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Abstract

Background: Colorectal cancer (CC) is one of the most prevalent cancers globally. Due to the severe side effects and the

development of drug resistance in CC treatments, current therapeutic strategies often prove ineffective. As a result, there is a

growing interest in exploring traditional medicinal plants as alternative treatment options for various human diseases.

Diosgenin, a bioactive compound derived from plants, has shown potential in inhibiting the growth of human CC cells. The

Wnt/β-catenin signaling pathway plays a critical role in colorectal tumorigenesis.

Objectives: This study investigates the effects of Diosgenin on the Wnt/β-catenin pathway in CC cells.

Methods: Colorectal cancer cells were treated with Diosgenin, and cell viability and plasma membrane integrity were assessed

using the MTT assay and lactate dehydrogenase (LDH) activity assay, respectively. Apoptosis was evaluated through Annexin V/PI

staining. The expression of Wnt/β-catenin-related genes was analyzed by quantitative PCR (qPCR).

Results: Diosgenin significantly inhibited CC cell viability in a time- and concentration-dependent manner after 24, 48, 72, and

96 hours of exposure (P < 0.05). The IC50 values were determined to be 203.55, 122.95, 70.11, and 7.34 µM at 24, 48, 72, and 96

hours, respectively. Diosgenin at its IC50 concentration induced a significant increase in cell apoptosis after 24 hours of

treatment (P < 0.05). Additionally, it caused a significant reduction in the expression of β-catenin, cyclin D1, and Pin1 (βCP).

Conclusions: Diosgenin exhibits anti-CC effects by inhibiting the expression of βCP genes involved in the Wnt/β-catenin

pathway, suggesting its potential as a therapeutic agent for CC.
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1. Background

Colorectal cancer (CC) is a significant cause of

mortality worldwide. The standard treatments for CC

significantly contributes to human mortality. Generally,

the standard treatments for CC include radiotherapy,

chemotherapy, and surgery (1). However, chemotherapy
and radiotherapy often cause numerous side effects,

including blood abnormalities, constipation, nervous

system damage, memory issues, anorexia, and alopecia
(2).

Approximately 80% of the global population relies on

traditional treatments such as phytotherapy or
phytomedicine. Given the well-documented positive

effects of medicinal plants, many studies suggest their
potential benefits in cancer prevention. Various

bioactive molecules have been identified in different

parts of medicinal plants (3). Diosgenin, a steroidal
sapogenin found in the seeds of Trigonella foenum-

graecum, has demonstrated multiple biological
activities, including anti-neoplastic and pro-apoptotic

effects across various human cancers. The molecular

mechanism of diosgenin is linked to its ability to
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modulate multiple cell signaling pathways, influencing

key cellular processes (4).

Pin1 directly interacts with several signaling

pathways, including Wnt (5), which plays a pivotal role

in colon tumorigenesis (5-9). β-catenin, a key
downstream effector in the Wnt signaling cascade, is

implicated in the progression of human colon cancer.

Its nuclear translocation is a crucial event in the

activation of this oncogenic pathway, as demonstrated

in previous research (10). Cyclin D1, a β-catenin-

regulated gene, is identified as a critical target of the

Wnt signaling pathway (11, 12). Its nuclear expression is

significantly elevated in colon cancer cases, suggesting

its involvement in tumorigenesis (13). Studies indicate

that in more than 80% of CC cases, the APC gene is

mutated (14, 15), triggering the activation of oncogenes

c-myc and cyclin D1 (16, 17).

The serine/threonine-proline (Ser/Thr-Pro) motif is a

crucial phosphorylation site for various proline-directed

kinases (18). Pin1 selectively catalyzes the isomerization

of the Ser246/Thr-Pro motif in the β-catenin protein,
enhancing its stability (19). Pin1's role in β-catenin

stabilization in CC is mediated by its binding to the β-

catenin-APC complex, inhibiting β-catenin's binding to

APC, leading to its accumulation in the nucleus. Pin1 also

stabilizes cyclin D1 by phosphorylating its Thr286-Pro
site, further stabilizing the protein (20). In a study
conducted on MCF-7 breast cancer cells, Pin1 was found

to play a crucial role in signaling pathways involving

cyclin D and β-catenin (19). Immunohistochemical

analysis of CC samples revealed significantly elevated β-
catenin, cyclin D1, and Pin1 (βCP) levels, highlighting the

critical role of Pin1 in β-catenin activity (21).

2. Objectives

Given the crucial role of the Wnt/β-catenin signaling
pathway in CC development and the notable anticancer

properties of Diosgenin, this laboratory study aimed to
evaluate the effects of Diosgenin on the gene expression

of key components in the Wnt/β-catenin signaling

pathway in CC cells.

3. Methods

3.1. Cell Culture

The SW 742 CC cell line (Pasteur Institute, Iran) was
cultured in RPMI-1640 medium (Gibco, Germany)

containing 10% inactivated fetal bovine serum (FBS)

(Gibco, Germany) and 2 mM glutamine (Gibco,

Germany) (22).

3.2. MTT Assay

A total of 15,000 CC cells were seeded and incubated
overnight. The cells were then treated with various

concentrations of Diosgenin (Merck, Germany) (1, 2, 4, 8,
16, 32, 64, and 128 µM). Control cells received culture

medium without the treatment drug. After 24, 48, 72,

and 96 hours, MTT solution (5mg/mL) (Merck, Germany)
was added and incubated for 3 hours in a dark

environment. Following incubation, the solution in
each well was drained, and 200 µL of DMSO (Merck,

Germany) was added to the wells. After 20 minutes, the

absorbance was measured at 570 nm. The cell viability
rate (%) was calculated based on the associated citation

(23).

3.3. Cytotoxicity Assay

Colorectal cancer cells (70,000 cells/well) were

cultured and incubated overnight at 37°C. Following

incubation, the cells were treated and further incubated

for 24, 48, and 72 hours. Afterward, 100μL of the

conditioned medium from each well was transferred to

new wells. Lactate dehydrogenase (LDH) activity was

assessed using the Cytotoxicity Detection Kit (Roche

Chemical Co., Basel, Switzerland). The optical density
(OD) value was measured at 490 nm (24).

3.4. Apoptosis Assay

Colorectal cancer cells were treated with the IC50

concentration of Diosgenin and incubated for 24 hours.

Following incubation, the cells were stained using

Annexin V-FITC (Abcam Inc., Cambridge, MA, USA) and

Propidium Iodide (PI) (Sigma-Aldrich, USA). The stained

cells were then analyzed using DML software. DNA

fragmentation was assessed using a spectrophotometer

at 600 nm (25).

3.5. Gene Expression Assay

Various gene expressions were determined using

quantitative PCR (qPCR). Total RNA was extracted using

Thermo Fisher Scientific TRIzol reagent (Waltham, MA,

USA). Following the quality assessment of the purified

RNA, complementary DNA (cDNA) was synthesized

using a Vivantis Technologies kit (Selangor DE,

Malaysia). β-actin was used as the internal control. Real-

time PCR was performed using Takara Bio Inc. SYBR

Premix Ex Taq technology (Otsu, Shiga, Japan) on the

applied biosystems stepone real-time PCR system (Foster

City, CA, USA). The primer sequences were as follows: β-

actin (F: CATGTACGTTGCTATCCAGGC, R:

CTCCTTAATGTCACGCACGAT) (26), Pin1 (F:
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TGATCAACGGCTACATCCAG, R:

CAAACGAGGCGTCTTCAAAT) (27), β-catenin (F:

CATCTACACAGTTTGATGCTGCT, R:

GCAGTTTTGTCAGTTCAGGGA) (28), and Cyclin D1 (F:

TCTTGGTTACAGTAGCGTAG, R: GTAGCGTATCGTAGGAGTG)

(28). Fold change was calculated using the 2-∆∆Ct method

(29). For PCR amplification, the following steps were

undertaken: An initial step at 55°C for 15 minutes, 93°C

for 10 minutes, followed by 40 cycles at 95°C for 15

seconds and 60°C for 45 seconds.

3.6. Statistical Analysis

Experiments were performed in triplicate and
repeated three times. Statistical data were presented as

means ± standard error. One-way analysis of variance

(ANOVA) with Tukey's post-hoc test was applied to assess

the differences between groups. SPSS software (v.16) was

used for all statistical data analyses, and a P-value of <
0.05 was considered the significant threshold (30).

4. Results

4.1. The Effects of Diosgenin on Colorectal Cancer Cell
Viability

As shown in Figure 1A, Diosgenin treatment

significantly reduced cell viability in CC cells in a

concentration- and time-dependent manner. The

reduction in cell viability was observed at

concentrations of 16, 32, 64, and 128 µM after 48 and 72

hours and at concentrations of 2, 4, 8, 16, 32, 64, and 128

μM after 96 hours (P < 0.05). The IC50 values were

determined as 203.55 µM, 122.95 µM, 70.11 µM, and 7.34

µM for 24, 48, 72, and 96 hours, respectively.

4.2. The Effects of Diosgenin on Plasma Membrane Integrity
in Colorectal Cancer Cells

As illustrated in Figure 1B, Diosgenin demonstrated

concentration- and time-dependent cytotoxic effects on
CC cells. Significant toxicity was observed after 24 hours

at concentrations of 32, 64, and 128 μg/mL, after 48 hours
at concentrations of 4, 8, 16, 32, 64, and 128 μg/mL, and at

all concentrations after 96 hours.

4.3. The Effects of Diosgenin on Colorectal Cancer Cell
Apoptosis

The apoptosis assay results revealed that in untreated

CC cells, 97.49% of cells were viable, 0.98% were early
apoptotic, and 1% were late apoptotic. In contrast,

Diosgenin-treated cells exhibited a significant increase

in apoptosis, with 45.64% of cells in early apoptosis and

1.66% in late apoptosis, resulting in a total apoptotic

percentage of 47.30% (Figure 2). The Diphenylamine test

confirmed a significant (P < 0.05) increase in apoptosis

after 24 hours of treatment (Figure 3).

4.5. The Effects of Diosgenin on Gene Expression in Colorectal
Cancer Cells

As shown in Figure 4, Diosgenin treatment at its IC50

concentration led to a significant reduction in the

expression of β-catenin, cyclin D1, and Pin1 genes

(collectively referred to as βCP) after 24 hours (P < 0.05).

5. Discussion

The bioactive compounds derived from medicinal

plants are characterized by their low toxicity and multi-

targeting properties, which enable them to effectively
disrupt oncogenic processes. These plants offer a unique

source of enhanced treatment options. The present

study found that Diosgenin, a bioactive compound, can

potentially decrease CC cell viability in a time- and

concentration-dependent manner. The IC50 values for

24, 48, 72, and 96 hours were 203.55, 122.95, 70.11, and 7.34

μM, respectively. Diosgenin has been shown to exhibit

concentration- and time-dependent toxicity and induce

apoptosis in cancer cells. Previous studies have

demonstrated that Diosgenin inhibits cancer growth

(31-33) through the modulation of signaling pathways

that regulate the cell cycle, differentiation, and

apoptosis (34). Diosgenin has also been found to

suppress pro-inflammatory genes and activate

apoptosis in cancer cells (35). Shishodia and Aggarwal

stated that Diosgenin inhibits TNF-α-induced NF-κB

activation and suppresses osteoclastogenesis in

macrophages (35). Additionally, Diosgenin inhibits AKT
and mTOR expression (31). Diosgenin activates the STAT3

signaling pathway in hepatocellular carcinoma and
suppresses the transcriptional activity of STAT3 (32).

Diosgenin has been shown to inhibit cell proliferation,

AKT, and JNK signaling pathways in a concentration- and
time-dependent manner, ultimately leading to the

induction of apoptosis (36). In myeloid leukemia cells,
the autophagic response triggered by Diosgenin

effectively blocks the mTOR signaling cascade and

induces programmed cell death through apoptosis (37).
This specialist also induces cytotoxicity and inhibits the

growth and proliferation of breast cancer cells. It has
further been demonstrated that Diosgenin inhibits

breast cancer induced by the use of N-nitroso-N-

methylurea (38). According to studies, Diosgenin is a
potent agent for inhibiting tumor growth (38-43). A

comprehensive review of the literature on Diosgenin's
anticancer properties revealed a lack of studies
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Figure 1. The effects of Diosgenin on cell viability (A) and plasma membrane integrity (B) following 24, 48, 72, and 96 hrs of treatment (measured by MTT and lactate
dehydrogenase testes). * P < 0.05, ** P < 0.05 and *** P < 0.001 compared to the control group.

examining the involvement of the Wnt/β-catenin

signaling pathway in its molecular mechanism.

However, our research demonstrated that Diosgenin

significantly downregulates the expression of βCP genes

in CC cells. Moreover, the post-translational

accumulation of β-catenin through APC mutations is a

key stage in CC (10). A recent study revealed that Pin1 was

overexpressed in more than 50% of human

hepatocellular carcinoma cases. Additionally, all control

groups exhibited concomitant overexpression of Pin1

and β-catenin, with 68% of cases showing simultaneous

accumulation of β-catenin and cyclin D1. These findings

suggest that Pin1 plays a critical role in the

accumulation of β-catenin, a key process in

hepatocellular carcinogenesis. Consequently, Pin1 has

been identified as a promising therapeutic target for

tumor treatment (44). Another study was conducted to

elucidate the role of Pin1 in the overexpression of cyclin

D1 and β-catenin in follicular adenoma and papillary
thyroid cancer. The results indicated that the

overexpression of cyclin D1 and the aberrant expression

of β-catenin are critical events in the development of

thyroid-associated tumors. Notably, Pin1 expression was

found to be closely correlated with cyclin D1 levels,

highlighting Pin1's significant effect on regulating the

expression of cyclin D1 and β-catenin (45). In addition,

the expression of Pin1 mRNA and protein was examined

in oral cancer cell lines, and the expression of βCP was

analyzed in clinical samples using

immunohistochemical staining. The study revealed that

Pin1 is overexpressed in oral cancer and that its levels are

positively correlated with the intracellular levels of

cyclin D1. These findings collectively suggest that Pin1

plays an oncogenic role in oral cancers (46). In a

comprehensive immunohistochemical analysis of

cervical cancer samples, the correlations between Pin1

and β-catenin or cyclin D1 were examined. The study
revealed that Pin1 was overexpressed in approximately
40% of CC cases. Furthermore, high Pin1 expression is

directly related to β-catenin and cyclin D1

overexpression. These findings suggest that Pin1 has a

crucial role in CC progression by accelerating the

activity of β-catenin and cyclin D1, key proteins involved

in the Wnt/β-catenin and cell cycle pathways,

respectively (21). Numerous studies have documented

the expression of Pin1 in human cancers, highlighting

its potential role in tumorigenesis. Notably, Pin1

overexpression was found in cervical cancer cell lines. In

contrast, less than 10% of normal CC cells exhibited Pin1

overexpression. Published research consistently shows

that Pin1 expression is positively correlated with

histopathological grades of CCs. Significant differences

were found between tumors in the submucosa and

those beyond the muscular layer. Additionally, Pin1

expression was significantly higher in late tumor stages

compared to early stages. These findings collectively
support the notion that Pin1 promotes cancer

progression by contributing to the development and

growth of tumors (18). The expression level of Pin1 does

not appear to be associated with the frequency of lymph

node metastasis in cancer patients, suggesting that Pin1

may not be essential for tumor cells to acquire

metastatic capabilities. Adenomatous polyposis coli

(APC) and β-catenin are crucial mediators of the Wnt

signaling pathway. Interestingly, while APC mutations

are commonly observed in cancer cases, the rate of β-

catenin mutations is relatively low in cervical cancer

samples. These findings indicate that the dysregulation

of the Wnt pathway in CC is more likely driven by APC

alterations rather than direct mutations in β-catenin
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Figure 2. The effects of Diosgenin on apoptosis rate after 24 hr of treatment (measured by flowcytometry). A, control group; B, treated group; and C, Bar chart of mean values
obtained from three independent measurements. * P < 0.05 and *** P < 0.001 compared to the control group.

(47). Pin1 initiates β-catenin activity in the nucleus and

disrupts the APC-β-catenin complex in breast cancer

cells (19). Notably, APC mutations typically occur early in

the development of colon cancer, whereas β-catenin
expression levels tend to increase during the later stages

of tumorigenesis (48, 49). Given the potential role of

Pin1 in tumor progression, it is plausible that Pin1

facilitates the accumulation of β-catenin in the late

stages of cervical cancer. Furthermore, there is a
correlation between β-catenin and cyclin D1 expression

in CC cases, suggesting that these proteins may
cooperate in promoting tumorigenesis (50). In

numerous instances, the elevated expression of Pin1 has

been accompanied by increased levels of β-catenin and

cyclin D1. Notably, Pin1 has been shown to directly

isomerize and stabilize cyclin D1, highlighting its

potential role in regulating cell cycle progression.

Additionally, studies have demonstrated that prostate

cancer patients with high Pin1 expression exhibit poorer
survival outcomes compared to those with low or no

Pin1 expression, as reported by Ayala et al. (51). These

findings collectively support the notion that Pin1 serves

as a reliable prognostic marker for prostate cancer, with

high expression levels indicating a poor prognosis.

5.1. Conclusions

In light of the key roles of the Wnt/β-catenin

signaling pathway in CC development, our study
concludes that Diosgenin may exert anti-CC effects by
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Figure 3. The effects of Diosgenin on apoptosis rate after 24 hr of treatment (measured by Diphenylamine assay). *** P < 0.001 compared to the control group.

Figure 4. The effects of Diosgenin on Pin1, β-catenin, and Cyclin D1 gene expression following 24 hr of treatment (real-time PCR assay). *** P < 0.001 compared to the control
group.

inhibiting the expression of βCP genes. These findings

suggest Diosgenin as a promising therapeutic agent for

targeting the Wnt/β-catenin pathway in CC.
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