, and mitochondrial metabolism, all vital for
regulating cardiac contractility (20). Juriol et al. noted
that a lack of zinc could alter the heart’s inflammatory,
apoptotic, oxidative, and nitric oxide pathways. Zinc
deficiency has been shown to increase inflammatory and
apoptotic processes in the heart tissue while reducing
the expression of transforming growth factor β1 and the
activity of nitric oxide synthase (21).

Despite observing lower, albeit not statistically
significant, levels of 25-hydroxy vitamin D in children
with CHD, this study found no difference in the prevalence
of vitamin D deficiency and insufficiency between
children with CHD and controls. In contrast, Noori et
al. reported significantly lower serum levels of vitamin
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D in children with CHD compared to controls (22).
The presence of 25-hydroxy vitamin D receptors in the
heart’s endothelium, smooth muscle, and myocytes
supports the hypothesis that 25-hydroxy vitamin D may be
beneficial in cardiovascular disease (23). The diminished
function of this receptor in cardiac cells can lead to
diastolic disturbances and, ultimately, cardiovascular
complications (24). Furthermore, recent studies have
suggested that various aspects of the vitamin D pathway
are involved in cardiogenesis (25, 26). In parallel, a study
by Rahayuningsih et al. showed that serum vitamin D
levels were associated with heart failure, the types and
severity of VSDs, and pulmonary hypertension in children
with VSD (27). Additionally, Koster et al. found a twofold
increase in the incidence of CHD in children born to
mothers with low levels of vitamin D (9).

This study has some limitations, including
the cross-sectional design does not allow for the
determination of causality between CHD and deficiencies
in zinc or vitamin D, although the odds ratios reported
here may overestimate the associations. Furthermore, the
relatively small sample size, despite being larger than that
of most previous studies, limits the generalizability of our
findings. As a result, we could not evaluate the potential
effects of age, sex, and CHD type.

5.1. Conclusions

In this study, children with CHD had significantly
lower levels of zinc compared to controls, while no
significant differences were observed between individuals
diagnosed with coronary heart disease (CHD) and
the control group regarding vitamin D deficiency or
insufficiency. However, it is crucial to conduct larger
longitudinal studies to confirm these findings and assess
the causality between serum levels of vitamin D and zinc
in children with CHD.
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