
J Clin Res Paramed Sci. 2018 June; 7(1):e79968.

Published online 2018 June 27.

doi: 10.5812/jcrps.79968.

Review Article

Effect of Exercise Training and Middle-Age on Pathological and

Physiological Cardiac Hypertrophy

Behrouz Baghaiee,1,* Marefat Siahkouhian,2 Pouran Karimi,3 Ana Maria Botelho Teixeira,4 Saeed
Dabagh Nikoo Kheslat,5 and Khadije Ebrahimi6

1Department of Physical Education and Sports Science, Jolfa Branch, Islamic Azad University, Jolfa, Iran
2Department of Physical Education and Sports Science, University of Mohaghegh Ardabili, Ardabil, Iran
3Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
4Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
5Department of Exercise Physiology, Faculty of Sport Sciences and Physical Education, University of Tabriz, Tabriz, Iran
6Department of Physical Education and Sport Science, Marand Branch, Islamic Azad University, Marand, Iran

*Corresponding author: Behrouz Baghaiee, Department of Physical Education and Sports Science, Jolfa Branch, Islamic Azad University, Jolfa, Iran. E-mail:
behrouz_phsport@yahoo.com

Received 2017 June 02; Accepted 2017 November 13.

Abstract

Aging is an inevitable process, which is associated with the development of various diseases such as cardiac hypertrophy. Hyper-
trophy can occur in both pathological and physiological types. Both types can be divided into eccentric or concentric. If age is
associated with inactivity, this can lead to pathological heart hypertrophy. However, exercise is able to control pathological hyper-
trophy, but it could lead to physiological hypertrophy. In this paper, we consider the effects of middle-age on heart and cardiac
hypertrophy types and the effects of exercise.
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1. Context

Aging is associated with the development of various
cardiovascular disorders, such as coronary artery disease,
hypertension and heart failure. Every decade of aging af-
fects the integrity of the cardiovascular system even in the
absence of pathological factors. These changes in cardio-
vascular physiology due to aging are different from pathol-
ogy, which also increases during aging (1, 2). Evidence sug-
gests that the aging process significantly affects the struc-
ture and function of the cardiovascular system, as the mid-
dle age and old age are followed by changes in the heart
muscle. Variations in the functioning of the cardiomy-
ocytes are central factors in aging-dependent changes, be-
cause they play an important role in cardiovascular hemo-
dynamics. Aging influences the functioning of the car-
diomyocytes at different levels, so that aging has a direct
impact on calcium homeostasis, cardiac muscle contrac-
tion, and paired stimulation of contractile and cellular in-
tegrity of cardiomyocyte organelles (3, 4). These factors
are necessary in the neohumoral regulation of cardiomy-
ocyte function through adrenergic and renin-angiotensin
systems (5-9). In addition, middle age and old age cause
changes in the components and quality of extracellular

matrices, affecting not only the structures of the cardiomy-
ocytes, but also the cardiac function (10, 11). Cardiac hyper-
trophy is one of the key variations in the cardiac structure
linked to aging that is caused by various underlying factors
(12).

2. Effects of Aging on the Heart

The calendar age is a process dependent on time. For
this reason, middle age and old age are considered to be
in line with the increase in mortality, although the calen-
dar age is not regarded to be a factor indicating an individ-
ual’s health. On the contrary, biological age is used as one
of the measures of human health assessment. The term
“functional aging” or “functional middle age” is defined
by emphasizing intrinsic constraints in describing an indi-
vidual’s health while taking into account the calendar age.
This principle is based on whatever that humans can do in
relation to others in society; however, it may be expanded
to include indicators, such as the level of functional abil-
ities maintained by tissues and organs in older ages. Fi-
nally, the concept of “successful middle age and successful
aging” represents the process resulting from the balance
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between winning and losing (12, 13).
Based on this concept, the structural and functional

changes of the heart that occur with aging in healthy peo-
ple can be interpreted as a type of adaptation to vascular
changes occurring during middle age. Middle age results
in processes such as vascular stiffness and increased sys-
tolic pressure in vessels that together with increased pe-
ripheral vascular resistance can lead to aortic dilatation
and vessel wall thickness. This, in turn, causes an increase
in the ventricular wall thickness, the death of myocytes
and the deposition of collagen (14, 15). At rest, the cardiac
pump function remains constant through prolonged con-
tractions, but this prevents complete myocardial rest and
causes a decrease in the initial ventricular filling rate. The
cardiac implants over-regulate to compensate for abnor-
mal filling and prevent diminished end-diastolic volume,
including enlargement of the left atrium and an increase
in the participation of the atrium in the ventricular filling
(14).

In sum, these adaptations are established in response
to reduced heart storage due to middle age. The changes
in cardiovascular storage are inadequate to create clinical
heart failure, but these factors also affect the signs, symp-
toms, severity, and prognosis of heart failure that can be
caused by any reason. The heart of a middle-aged or elderly
person has a greater sensitivity to harmful effects and ex-
ternal factors, including increased vascular afterload and
disproportionate arterial-ventricular load, as well as inter-
nal factors, including a reduction in cardiomyocyte con-
traction and decreased ability of the cardiomyocytes to re-
spond to stress (16).

3. Cardiac Hypertrophy

The mammalian cardiomyocytes are generally with-
drawn from the cell cycle shortly after birth. Therefore, car-
diomyocytes are often found during the late stage of differ-
entiation during middle age and do not proliferate under
physiological conditions. The heart tissues show the flexi-
bility that can empower the heart; under these conditions,
it responds to environmental requirements, and the cells
can grow or shrink and be destroyed through exposure to
pathological and physiological stresses. Cardiac hypertro-
phy is subdivided into the physiological type that accom-
panies increased normal cardiac function and the patho-
logical type associated with heart failure (17).

The increase in normal cardiac output mainly occurs
through hypertrophy of the cardiomyocytes in response to
body enlargement or exercise training. The enlarged car-
diomyocytes receive adequate nutrition through the ex-
pansion of the capillary network, but abnormal cardiac
functional and structural enlargement do not occur in this

way. For this reason, physiological hypertrophy generally
is not considered to be a risk factor for heart failure. In con-
trast, pathological hypertrophy is associated with the pro-
duction of high levels of neurohumoral mediators, hemo-
dynamic overload, damage, and loss of cardiomyocytes. In
pathological regulation, the growth of cardiomyocytes ex-
ceeds the capacity of capillaries to supply nutrition and
oxygen, leading to cardiac hypoxia and pathological re-
modeling in rodents (18, 19). Since cardiac hypertrophy
plays a pivotal role in cardiac remodeling and is an in-
dependent factor for cardiac events, it is very important
to understand this process. Previous studies have indi-
cated that heart failure is associated with a complex range
of pathological changes, including capillary expansion,
metabolic disorders, sarcomeric irregularities, changes in
calcium transport, inflammation, cellular aging, cell death
and fibrosis. There is also some overlap between the mech-
anisms of physiological and pathological hypertrophies
(17).

Accordingly, heart failure can be categorized into two
types: heart failure with reduced ejection fraction (HFrEF)
and heart failure with preserved ejection fraction (HFpEF).
HFrEF is developed through the accumulation of myocar-
dial damages and the upward trend of losing cardiomy-
ocytes, and it occurs typically in response to myocardial in-
farction, hypertension or cardiomyopathy. Furthermore,
the oxidative stress present within the cardiomyocytes in-
duces cardiomyocyte death and replacement fibrosis (20,
21). Losing the cardiomyocytes causes increased changes
in the extracellular matrix and participation in left ventric-
ular dilatation and left ventricular eccentric remodeling
(22).

It is estimated that 50% of patients with heart dis-
ease have HFpEF. In addition, concentric remodeling and
left ventricular diastolic dysfunction can also be seen in
these individuals. Obese or overweight people with hy-
pertension, diabetes mellitus, chronic pulmonary disease,
anemia and chronic kidney diseases may experience sys-
temic inflammation; these systemic diseases increase the
risk of HFpEF. The HFpEF structural changes are detectable
through the hypertrophy of cardiomyocytes, interstitial fi-
brosis, and functional changes (23-26). Replacement fibro-
sis does not usually develop in HfpEF because cell death is
not predictably increased in the HFpEF (27).

3.1. Types of Cardiac Hypertrophy

The heart has the ability to respond to environmental
conditions and it is able to grow or shrink. Depending on
the strength and duration of stimulation, the heart size
can increase, which can be categorized into two types of hy-
pertrophy: pathological and physiological. The physiolog-
ical hypertrophy is characterized by normal or incremen-
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tal levels in contractile function and the normal organiza-
tion of the heart structure (28). The pathological hypertro-
phy is also associated with increased cell death and fibrosis
remodeling and can be detected by reductions in systolic
and diastolic functions, which often lead to heart failure.
The stimuli result in various cellular responses, including
gene expression, protein synthesis, sarcomeric accumula-
tion, cell metabolism and developed cardiac hypertrophy
(29-31).

The collected documents suggest differences in patho-
logical and physiological hypertrophies in terms of signal-
ing pathways. Additionally, the pathological cardiac hyper-
trophy, especially in the left ventricle, has short-term ben-
efits and long-term risks although the mechanism regulat-
ing this transition from compatibility to hypertrophic ab-
normality has not yet been specified (32).

According to heart geometry, cardiac hypertrophy is
subjected to different types, including eccentric and con-
centric. Eccentric hypertrophy is developed by volume
overload and non-pathological eccentric hypertrophy that
is characterized by an increase in ventricular volume, wall
and septal thickness. Pathological eccentric hypertro-
phy commonly develops after heart diseases, such as my-
ocardial infarction and dilated cardiomyopathy, resulting
in the dilatation of ventricles and the elongation of car-
diomyocytes. Concentric hypertrophy is associated with
an increase in the wall and septal thickness and a decrease
in the left ventricular dimensions (24, 33, 34). The car-
diomyocytes usually increase in thickness more than in
length; this develops under pathological conditions such
as high blood pressure and vascular disease, although
some regulators, like wrestling, cause induction of non-
pathological eccentric hypertrophy (35)

3.2. Pathological Concentric and Eccentric Hypertrophies

Left ventricular concentric hypertrophy occurs due to
diseases such as hypertension (even without a specific dis-
ease), which enhance the risk of cardiovascular progres-
sion with high-risk levels of death from cardiovascular dis-
ease (35, 36). In accordance with the evidence, some degree
of stress in the ventricular end-diastolic wall acts as a sig-
nal regulating hypertrophy. This can lead to a greater in-
duction of left ventricular concentric hypertrophy in pa-
tients with hypertension and low levels of ventricular end-
diastolic wall pressure, which are characterized by a sig-
nificant increase in the relative wall thickness (37, 38). The
cardiomyocytes existing in myocardial concentric remod-
eling that have excessive thickness show an increase in di-
ameters, but have no significant elevation in length, sig-
nificantly reducing the mean length to width (L/W) ratio
(37). This phenomenon occurs because of the orientation

in the contractile sarcomeric units that add to the car-
diomyocytes.

In a heart that has afterload pressure, the sarcomeres
are added in parallel, which shows how they change the
L/W ratio (39, 40). This process is evident as the muscle wall
enlargement remains unchanged in the dimensions of the
ventricular chambers although the dimensions of the pos-
terior left ventricular wall are significantly increased dur-
ing systolic and diastolic periods. Therefore, the common
consequence associated with concentric hypertrophy is in-
creased ventricular diastolic stiffness, which causes car-
diac dysfunction (41).

Pathological cardiac growth, especially eccentric hy-
pertrophy, is caused by an increase in preload, including
valve failure or increased volume overload (37). In rats
with myocardial infarction, 77% of the animals with ec-
centric cardiac remodeling suffered from systolic dysfunc-
tion. Comparing the length and width of the cardiomy-
ocytes showed that the L/W ratio was unchanged, as in a
normal heart. This is due to the thickness and length of
the cells. The mechanism of this total increase in size is
due to the parallel addition of sarcomeres in a row and in
response to an increase in volume overloads (37). In addi-
tion, when evaluating specific left ventricular parameters,
the researchers found that the internal diameter was in-
creased in rats with increased volume overload while the
interventricular septum or the dimensions of the poste-
rior left ventricular wall had no changes (42).

It is clear that middle-aged or old-aged people who live
a sedentary life are somehow faced with pathological con-
centric hypertrophy. Existing evidence also suggests that
underlying diseases in these individuals, including hyper-
tension, vascular wall stiffness, and other diseases, can
cause concentric hypertrophy (43) (Figure 1).

3.3. Middle-Aged Effect on Cardiac Responses to Exercise Train-
ing

Exercise training imposes physiological stress on the
body, which requires responses coordinated by the car-
diovascular, respiratory and nervous systems to increase
blood flow and supply oxygen for the skeletal muscles. At
rest, the muscles account for approximately 20% of the to-
tal blood flow, but this can be increased up to 80% during
exercise training. Therefore, dysfunction in one of these
systems can lead to a significant decrease in the maximum
cardiac output during total exercise training (44).

It is well-defined that heart involvement contributes to
increased cardiac output in response to the high metabolic
requirements of exercise training and this is essentially
dependent on the dynamic regulations of two physiolog-
ical parameters, namely, heart rate (HR) and stroke vol-
ume (SV). In healthy adults, the adrenergic stimulation
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Figure 1. Pathological eccentric and concentric hypertrophy (43)

caused by exercise training rapidly increases heart rate and
stroke volume. The stroke volume increases primarily by
increasing myocardial contractions and reducing the pe-
ripheral vascular resistance. Elevated stroke volume in-
creases by up to 40–50% of the maximum capacity corre-
sponding to the intensity of exercise training, then reaches
a plateau, and further reinforcement in output proceeds
proportional to the increase in heart rate (45).

While older adults can still increase their cardiac out-
put in response to exercise training, the relative increase
is usually reduced compared with younger people. The de-
crease in maximum heart rate, also known as chronotropic
incompetence or disorder, is the main factor in reducing
cardiac response to exercise training in adults. Natural ag-
ing results in a progressive decrease in the maximum heart
rate of about 0.7 beats/minute/year (46). Although the
mechanism of this chronotropic incompetence has not yet
been specified, degenerative changes in the transmission
system associated with autonomic dysregulation may play
a major role. Most importantly, the decrease in the peak
HR due to middle age has a strong association with a re-
duction in exercise training capacity, and this is an inde-
pendent predictor of cardiovascular events and mortality
(47-49).

The impact of middle age and aging on the enhance-
ment of SV via exercise training has not yet been clearly
demonstrated. Generally, the heart of older adults still has
the ability to increase SV in response to exercise training
(albeit at insufficient levels of compensation in reducing
peak beats). The mechanism by which heart SV can be in-

creased by exercise training may be altered with the age of
the individual. However, the increase in myocardial con-
tractions is considered to be the main measure for increas-
ing SV in the hearts of young people. Enhanced SV due to
exercise training in the heart of older adults is mainly asso-
ciated with the elevation in end-diastolic volume or a slight
change in contractions (50).

In general, normal middle age significantly reduces
both chronotropic and inotropic responses of the heart to
exercise training. Clinically, this phenomenon refers to the
storage disorders of the heart, which shows the inability of
the heart to strengthen the cardiac output in response to
the increased need for physiological stresses, possibly due
to exercise training or specific medications (51). Concomi-
tant with middle-age-induced changes in the mechanisms
of peripheral oxygen delivery and consumption in skeletal
muscle, inadequate oxygen transfer from impaired cardiac
storage is a major factor in reducing functional capacity
in adults, especially in patients with heart disease (52-56).
Maximal oxygen consumption is the standard method of
measuring exercise training capacity. During normal mid-
dle age, VO2 max is reduced down to about 10 per decade
in active healthy people, but this decreases in people over
70 years and among people with heart disease it is more
accelerated (9, 57). This process shows that the mechanism
leading to storage disorders of the heart during middle age
may be due to an increased risk of heart disease by age (Ta-
ble 1) (51).
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Table 1. Some Cardiovascular Changes in Middle Age (51)

CV Parameter at Park Exercise Effects of Aging

Cardiac output ↓ / NC

Heart rate ↓

LV stroke volume ↑ / ↓ / NC

LV end-diastolic volume ↑

LV contractility ↓

Early diastolic filling rate ↓

VO2 max ↓

(A-V) O2 difference ↓

3.4. Physiological Hypertrophy

Similar to pathological hypertrophy, physiological hy-
pertrophy is also a response of the heart to the strains
caused by eccentric and concentric remodeling. Increased
volume overload can mainly cause left ventricular dilata-
tion, which can also be caused by endurance physical activ-
ities (58-60). Some researchers have demonstrated that the
hearts of animals participating in endurance training was
accompanied by the addition of new sarcomeres into a se-
ries of existing sarcomeres that previously had pathologi-
cal cardiac hypertrophy (61). On the other hand, physiolog-
ical concentric remodeling occurs due to increased pres-
sure overload, which is caused by participating in resis-
tance training programs. It is characterized by increasing
myocardial volume and wall thickness without changing
the size of the chambers (59, 60, 62). In resistance training
programs, there is a significant increase in systolic blood
pressure, and the sarcomeres are added in parallel to exist-
ing sarcomeres, increasing the thickness of the walls in a
similar manner to pathological hypertrophy (63, 64). Inter-
estingly, combined physical activities involving both pres-
sure overload and volume overload, which have both as-
pects of endurance physical activities (running and swim-
ming) along with resistance physical activities can lead to
combined hypertrophy (65). Differences in the types of
physiological stimuli can be observed in the differences
in the types of hypertrophy. Right ventricular remodeling
can also occur with endurance exercise training, although
left ventricular dilation is caused by an increase in both sys-
tolic and diastolic functions (66).

The physiological cardiac remodeling in athletes is not
associated with interstitial fibrosis, as occurs in pathologi-
cal hypertrophy (67). In addition, a study found that exer-
cise training prevents myocardial inflammation induced
by isoproterenol injection (67). Moreover, exercise train-
ing can prevent myocardial deficiencies. It should be noted
that inhibiting myocardial hypertrophy by exercise train-
ing could lead to lower NFkB expression (68). Physiological

remodeling is a response to high exercise volume, reflect-
ing the importance of exercise training in morphological
changes in the heart60 (Figures 2 and 3).

3.5. Effect of Exercise Training on Middle-Aged Hypertrophy

The distinctive concept of cardiac hypertrophy is par-
ticularly relevant to adult hearts. Contrary to findings in
young animals, aerobic exercises generally cause some de-
gree of cardiac hypertrophy (70). Studies based on exercise
training of adults and older people have shown a wide vari-
ety of cardiac development in response to exercise training
(71-76), with some studies indicating reversal of middle-
aged hypertrophy through exercise training. One of these
studies has evaluated the effect of exercise training on the
growth of cardiomyocytes in the heart of adults. Kwak et al.
trained young and adult rats at 75% VO2 max for 12 weeks.
Their findings indicated that the training induced the hy-
pertrophy of cardiomyocytes in young rats. These results
were associated with a regression in the size of cardiomy-
ocytes (69% reduction in cross-sectional surface area) in
adult samples (74). Alternatively, in another study, train-
ing on a treadmill or with swimming at low to moderate
intensity in adult Wistar rats did not affect the size of the
cardiomyocytes. Differences in training periods and age of
animal samples may result in different findings. In addi-
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diac hypertrophy (43)
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tion, only a small number of studies investigated the de-
crease in blood pressure via exercise training in adult ani-
mal specimens (75, 77).

It is not surprising that the molecular basis for the dif-
ferent potential effects of growth due to exercise training
in adult heart samples is not well defined. Obviously, the
cytoprotective effects of exercise training may improve the
survival of adult hearts. Therefore, stimuli for active patho-
logical hypertrophy are reduced. In fact, trained adult
rat hearts showed a decrease in several apoptotic indexes,
which usually rises in the hearts of adults. However, it has
not been completely determined as to what the mecha-
nisms of these changes induced by exercise training are,
including decreased translation of factors for cell death
and inhibiting pathological growth stimuli in the heart of
older adults (74, 76, 78).

The signaling mechanism of exercise training, which
potentially improves the cardiomyocytes in adults, might
be related to cardioprotective effects of the IGF1/PI3K/Akt
pathway. Increasing expression of cardiac IGF1, PI3K and
Akt1 is indicative of improved survival of cardiomyocytes
in adult rats exposed to ischemic damages (28, 36, 79).
More importantly, several studies have shown that simi-
lar to young animal specimens, aerobic exercise training
causes increased Akt phosphorylation in the heart of adult
and old rats, although its level is low (77, 78, 80). Although
low levels of Akt activity in the heart of trained rats is suf-
ficient to increase cell survival and decrease pathological

growth, it is not enough to develop physiological growth
(51). Finally, the variation in cardiac growth responses to
exercise training among young and adult animals is prob-
ably related to fundamental differences in the substrates
between the young and the adults and the pathological hy-
pertrophy pathways and apoptosis. Indeed, when young
and adult rats participated in the same 12-week training,
it was found that the levels of MAPK and calcineurin/NFAT
signaling were decreased in the hearts of adults and did
not change in the hearts of the youth, or the changes were
not significant, although Akt was increased in both groups
(78, 80). In this regard, some studies have shown that Akt
causes inhibition of MAPK pathways that participate in the
development of hypertrophy (81).

Although the role of exercise training through other
mechanisms has been less considered, including changes
in anti-aging hormones and oxidative stress, MAPKs may
be involved in the hypertrophy of the middle-aged heart.
In this context, it has also been reported that exercise train-
ing can be effective in improving age-related mitochon-
drial disorders (82, 83).

4. Conclusions

According to these findings, middle age along with
physical inactivity seems to be associated with patholog-
ical hypertrophy, during which the intraventricular vol-
ume decreases and the heart wall thickness increases.
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However, exercise training through various mechanisms
creates the possibility of driving pathological hypertrophy
towards physiological hypertrophy. In addition, the type
and duration of the exercise training can influence the re-
spective effects.
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