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Abstract

The “Cardiorenal Syndrome (CRS) “includes a simultaneous heart-kidney dysfunction in such a way that damage in one organ
subsequently leads to damage in another and vice versa. Although for the first time in a classification in 2008, two main groups
called cardiorenal and reno-cardiac (based on the onset of the disease in each organ) were used for this term, but today there are
five main classifications for it. Various factors take part in this syndrome pathophysiology, including endotoxemia, inflammatory
processes, metabolic derangements, infections, imbalance in neurohormones secretion, venous congestion and immunological
dysfunction. But the main cause of this syndrome’ onset in many cases is over-activity of renal sympathetic nerves and subsequently
increased interaction with the stimulated renin-angiotensin system (both classical and non-classical axes). Regarding this fact,
today renal denervation is known as a useful therapeutic approach in solving the disorders of this syndrome, which its safety and
efficacy have been proven in many experimental and clinical studies. Respecting the above information, the aim of this study
is to investigate the therapeutic effects of renal denervation in solving CRS disorders in more details, relying on the results of
experimental and human studies in this field. The effects of using renin angiotensin blockers and other treatment methods for
this syndrome have also been mentioned.
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1. Context

The “Cardiorenal Syndrome “term for the first time was
coined by Robert Bright in 1836 following the discovery of
the fact that patients with kidney dysfunction and urea
secretion in urine showed evidence of cardiovascular
problems at the same time (1). Since then, despite many
studies regarding the relationship between these two
organs, it was the first time in 2008 that the “Acute
Dialysis Quality Initiative” introduced two main groups
(cardiorenal and reno-cardiac, based on the initial
pathology), for this syndrome, and after that, new
divisions up to five groups were defined (2). Although
this subject is very challenging, because due to close
cross-talk of related signaling pathways between these
two organs, many times it is not exactly clear whether the
initial onset of the defect was from the kidney or from
the heart. In general, this term is used in the cases with

dysfunction of kidney, heart and finally both of them,
which with its progress and lack of proper treatment,
leads to multi-organ failure (3).

At first, failure in heart pumping, as a result of
volume retention by the kidneys, was known as the main
mechanism of this syndrome, but later evidence showed
that various items are participated in the formation of
this pathogenic puzzle including over-activity of renal
sympathetic nervous system, endotoxemia, inflammatory
processes, metabolic derangements, infections, imbalance
in neurohormones secretion, venous congestion and
immunological dysfunction (4, 5). Unfortunately, this
syndrome imposes major problems on patients and the
medical community and is globally associated with high
morbidity and mortality.

Also, specific metabolic changes occur in response
to this syndrome, including: uremia, metabolic
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acidosis, renovascular reactivity failure, decreased aorta
responsivity, heart and kidney failure, increased blood
level of C-reactive protein and inflammatory cytokines,
and also transient activation of renin–angiotensin
system (increasing angiotensin II receptor type 1(AT1)
and angiotensin II receptor type 2 (AT2)) (6-8).

The treatment of cardiorenal syndrome involves
addressing the underlying cause and managing both
cardiac and renal dysfunction. One potential therapeutic
approach is renal denervation, which plays a crucial
role in managing this condition. Renal denervation
is a minimally invasive procedure that involves using
radiofrequency energy to disrupt the nerves surrounding
the renal arteries. These nerves play a significant role
in regulating blood pressure and fluid balance. By
interrupting their activity, renal denervation can help
reduce sympathetic nerve overactivity, which is often
seen in patients with cardiorenal syndrome. This
reduction in sympathetic tone leads to improved blood
pressure control and decreased fluid retention, ultimately
alleviating the strain on both the heart and kidneys. Renal
denervation has shown promising results in improving
cardiac and renal function in patients with cardiorenal
syndrome. Studies have demonstrated that this procedure
can lead to a reduction in blood pressure, improved left
ventricular function, and a decrease in proteinuria.

Considering above information, this article review
aims to collect available data related to cardiorenal
syndrome and its therapeutic strategy, mainly by focusing
on “renal denervation” as an effective therapeutic
approach.

2. Clinical Diagnosis Value of Micrornas and Long
Non-coding RNAs in Kidney Heart Diseases

Despite transcripting a large part of the mammalian
genome into RNA, only a few of these products are
translated into proteins and it is interesting that these
non-coding RNAs (ncRNAs) importantly take part in the
regulation of RNAs activity, protein function, cellular
physiology and disease progression (9). Although, despite
the increase of human science about these ncRNAs, the
exact number of them and all their functions are still
not known, but many diagnostic ncRNAs, especially
microRNAs, in specific diseases such as cardio-renal
diseases have been known so far (10). Identifying the
role of these microRNAs, as diagnostic biomarkers,
and the changes in their expression levels in disease
conditions can open a new horizon in diagnosing diseases
and subsequently finding new treatment solutions.
Dysregulated miRNAs have been shown to contribute to
cardiac and renal dysfunction in Cardiorenal Syndrome

(CRS) by targeting genes involved in processes such as
inflammation, fibrosis, and apoptosis. For example,
miR-21, which is upregulated in both cardiac and renal
tissues in CRS, promotes fibrosis by targeting anti-fibrotic
genes. In addition, it has been proven that miR-1,
miR-133, miR-26, miR-29, and miR-21 are key players of
ischemic heart disease and affect arrhythmia, cell death,
hypertrophy, and fibrosis in patients (11). Also, some long
non-coding RNAs (lncRNAs) are known as diagnostic
biomarkers of kidney dysfunction, like TUG1 for diabetic
glomerulopathy (12).

In the context of cardiorenal syndrome, ncRNAs have
been found to be involved in various biological processes
that contribute to the development and progression of the
disease.

Recent studies have identified several lncRNAs that
are dysregulated in CRS and contribute to the disease’s
pathogenesis. These lncRNAs can act as molecular sponges
for miRNAs, regulating their availability and activity.
Additionally, lncRNAs can interact with chromatin and
modulate gene expression. For example, the lncRNA
MALAT1 is upregulated in CRS and promotes cardiac
fibrosis by interacting with chromatin and activating
pro-fibrotic genes.

Studies have shown that kidney denervation, a
procedure that involves the ablation of renal sympathetic
nerves, can lead to changes in the expression of certain
miRNAs. For example, it has been observed that kidney
denervation can upregulate miR-132, which is known to
be involved in the regulation of blood pressure. This
suggests that miRNAs may play a role in the physiological
response to kidney denervation and could potentially be
used as biomarkers or therapeutic targets for monitoring
or modulating the effects of this procedure.

Furthermore, miRNAs have also been implicated in
the development and progression of kidney diseases,
such as hypertension-induced renal injury and
diabetic nephropathy. These conditions often involve
dysregulation of the renin-angiotensin-aldosterone
system (RAAS), which is targeted by kidney denervation.
Therefore, understanding the role of miRNAs in these
diseases and their potential modulation by kidney
denervation could provide insights into the mechanisms
underlying the therapeutic effects of this procedure and
help identify new therapeutic strategies for managing
kidney diseases.

3. Renal Denervation as a Therapeutic Approach for
Cardiorenal Syndrome

Renal denervation (RDN) is a minimally invasive
procedure to deal with cardiorenal syndrome, which
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was first performed in 1924 by Papin & Ambard (13). This
procedure is done by burning the nerves in the renal
arteries with radiofrequency ablation (14).

One of the golden key players in the scenario of
Cardiorenal Syndrome is the elevation of sympathetic
vasomotor activity which has made this nervous system
as one of the main therapeutic targets of this syndrome
(15). Evidence shows that the sympathetic nerve system has
a critical role in regulating body homeostasis, especially
controlling body fluids and blood pressure (16, 17). On
the other hand, it has been proven that dysfunction
of this system causes cardiorenal diseases, including
heart failure (HF), chronic kidney disease (CKD) and
hypertension (18, 19). It has also been determined that
renal sympathetic nerves are the key players of the
pathogenesis and progression of the mentioned diseases
(20).

Regarding this information and the obtained results of
many human and animal studies (21-24), renal denervation
is known to be a useful therapeutic intervention in the
direction of reducing the activity of the sympathetic
nervous system (25). The emergence of the idea that the
renal nerves affect the kidney function and subsequently
the cardiovascular function, goes back to Claude Bernard
research in 1859 which showed that diuresis occurs after
cutting the greater splanchnic nerve (renal denervation),
and antidiuresis occurs after the electrical stimulation of
these nerves (26). Later, more studies also showed that
the renal denervation is associated with the elevation of
renal blood flow (RBF) and the stimulation of these nerves
is related to the decrease of RBF (27, 28). Finally, the
result of all this research led to the discovery of the fact
that renal denervation affects many diseases belongs to
cardiorenal syndrome, including blood pressure and heart
and/or kidney problems.

4. Renal Denervation in Animal Studies

Until today, many animal studies have been performed
in the field of renal denervation and its effects on
cardiorenal syndrome which have examined the safety
and effectiveness of this treatment method. Table 1
summarizes some of this information.

As shown in Table 1, renal denervation with different
mechanisms has been very useful in overcoming the
problems of cardiorenal syndrome in animal models and
has led to the improvement of their conditions. These
brilliant results are promising and have led to the use of
this method in human clinical trials.

5. Renal Denervation in Clinical Trial Studies

Using the renal denervation to combat cardiorenal
syndrome’ problems is known as a new treatment strategy
today. In this method, radiofrequency energy, ultrasound
waves, or biochemical substances are used to destroy the
renal nerves in the wall of the renal artery, and as a result,
reduce the sympathetic signals entering and leaving the
kidney (37, 38). Although the safety and effectiveness of this
method has been promising in many clinical trials (39-41),
there are still contradictions in this field (42-44). Table 2
summarizes some clinical trials in this field.

6. Renal Denervation Disadvantage

Renal denervation is a procedure that involves the
ablation of renal nerves in order to treat conditions such
as hypertension. While it has shown promising results
in some patients, there are several disadvantages and
limitations associated with this procedure.

One of the main disadvantages of renal denervation
is the lack of consistent and long-term efficacy. While
initial studies showed significant reductions in blood
pressure following renal denervation, subsequent trials
have yielded mixed results. Some patients experience
a sustained reduction in blood pressure, while others
show no significant improvement. The reasons for
this variability in response are not fully understood,
but it is believed to be influenced by factors such as
patient characteristics, procedural technique, and the
presence of secondary causes of hypertension. This lack of
consistent efficacy limits the widespread adoption of renal
denervation as a standard treatment for hypertension.

Another disadvantage of renal denervation is the
potential for procedural complications. Although
the procedure is minimally invasive, there are risks
associated with it. These include renal artery dissection
or perforation, renal artery stenosis, renal infarction,
and access site complications. While these complications
are relatively rare, they can have serious consequences
for patients. Additionally, the long-term effects of renal
denervation on renal function are not well understood,
and there is a concern that it may lead to renal artery
stenosis or ischemia in some cases.

Furthermore, renal denervation is not suitable for all
patients with hypertension. The procedure is typically
reserved for patients with resistant hypertension who
have failed to achieve adequate blood pressure control
despite optimal medical therapy. However, not all patients
with resistant hypertension will benefit from renal
denervation. It is estimated that only a small proportion
of patients with resistant hypertension have a truly
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Table 1. A Summary of Renal Denervation’ Effects on Cardiorenal Syndrome in Some Animal Studies

Animal Model CRS-Induction Method Sample Size Target Problems Main Outcomes Ref

Sprague-Dawley rats AMI-model (induction by IP
injection of pentobarbital,

solution (0.3 ml/100 g)

32 male rats Ventricular arrhythmia RD reduced the occurrence
of ventricular tachycardia
in AMI rats, RSN discharge
and inhibit the activity of

local SN

(29)

LQTs-rabbit models Infusion of infusion of
HMR-1556, erythromycin

and veratridine respectively
for induction of LQT1, LQT2

and LQT3

44 Ventricular arrhythmia RD significantly reduced the
ventricular arrhythmia
inducibility in rabbits.

(30)

Cardiomyopathy-
induced Sprague Dawley
rats

Cardiomyopathy-model
(induction by IP injection of

isoproterenol, 5 mg/kg/d)

60 male rats (control: 10,
Intervention :50)

Cardiomyopathy RDN inhibits cardio-renal
fibrogenesis by reducing

SNS over-activity and
rebalancing RAAS axis.

(31)

2-kidney, 1-clip (2K-1C) rat
model

Clip implantation NM Hypertension Sympathetic overactivity,
brain oxidative stress, and

renal injury was reduced by
RDN.

(32)

Sprague-Dawley rats Salty-dietary regimen was
used for normal rats

feeding.

11 Arterial pressure RD significantly reduced the
arterial pressure in normal

rats consuming
salty-dietary regimen.

(33)

Rat Model of Anti–Thy-1.1
Nephritis

Glomerulonephritis
(induction by injecting the

monoclonal anti–Thy-1.1
antibody OX-7)

NM Glomerulonephritis Glomerulonephritis and
albuminuria significantly

reduced by RD.

(34)

mongrel dogs AMI-model (induction by
specific surgical procedure,

briefly by punctuation of
right femoral artery)

18 (8 male and 10 female) Acute myocardial,
infarction (MI)

RDN showed a protective
effect against acute MI and
decreased the local activity

of the SNS and RAS

(35)

Dahl salt-sensitive
hypertensive rats

Glomerular injury induced
by uninephrectomy

(removed right kidney)

20 Glomerular injury RDN reduced ROS in
glomeruli and improved

renal damage

(36)

Abbreviations: RD, renal denervation; AMI, acute myocardial infarction; IP, intraperitoneal; CRS, cardiorenal syndrome; SN, sympathetic nerves; RSN, renal sympathetic
nerve; LQTs, long QT syndrome; RAAS, renin-angiotensin axes system; NM, not mentioned; SNS, sympathetic nerves system; RAS, renin-angiotensin system; ROS, reactive
oxygen species; IRI, ischemic reperfusion injury.

sympathetic-driven form of the condition that can be
effectively treated with renal denervation. Therefore,
careful patient selection is crucial to ensure that the
procedure is performed in those who are most likely to
benefit.

Additionally, the optimal technique for renal
denervation has not been established, and there is
variability in procedural approaches among different
centers. This lack of standardization makes it difficult
to compare results across studies and limits the ability
to draw definitive conclusions about the effectiveness of
renal denervation.

7. Renal Sympathetic Nerves and its Interaction with
the Renin-Angiotensin System

How does the renin-angiotensin system affect kidney
function and cardiorenal syndrome? To find the answer
of this question, we must look for the interaction effects

of this system with the renal sympathetic nervous system.
As studies show, the over-activity of the renal sympathetic
nervous system affect the functions of the nephron, the
vasculature, and the renin-containing juxtaglomerular
granular cells. The overacting of the renin angiotensin
system also exerts exactly the same effects on kidney
activity. So, it is really crucial to evaluate the interactions
between these two systems in controlling renal function
(58).

The renin-angiotensin system (RAS) is the main
regulator of blood pressure, renal function, and
homeostasis of body fluids (59). It is necessary to adjust
this system in patients hospitalized in the intensive
care unit (ICU) and it is directly accompanied by the
changes in clinical conditions of the patients (60, 61).
Renin-angiotensin systems are cascade systems in which,
with the help of angiotensin-converting enzymes (ACEs),
angiotensin is produced from the stepwise breakdown of
peptides. As stated by many studies, the renin-angiotensin

4 J Clin Res Paramed Sci. 2023; 12(2):e139751.



Uncorrected Proof

Maneshian M et al.

Table 2. A Summary of Renal Denervation’ Effects on Cardiorenal Syndrome in Some Clinical trials.

Type of Study Sample Size RD Method Target Disease Follow Up Period Main Outcomes Ref

Multicenter,
randomized trial

106 Catheter-based renal
denervation

Resistant
hypertension

12 months A significant
reduction of blood

pressure was
observed.

(45)

Clinical trial 153 radiofrequency
ablation

Resistant
hypertension

36 A significant decline in
blood pressure was

reported.

(46)

Randomized-
sham-controlled
trial

535 (RD: Shame =2:1) Radiofrequency
energy delivered by

the Symplicit
renal-denervation

Catheter (Medtronic).

Severe resistant
hypertension

6 months An in-significant
decline in systolic

blood pressure was
observed.

(44)

Multicenter,
randomized-
sham-controlled
trial

136 ultrasound renal
denervation

Resistant
hypertension

6 months A sustained-lower
blood pressure during

the follow-up period
in was observed.

(47)

Single-center pilot
trial

8 catheter-based renal
nerve ablation

CKD and uncontrolled
hypertension

6 months RD reduced blood
pressure but had no

effect on renal
function.

(48)

Prospective,
open-label,
single-arm cohort
study

2237 RDN catheter
insertion

Uncontrolled
hypertension and/or

conditions associated
with sympathetic

nervous system
activation

6 months (report from
36 months ongoing

follow-up period)

Significant BP
reduction and eGFR

reduction to the
expected range.

(49)

Multicenter,
randomized-
sham-controlled
trial

RD:38 Control:42 Catheter-based renal
denervation

Resistant
hypertension

6 months A significant decrease
in blood pressure,

with non-severe side
effects was reported.

(50)

Multicenter,
randomized-
sham-controlled
trial

133 (RD:1666, Control:
165)

Catheter-based renal
denervation

Resistant
hypertension

3 months A significant decrease
in blood pressure,

with nom sever side
effects, in intervention

group compared to
control group was

observed.

(51)

Clinical trial 46 Catheter-based renal
denervation

Ckd Up to 24 month RD improved and
stabilized eGFR for up

to 24 month in
patients.

(52)

Cohort clinical trial 27 Catheter-based renal
denervation using the

Symplicity Flex RDN
System

CKD and resistant
hypertension

Up to 36 month RDN reduced BP and
slowed the decline of

renal function.

(53)

Randomized
Sham-Controlled
Trial

71 (RD: Shame =1:1) Catheter-based renal
denervation using the

Symplicity Flex RDN
System

Mild resistant
hypertension

6 months RDN reduced BP and
was safe and well

tolerated.

(54)

Pilot clinical trial 15 (9 men & 6 women) Catheter-based renal
denervation

Resistant
hypertension (grade 3)

and CKD Stage 3 - 4

12 months The mean reduction in
office blood pressure,
significantly decrease

in night-time
ambulatory blood

pressure, and
preserved renal

function was reported.

(55)

Clinical trial 24 (9 men and 15
women)

Radiofrequency
energy delivered by

the symplicity
renal-denervation

Catheter

CKD (stage 2,3,4) and
resistant hypertension

6 months An improved BP
control and a

short-term raise in
eGFR was reported.

(56)

Randomized-
controlled trial

100 (RD: 88, Control:
12)

Ultrasound renal
denervation

Resistant
hypertension

6 months RD reduced BP, renal
resistive index, and

incidence of
albuminuria without

adversely affecting
glomerular filtration

rate or renal artery
structure.

(57)

Abbreviations: RDN, renal denervation; CKD, chronic kidney disease; GFR, glomerular filtration rate; BP, blood pressure.
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system consists of several various components and
two main axis of signaling pathways named classical
and non-classical axis (62, 63). In a classical pathway,
angiotensin (Ang) II produced from Ang I with the help
of angiotensin-converting enzyme (64). In physiological
conditions, Ang II binds to its own receptor in the adrenal
cortex, causing the release of aldosterone and sodium
reabsorption in the kidneys (65). Also, the Ang (1-7)/ACE2
cascade is known as the non-classic RAS (66). It is proven
that Ang II, the main effector peptide of RAS, is directly
associated with many cases of kidney damages (67).
By acting on its two main receptors (AT1R & AT2R) this
peptide causes increased cell proliferation, inflammation
and fibrotic damage in the kidney parenchyma by
up-regulating inflammatory mediators of some specific
signaling pathways, including NF-Kβ, interleukin 6, and
TNF-α and stimulation of fibroblasts (67, 68).

It is well established that increased levels of circulating
angiotensin II and angiotensin II originated from central
nervous system (CNS) can affect the renal sympathetic
nerves activity and subsequently renal function (69, 70).
On the other hand, since the increase in the activity
of both renal sympathetic nervous system and the
renin-angiotensin system has a direct relationship with
the progression of kidney-heart diseases, therefore,
regulating the excess activity of these systems by renal
denervation method is considered a useful therapeutic
solution in cardio-renal syndrome (71). There are many
studies that show that renal denervation significantly
reduces the amount of renal norepinephrine and
circulating angiotensin (I & II) and increases cardio-renal
function (72, 73). Renal denervation regulates Ang II
receptor expression in kidneys and affect renal function
(74). In this regard, Figure 1 schematically shows the effects
of the renal sympathetic system and its denervation on the
renin-angiotensin system and subsequently cardiorenal
syndrome.

Excessive activity of the sympathetic nervous system
can lead to dysfunction of both the heart and kidney
organs, so that it affects the heart and can lead to
arrhythmias, left ventricular hypertrophy and heart
failure. Also, over activity of this nervous system
in the kidneys leads to an increase in the activity
of the renin-angiotensin system, and as a result, the
juxtaglomerular cells in the kidney, by activating prorenin
molecules, secrete renin directly into the blood. Then
renin, in turn, converts the angiotensinogen secreted by
the liver into angiotensin I. Angiotensin I is converted to
angiotensin II by angiotensin-converting enzyme present
in the lungs. Angiotensin II is a vasoconstrictor peptide
that increases blood pressure by narrowing the arteries.
Angiotensin II also stimulates the secretion of aldosterone

hormone from the cortical part of the adrenal gland.
Aldosterone increases sodium and water absorption from
kidney tubules. With more water and sodium absorption
and as a result of increasing blood volume, blood pressure
increases. If the renin-angiotensin-aldosterone system
is abnormally activated, blood pressure increases too
much. There are many drugs that reduce blood pressure
by inhibiting various stages of this system including
Angiotensin Converting Enzyme Inhibitors, Angiotensin
Receptor Blockers and aldosterone receptor blockers
and as a result, they can be useful in the treatment of
cardiorenal syndrome disorders. Also, by preventing the
formation of this enzymatic cascade, renal denervation
can lead to the improvement of the disorders of this
syndrome to a large extent.

8. Current Treatment Strategies for Cardiorenal
Syndrome

Today, cardiorenal syndrome is known as a progressive
complication among patients with heart failure and
kidney disorders. Therefore, access to treatment strategies
are very important in this field. In addition to renal
denervation, there are other evidence-based treatment
strategies, including: using angiotensin converting
enzyme inhibitors (ACEI) and angiotensin receptor
blockers (ARB), loop diuretic and thiazides, dopamine and
natriuretic peptides, which are briefly mentioned below.
However, new treatment strategies are also emerging
(like targeting non-coding microRNAs) that prove their
effectiveness is still in the experimental and study stages.

8.1. Angiotensin Converting Enzyme Inhibitors and Angiotensin
Receptor Blockers

It was in 2012 that the use of ACEI was recommended
by the European Society of Cardiology (ESC) for the
treatment of all heart failure-hospitalized patients with
an ejection fraction less than 40%, to reduce the risk of
premature death. Also, ARB was suggested for patients
who could not tolerate the side effects of ACEI (75). So far,
many experimental and clinical studies have proven the
beneficial therapeutic effects of these drugs in cardio-renal
problems. For example, promising results were reported
in a 2012 cohort study by Ahmed et al. on 1665 patients,
1046 of whom received these drugs. The obtained results
determinded that the use of ACEI and ARB drugs had
a significant relationship with the reduction of death
factors, especially in elderly patients with systolic heart
failure and chronic kidney disease (76). Also, in another
large contemporary cohort study on CKD patients, the
use of these drugs showed a direct relationship with

6 J Clin Res Paramed Sci. 2023; 12(2):e139751.
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Figure 1. Renal denervation and its impact on renin-angiotensin system and cardiorenal syndrome; a conceptual map. Abbreviation: RD, renal denervation; ACEI, ACE
inhibitors; ACE, angiotensin converting enzyme inhibitors; ARB, angiotensin receptor blockers. ((Figure created by Adobe illustrator 2019)
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increased patient survival (77). The common finding of
all these studies was a decrease in glomerular filtration
to reduce the intraglomerular pressure gradient and a
slight increase in serum creatinine levels in patients.
Reducing proteinuria is another benefit of these drugs.
Although each of ACEIs or ARBs alone is able to reduce
proteinuria, but the combination of these two drugs has
shown a stronger therapeutic effect in this field (78).
The exact mechanism by which ACE inhibitors and ARBs
cause a decrease in glomerular filtration and reduce the
intraglomerular pressure gradient is as follows:

1. Renin release inhibition: ACE inhibitors and
ARBs block the production or action of angiotensin II, a
potent vasoconstrictor. This leads to a decrease in the
release of renin, an enzyme involved in the conversion of
angiotensinogen to angiotensin I.

2. Decreased angiotensin II formation: ACE inhibitors
directly inhibit the enzyme ACE, responsible for
converting angiotensin I to angiotensin II. ARBs, on
the other hand, block the binding of angiotensin II to
its receptors. Both actions result in decreased levels of
angiotensin II in the body.

3. Vasodilation of efferent arterioles: Angiotensin II
is a potent vasoconstrictor that constricts both afferent
and efferent arterioles in the kidneys. By inhibiting
its production or action, ACE inhibitors and ARBs
cause selective vasodilation of the efferent arterioles
while minimally affecting the afferent arterioles. This
preferential dilation of the efferent arterioles reduces the
intraglomerular pressure gradient.

4. Reduced glomerular filtration rate (GFR): The
constriction of efferent arterioles by angiotensin II
normally helps maintain a higher intraglomerular
pressure, promoting filtration of blood through the
glomerulus. By inhibiting this vasoconstrictor effect,
ACE inhibitors and ARBs decrease the intraglomerular
pressure and subsequently reduce the GFR.

8.2. Loop Diuretics

Loop diuretics are a class of drugs that are primarily
used to treat conditions such as edema and hypertension.
They work by inhibiting the reabsorption of sodium and
chloride in the ascending loop of Henle in the kidney,
leading to increased urine production and decreased fluid
volume. Diuretics have always been common treatments
in heart-failure disease to prevent rehospitalization.
Although the role of these drugs like loop diuretics and
thiazides in reducing the mortality of patients with
heart-failure disease has not been proven in general, but
their role in accelerating the recovery and reducing the
symptoms of the disease has been proven in many studies
(79, 80). One of the main indications for loop diuretics

is congestive heart failure. In CHF, the heart is unable to
pump blood effectively, leading to fluid accumulation in
the body, particularly in the lungs and extremities. Loop
diuretics help to reduce this fluid overload by increasing
urine production and promoting the excretion of excess
fluid. By reducing fluid volume, loop diuretics can relieve
symptoms such as shortness of breath and swelling in
patients with CHF.

Loop diuretics are also commonly used in the
management of acute pulmonary edema. This condition
occurs when there is a sudden accumulation of fluid in the
lungs, typically due to heart failure or other causes. Loop
diuretics can help to rapidly remove excess fluid from the
body, relieving symptoms and improving oxygenation.

In addition to CHF and acute pulmonary edema, loop
diuretics may also be used in the treatment of other
conditions such as cirrhosis, nephrotic syndrome, and
certain types of hypertension. However, it is important
to note that loop diuretics are not suitable for all
patients, and their use should be carefully monitored
by a healthcare professional.

Of course, it should be very careful that high doses of
diuretics have the opposite effect and increase the death
rate in patients with heart-failure disease (81).

8.3. Dopamine and Natriuretic Peptides

The first treatment line of all types of cardiorenal
syndrome is to focus on maintaining systolic blood
pressure by adrenergic agents. Dopamine is a strong
stimulator of adrenergic receptors (α and β), with the
same vasopressor effects as norepinephrine, but more
adverse effects (at low doses), that leads to various
biological effects (82). Although studies show that this
treatment reduces many causes of hospitalization or death
in patients (83), but in order to prevent its unwanted side
effects on kidney function (in high doses), it needs to be
cautious and conduct more clinical trials.

Dopamine and natriuretic peptides play complex roles
in the cardiorenal syndrome. Their effects can vary
depending on the specific context and stage of the
syndrome. Dopamine is a neurotransmitter and hormone
that has various functions in the body, including its
role in the cardiovascular system. In the context of
cardiorenal syndrome, dopamine can have both beneficial
and detrimental effects. It has been used as a therapy to
improve renal function in certain situations, such as acute
kidney injury or low cardiac output states. Dopamine
can help increase renal blood flow and promote diuresis,
which can be beneficial in reducing fluid overload and
improving kidney function. However, the use of dopamine
in cardiorenal syndrome is still a topic of debate and
ongoing research. Some studies have shown limited
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or no benefit from dopamine therapy, and there are
concerns about potential side effects, such as arrhythmias
or worsening heart function. Therefore, the use of
dopamine in cardiorenal syndrome should be carefully
considered on a case-by-case basis, with close monitoring
by healthcare professionals.

Natriuretic peptides, including atrial natriuretic
peptide (ANP) and brain natriuretic peptide (BNP),
are hormones produced by the heart in response to
increased pressure or stretch. They have important roles in
regulating fluid balance and blood pressure. In the context
of cardiorenal syndrome, elevated levels of natriuretic
peptides are often seen due to heart failure or other
cardiac conditions. Natriuretic peptides have beneficial
effects on the kidneys by promoting vasodilation of the
renal blood vessels and increasing sodium excretion.
This can help reduce fluid overload and improve renal
function. However, in advanced stages of heart failure or
severe cardiorenal syndrome, the ability of natriuretic
peptides to improve renal function may be impaired.

Therefore, while natriuretic peptides initially act as
beneficial compensatory mechanisms to counteract fluid
overload and maintain cardiac output, their long-term
effects in cardiorenal syndrome can be more complex.
The levels of natriuretic peptides can be influenced by
various factors, including renal function, medications, and
comorbidities, making their interpretation and clinical
management challenging.

9. Discussion

The aim of this review is to investigate cardiorenal
syndrome and its treatment strategies, focusing on the
renal denervation method and the basic factors involved
in it, including the interactions of the renin-angiotensin
system with the renal nerves. As mentioned above,
Cardiorenal syndrome refers to a pathological condition
in which the heart and kidney are damaged at the same
time, and eventually, if left untreated, this damage will
affect other parts of the body systemically (84). Therefore,
finding therapeutic ways to overcome this problem is
considered one of the necessities of medical science.
So far, many treatment methods have been used for
this syndrome, including loop diuretics, dopamine and
natriuretic peptides, angiotensin converting enzyme
inhibitors and angiotensin receptor blockers, each of
which has its advantages and disadvantages (75). With a
glance look at the mechanism of this syndrome, it is clear
that the role of excessive activation of the sympathetic
nervous system and subsequently the renal nerves in the
formation of the disease is very prominent. respecting
this information, renal denervation via various ways,

can definitely be an excellent medical option for this
syndrome. So far, many animal and human studies have
confirmed the safety and effectiveness of this treatment
method (Tables 1 and 2). On the other hand, studies show
that excessive activation of the sympathetic nervous
system causes stimulation of the renal nervous system
activity and over-activation of the renin-angiotensin
system. In a positive feedback loop, the over-activation of
the renin-angiotensin system subsequently has the same
effect on the renal nervous system and its activation (63).
And this vicious circle of stimulation, if not inhibited by an
intervention, will have a negative effect on the heart and
other organs of the body in a short period of time (due to
the key role of the renin-angiotensin system in regulating
body fluids and blood pressure). There is a lot of evidence
that over-activity of the renin-angiotensin system leads
to disruption of body fluid balance and blood pressure,
increased oxidative stress, renal fibrosis, cell proliferation,
and inflammatory processes (85, 86).

Studies also show that angiotensin II, which is
produced in the classical pathway of the renin angiotensin
system under the influence of enzyme ACE from
angiotensin I, plays a key role in causing many kidney
problems and subsequently cardiorenal syndrome, and
the main reason for the use of angiotensin inhibitor drugs
is the same. Renal denervation can also regulates Ang II
receptor expression in kidneys and affect renal function
(25). Since this method is minimally invasive and is able
to regulate the renin-angiotensin system in a shorter
time than drug treatments and solve systemic problems
including kidney problems, its use in affected patients is
considered a promising window in improving the disease.

9.1. Conclusions

Cardiorenal syndrome is a general term for
pathological conditions in which heart and kidney
dysfunction occur simultaneously. Heart failure, chronic
kidney disease and hypertension are considered to be
one of the main disorders of this syndrome, which lead
to multi-organ failure if not controlled and treated.
Therefore, finding effective treatment solutions to
overcome the problems of this syndrome is one of
the biggest challenges of medical science. Since the
over-activity of the renal sympathetic nervous system
and the subsequent increase in its interaction with the
renin-angiotensin system (both classical and non-classical
axes) are considered to be the main causes of the onset
of this syndrome, renal denervation is one of the main
and effective therapeutic solutions in this field, which
its safety and effectiveness have been proven in many
experimental and clinical studies so far. Renal denervation
can help reduce sympathetic nerve overactivity, which is
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often seen in patients with cardiorenal syndrome. This
reduction in sympathetic tone leads to improved blood
pressure control and decreased fluid retention, ultimately
alleviating the strain on both the heart and kidneys.
Regarding this information, the use of renin angiotensin
system blockers has also been effective to a large extent
to overcome the problems of this syndrome. Certainly,
more clinical studies are needed to find other treatment
strategies.
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