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Abstract

More recently, enzyme-based biofuel cells have attracted special attention in different areas. The alcohol dehydrogenase (ADH) due
to its cheap and easily available substrate (ethanol) is one of the dehydrogenase enzymes that has been used on researches exten-
sively. This paper explains procurement and performance of bioanode based ADH. In present paper, we used multi-walled carbon
nanotubes (MWCNTs) and polyamidoamine dendrimer (PAMAM) on poly methylene green (PMG) modified carbon cloth to fabricate
bioanode for an ethanol biofuel cell. The cyclic voltammetry experiments have used to study the performance of the immobilized
ADH in presence of β-nicotinamide adenine dinucleotide (NAD+) and ethanol as cofactor and substrate respectively. Also, the kinetic
parameter values like kcat, KMS, and k were calculated using analytical equations based on results obtained from cyclic voltammetry.
The maximum anodic current of 153.37µA obtained from the modified bioanode at a concentration of 300 mM ethanol. The kinetic
parameter values kcat, KM, and k (rate constant) for enzyme-substrate reaction calculated 1.6 ± 0.1 S-1, 4.4 mM and 1.9× 105 M-1S-1 re-
spectively. The results showed that the composition of PAMAM and MWCNTs provides a good electronic communication for activity
of ADH based on PMG/PAMAM/MWCNTs.
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1. Background

Fuel cells are one of the alternative energy sources
of the production of electrical energy (1). Biofuel cells
(BFC) are a certain type of fuel cells which use biologi-
cal molecules for the production of electrical energy (2).
BFC have advantages including the use of renewable bio-
catalysts, the possibility of using a variety of fuels, the abil-
ity to operate at low temperatures, mild conditions and
physiological pH (3). Among biofuel cells, enzyme-based
fuel cells (EBFC) have attracted particular attention (4). To-
day, various enzymes like alcohol dehydrogenase (ADH)
and glucose oxidase and so on have been used to design the
enzymatic fuel cells. ADH enzyme reduces NAD+ to NADH
during oxidation of ethanol (5). There are many reports
on using ADH to design BFC (6-8). In 1997, Palmore et al.
used ADH enzyme to design the methanol/O2 biofuel cell
(9). In 2008, Sokic-Lazic and Minteer used ADH, aldehyde
dehydrogenase (AldDH) and S-acetyl-CoA synthetase with
enzymes of the citric acid cycle to oxidize methanol com-
pletely (10). In general, EBFC divided into two groups of
mediated electron transfer (MET) and direct electron trans-

fer (DET) in term of electron transfer types. In DET, elec-
trons are transferred directly to the electrode surface (11).
In MET based EBFC, mediators move the electrons to the
electrode surface (12). In ADH-based fuel cell often a me-
diator used to transfer electrons. Various factors includ-
ing selection of the appropriate support (electrode mate-
rials) and method of enzyme immobilization affect BFC ef-
ficiency (13). Carbon cloth is one of the best platforms for
effective immobilization of various enzymes. They have a
three-dimensional network structure and high thickness
as a support for biofuel cell set up (14). One of the key points
in studying of NAD+-dependent enzymes is restoration of
the NAD+ (15, 16). Because direct oxidation of NADH species
in different electrodes done at high potentials (17, 18). The
electrocatalysts are commonly used to reduce potential of
NADH oxidation (19, 20). Various organic compounds such
as methylene green (MG), methylene blue and natural red
are used greatly as electrocatalyst (21, 22). Carbon nan-
otubes (CNTs) is one of the materials that used to recycle
the NAD+ on biodevices (23). There are many reports on us-
ing CNTs to reduce potential of electrochemical oxidation
of NADH (8, 24, 25). Furthermore, CNTs have attracted sig-
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nificant attention to make bioelectrodes due to contain-
ing excellent electronic properties, high catalytic activity
and biocompatibility. They also cause better enzyme ori-
entation and higher enzyme loading (26-28). There are sev-
eral methods for the enzyme immobilization (29).Various
polymers have been used for enzyme immobilization in
EBFC (30, 31). PAMAM dendrimer is one of the polymers
that has been widely used for immobilization of enzymes
on the electrode surface in recent years (32-34). PAMAM
dendrimer is a kind of branched polymers that have dif-
ferent features including large uniformity, narrow molecu-
lar weight distribution and highly functionalized terminal
surface (35). PAMAM dendrimer due to the presence of end
groups keep the enzyme on its surface, also its porous and
uniform structure maintains the activity of the enzyme
(36). G4 PAMAM dendrimer is the smallest spheroid gener-
ation of denderimers with interior spaces (37). Astruc and
his colleagues confirmed electrochemical reversibility of
redox system terminated dendrimers. They introduced for
their phenomenon, electron hopping as proposed mech-
anism for electron transfer of dendrimer modified elec-
trode (37). The Albery theory is applied to analyze the ex-
perimental cyclic voltammetry data in order to extract ki-
netic parameters of the reaction (38).

2. Methods

2.1. Materials

Alcohol dehydrogenase (ADH: E.C. 1.1.1.1) from Sac-
charomyces cerevisiae (lyophilized powder, 433 Units
mg-1), ncotinamide adenine dinucleotide hydrate (NAD+),
polyamidoamine generation 4 dendrimer (PAMAM) and
methylene green (MG) and multiwalled carbon nan-
otubes (MWCNTs) purchased from Sigma-Aldrich (U.S.A).
Sodium tetraborate (Na2B4O7), sodium nitrate (NaNO3),
Sodium phosphate dibasic (Na2HPO4), Sodium phosphate
monobasic monohydrate (NaH2PO4. H2O) and Ethanol
were purchased from Merck (Germany). Carbon cloth
was purchased from Azar Electrode Company (Iran). All
solutions were prepared with deionized water and stored
at 4°C when not in use.

2.2. Bioanode Preparation

First, a layer of methylene green was electropolymer-
ized by electrochemically cycling on carbon cloth with
area of 1 cm × 1 cm in a solution of 0.4 mmol-1 MG and
100 mmol-1 sodium nitrate and 10 mmol-1 sodium tetrab-
orate in the range of -0.3 V to 1.3 V vs. Ag/AgCl with
scan rate of 0.05 V s-1 (39). Then, MG film was washed
slowly with double distilled water and dried for 24 hours at

room temperature. In the next step, 50 µL of commercial
PAMAM solution was dropped on poly methylene green
(PMG) modified carbon cloth. After drying PAMAM, 50 µl
of MWCNTs was deposited on the electrode surface. Then,
modified electrode (carbon cloth/PMG/PAMAM/MWCNTs)
was allowed to dry completely. Finally, 50 µL of solution
enzyme/NAD+ with concentration of 1 mgml-1 enzyme and
1.9 mM NAD+ was casted on the prepared electrode. The
modified carbon cloth by PMG/PAMAM/MWCNTs/ADH was
used as a bioanode.

2.3. Electrochemical Measurements

All electrochemical measurements of modified car-
bon cloth were done in a three-electrode cell chamber
(Autolab). In this cell, the modified carbon cloth by
PMG/PAMAM/MWCNTs/ADH was used as a working elec-
trode. Chamber cell contained 100 mM phosphate buffer
(pH 7.4), 1.9 mM NAD+ and various concentrations of
ethanol. All the tests have been done at room temperature.

2.4. Derivation Kinetic Parameters from Cyclic Voltammetry

The following scheme shows the homogeneous system
that considered by Albery et al. (40). The reactions occur-
ring in solution are:

(1)S + Eox
→← ES → P + Ered

(2)Mox + Ered →Mred + Eox

At the electrode surface:

(3)Mred →Max + 2e−

In this reaction scheme, S and P are substrate and prod-
uct. Eox and Ered are the oxidized and reduced forms of the
enzyme, and Mox and Mred are the oxidized and reduced
forms of the mediator (Figure 1).

Albery et al. derived solutions to extract kinetic data
from experimental results for different limiting cases (40).

We used the model proposed (case I) by Albery for
mediator-enzyme limited kinetics (40).

The amperometric response is given by Equation 1.

(4)I1 = nFAmΣ(DMkeΣ)
1
2

In the above equation mΣ, eΣ, k, A, F and n are the con-
centration of mediator, the enzyme concentration, the rate
constant of the reaction between the enzyme and the me-
diator, the electrode area, faraday constant and number of
electrons transferred respectively (38).

Albery et al. also wrote diffusion–reaction equations
for enzyme-substrate limited kinetics (cases VI) (40).
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Figure 1. The homogeneous system that studied in references (40, 41). Mox and Mred :
Oxidized and reduced mediator. Eox and Ered : Oxidized and reduced enzyme. S and P:
Substrate and product. DE and DM: Diffusion coefficients of enzyme and mediator.

(5)IV I = nFA

(
2DMkcateΣmΣS∞

S∞ +KMS

) 1
2

The enzyme–substrate kinetics can be calculated from
plot of the catalytic current against the substrate concen-
tration. The number of electrons transmitted by the MG
mediator is n = 2 (38).

3. Results and Discussion

3.1. Cyclic Voltammetry (CV) Characterization

Figure 2 shows the anodic current of the prepared
bioanode (carbon cloth/PMG/PAMAM/MWCNTs/ADH)
against different concentrations of ethanol in the range of
-1 V to +1 V vs. Ag/AgCl in 100 mM phosphate buffer (pH =
7.4), with scan rate of 0.001 V s-1 at 25°C.

0

30

60

90

120

150

180

0 50 100 150 200 250 300

C
u

rr
en

t 
(µ

A
)

Ethanol concentration (mM)

Figure 2. Plot of the carbon cloth/PMG/PAMAM/MWCNTs/ADH electrode currents
against different concentrations of ethanol in the range of -1 V to +1 V vs. Ag/AgCl
in 100 mM phosphate buffer, pH = 7.4, with scan rate of 0.001 V s-1 at 25°C.

Figure 3 shows the cyclic voltammogram of carbon
cloth/PMG/PAMAM/MWCNTs/ADH in 100 mM phosphate

buffer in absence of NAD+ and ethanol at scan rate of 0.001
V s-1. As it is shown two anodic peaks at -0.17 V and -
0.04 V (which corresponds to the performance of electro-
chemical NAD+ by PMG and MCNTs) and a weak cathodic
peak is exist (blue line). A pair of anodic peaks corre-
sponded to the NAD+/NADH redox process is observed in
the presence of ethanol. NAD+ is efficiently reduced with
higher potential in the presence of ADH. Enhancement in
anodic peak current in the presence of ethanol at carbon
cloth/PMG/PAMAM/MWCNTs/ADH suggest that ADH shows
electrocatalytic effect for ethanol oxidation. By increasing
the concentration of ethanol (from 100 mM to 300 mM)
current of anodic peak in potential of 0.25 V is increased
more than anodic peak in potential of -0.18 V that repre-
sents the increase in NADH electrocatalytic oxidation by
the ADH (orange line).

3.2. Kinetic Data

The KMS and kcat are calculated from a plot of the anodic
current against ethanol concentration (Figure 2). Currents
were taken from the plateau currents in the cyclic voltam-
mograms at 0.25 V and scan rate of 0.001V s-1.

KMS is equal to the substrate concentration at which
the current is half of the maximum current. For when the
concentration of substrate is very low (s∞ « KMS), anodic
current has a linear relationship to the square root of the
substrate concentration (38). As a result, Equation 2 is con-
verted to the following equation.

(6)I = nFA

(
2DM

kcat
KMS

eΣmΣS∞

) 1
2

Thus a plot of anodic current against the square root of
the substrate concentration (s1/2) shown in Figure 4.

From plot of anodic current against the square root of
the substrate concentration as well as can be calculated
the rate constant kcat from current in the saturated region,
IMAX, when (s∞ » KMS).

(7)IMAX = nFA (2DMkcateΣmΣ)
1
2

In this study, increasing the concentration of substrate
gradually leads to an increase in the amount of anodic cur-
rent to its maximum.

Table 1 shows the kinetic parameters, kcat, KMS, and k for
ADH kinetics mediated by the soluble MG by using analyti-
cal equations that have discussed.

The average concentration of ADH (Γmol cm-2) on the
surface of modified carbon cloth calculated from the for-
mula of Q = nFAΓ, where Q, A, F, and n are the charge con-
sumed (C), the electrode area (cm2), F the faraday constant
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Figure 3. Cyclic voltammogram of carbon cloth/PMG/PAMAM/MWCNTs/ADH electrode in 100 mM phosphate buffer (pH = 7.4), between -1.0 V to + 1.0 V vs. Ag/AgCl, at scan rate
of 0.001V s-1 and temperature of 25°C, in absence of ethanol (blue) and in presence of ethanol 100 mM (red line), 200 mM (green line) and 300 mM (orange line).
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Figure 4. Plot of the carbon cloth/PMG/PAMAM/MWCNTs/ADH electrode currents as a function of the square root on different concentrations of ethanol in the range of -1 V to
+1 V vs. Ag/AgCl in 100 mM phosphate buffer, pH = 7.4, with scan rate of 0.001 V s-1 at 25°C.
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Table 1. Kinetic Parameters Obtained from Cyclic Voltammetry Experiments

Parameters Equation 1 Equation 2 Equation 4

KMS (mM) 4.4

kcat (s-1) 1.6 ± 0.1

K× 105 (M-1 s-1) 1.9 ± 0.1

kcat /KMS× 102 ( M-1 s-1) 3.77 ± 0.3

(sAmol-1), and the number of transferred electrons respec-
tively. The immobilized ADH concentration on the mod-
ified electrode was estimated approximately 4.152 × 10-6

mol cm-2 (n = 2).

3.3. Effect of Scan Rate

The scan rate expresses rate of the applied potential
in cyclic voltammetric experiments. The Randles-Sevcik
equation in electrochemically reversible systems shows
the linear relationship between anodic current with the
square root of the scan rate (Equation 5).

(8)ip = 0.446 nFAC0

(
nFvD0

RT

) 1
2

In the above equation ip is the anodic current (A), v is
the scan rate (V s-1), n is the number of transferred elec-
trons, A (cm2) is the electrode surface area, Do is the dif-
fusion coefficient of the oxidized species (cm2 s-1), and C0

is the bulk concentration of the analyte (mol cm-3). For
reversible processes, it is expected that current to change
linearly with increasing scan rates (42). Therefore, the
Randles-Sevcik equation and plots of ip versus v1/2 shows
whether an analyte is freely diffusing in solution. The ef-
fect of different scan rates on oxidation of ethanol onto car-
bon cloth/PMG/PAMAM/MWCNTs/ADH was investigated by
cyclic voltammetry (Figure 5). As the Figure 6 shows, an-
odic peak current is increased linearly with increasing the
scan rate from 0.001 to 0.2 V s-1.

3.4. Conclusions

In this study, we used PMG, PAMAM dendrimer and
MWCNTs with layer by layer method to do the immobi-
lization of the ADH. The immobilization of MWCNTs on
PAMAM film causes facilitate the connection between en-
zyme and transducer materials, better enzyme orientation
and higher enzyme loading. PAMAM dendrimer due to its
porous and organizational structure facilitates the trans-
fer of reduced coenzyme to the electrode surface. There-
fore, it plays an important role in the reconstruction of
the immobilized ADH cycle. Also, the reaction of ADH
and PMG has been studied in homogeneous system using
cyclic voltammetry and Albery’s analytical equations. It is
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Figure 5. Cyclic voltammograms of carbon cloth/PMG/PAMAM/MWCNTs/ADH elec-
trode in 100 mM phosphate buffer (pH = 7.4), between -0.2 V to 0.8 V vs. Ag/AgCl,
scan rate of 0.001 V s-1 to 0.2 V s-1 at 25°C.
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Figure 6. The relationship between anodic peak current and scan rates.

suggested that the combination of simulation and exper-
iment is a more accurate method to study kinetic param-
eters of enzyme/substrate/mediator systems. However Ac-
cording to the obtained results, MWCNTs and PAMAM cre-
ate a convenient environment for effective electronic com-
munication between the center redox of enzyme and the
electrode surface.
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