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Abstract

Aging, if accompanied by a sedentary lifestyle, can result in different diseases including cardiovascular diseases. Klotho, a protein
found in the kidneys and other tissues of the body, is influenced by age and level of physical activity. In this paper, using 66 papers
published in PubMed and SID between 1997 and 2018, we examined the mechanism of action of Klotho on cardiac hypertrophy
under senescence conditions. Studies have shown that aging results in the development of oxidative stress as well as increased
MAPK and TRPC6. These factors push the heart towards pathological hypertrophy, where deficiency of Klotho accelerates this trend.
Nevertheless, exercise training causes enhanced Klotho levels. This protein is able to inhibit oxidative stress as an upstream factor
in the activity of MAPK and TRPC6.
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1. Context

Aging is associated with the prevalence of a different
cardiovascular disease such as coronary artery disease, hy-
pertension, and heart failure (1). Every decade of increase
in age affects the totality of the cardiovascular system even
in the absence of pathological factors (2-5). Aging influ-
ences the function of cardiomyocytes, and has a direct ef-
fect on the calcium homeostasis, contraction of the heart
muscle, contraction excitation pair, and cellular integrity
of the organelles of cardiomyocytes (6, 7). These factors
have a considerable effect on neurohumoral regulation of
the function of cardiomyocytes from the adrenergic sys-
tem as well as the renin-angiotensin system (8, 9). In addi-
tion, middle age and old age cause alterations in the com-
ponents and quality of extracellular matrices, which affect
both the structure of cardiac cells and cardiac function (10-
12). On the other hand, increasing age is associated with
variations in many proteins, which affect the cellular struc-
ture and function of the heart. One of these proteins is
Klotho.

2. Evidence Acquisition

A total of 66 papers published in PubMed and SID be-
tween 1997 and 2018 were selected. The search was per-
formed using the keywords of exercise training, Klotho, ox-

idative stress, and aging. The exclusion criteria included
duplicate titles and articles unrelated to Klotho and aging.
At first, 150 articles were found and eventually, 66 articles
were selected.

3. Klotho

Klotho (α-Klotho) has found a great deal of attention
because of being involved in different biological processes,
many of which are associated with human longevity (13).
Although the molecular mechanism of action of Klotho
is not well known, recent studies suggest high pleiotropy
(when a gene affects two or several irrelevant phenotypical
traits) of this protein with different biological functions
and downstream targets (13). The function of Klotho in-
volves regulating energy metabolism, anti-inflammation,
anti-oxidative stress, ion transfer regulation, and mineral
metabolism regulation (14). Many of these effects are as-
sociated with maintaining the health of blood vessels, and
the changes in Klotho levels are also associated with car-
diovascular diseases (13, 15).

In the body of living creatures, Klotho protein is
present as a form of membrane transporter, involved in
transferring the signals of fibroblast growth phospha-
tonin 23 (FGF23) factor (16). It has also been detected as
a water-soluble endocrine factor in the blood and cere-
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brospinal fluid (16). Its soluble form (~ 130 kDa) is domi-
nant in the human body, which declines with aging (17) and
can develop in different ways including splicing of substi-
tute RNA (18). In this process, the cleavage of α-Klotho oc-
curs in a process calledα-cut byα-secretases A disintegrin,
metalloproteinase domain-containing proteins 10 and 17
(ADAM10 and ADAM17, respectively) and β-secretase β-APP
cleaving enzyme 1 (BACE1) (19). The cleaved product is a
soluble α-Klotho protein (~ 130 kDa) that lacks both trans-
membrane and intracellular domains. The remaining frag-
ment, which remains embedded in the cell membrane, is
cleaved by γ-secretase (19, 20). Another mechanism called
β-cut, promoted by insulin stimulation, cleaves α-Klotho
between the KL1 and KL2 domains and generates two frag-
ments (~ 65 kDa each) (19).

Nevertheless, in other studies, the chromosomal posi-
tion of Klotho in mice has been detected as 13q12, which
includes a weight of 50 kDa and 5 exons (21). Similarly,
12q12 position (22) in rats and 13a12 in humans have been
detected for its gene (23). According to available findings,
the membrane type of Klotho has a double internal repli-
cation K1 and K2, which can be released and changed into
the soluble form in response to cleavage by α/β-secretases
(23). Meanwhile, there is also another type of Klotho called
secretory Klotho, whose function has still remained un-
known (23). Notably, in some references, soluble Klotho is
also called secretory Klotho (22).

Deficiency of Klotho protein was first known to be asso-
ciated with cardiovascular diseases, based on research on
mice with low levels of Klotho (24). It is associated with
human symptoms including increased atherosclerosis, ex-
tensive internal calcification of the aorta, and both inter-
nal calcification and thickening of the vessel walls (24, 25).
The majority of research on Klotho has focused on its role
as a renal cofactor for FGF23 binding (26). In the kidney,
Klotho causes phosphaturic effect of FGF23 and inhibition
of the active form of vitamin D (26, 27). Nevertheless, the
presence of soluble Klotho and its effects are significant on
different tissues of the body including the heart (14, 28).

3.1. The Effect of Aging on Klotho

Phosphatopathies can generally be observed in pa-
tients with kidney diseases (29). Kidney diseases are as-
sociated with a progressive reduction in kidney function
in older adults (30). Over 26 American people (13% of the
entire population of the US) have kidney diseases (31). Pa-
tients with kidney diseases face diminished Klotho levels
(32). Thus, one of the main reasons for reduced Klotho in
adults can be the kidney dysfunction because a major part
of Klotho is produced in the kidneys (29, 33). Nevertheless,
recent studies have shown that blood vessels can also pro-
duce Klotho (34). It appears that tunica media produces

Klotho, as shown in immunochemical studies of the tunica
media in healthy individuals and aorta of rats, but there
are some disagreements in this regard. Scialla et al. re-
ported absolutely no expression of any type of Klotho in
the vessels of humans or rats (34). On the other hand, Lind-
berg et al. indicated low levels of this protein (35). The dis-
crepancies can be attributed to the region where sample
are taken as well as the technical and experimental meth-
ods. Overall, what can be inferred from the research is that
low levels of Klotho are expressed in the vessels. It has also
been found that aging or kidney diseases reduce produc-
tion of Klotho in the vessels (15). Evidence suggests that
there is an inverse relationship between oxidative stress,
nutritional status and inactivity in older adults (36). Inad-
equate intake of antioxidant-containing foods and seden-
tary life style leads to increased oxidative in older people
stress (36, 37). In this regard Mitobe and et al reported ox-
idative stress decreases Klotho expression in a mouse kid-
ney cell line (38).

3.2. Effect of Gender Difference on Klotho Levels

The effect of gender on Klotho is not clear. Some stud-
ies have shown that soluble Klotho levels were higher in
women than in men with acromegaly, but estrogen status
cannot account for this difference (39). However, it is clear
that Klotho is reduced due to aging.

4. The Relationship Between Klotho and Aging-
Associated Diseases

4.1. Klotho and Oxidative Stress

Some studies have examined the relationship between
oxidative stress and Klotho. These studies have found that
when Klotho protein binds to cellular receptors on its sur-
face, it inhibits FOXO phosphorylation and promotes its
nuclear transfer (40). Then, FOXO is directly bound to
the generators of the SOD2 enzyme, causing its overreg-
ulation. In this way, it facilitates removal of reactive oxy-
gen species and helps resistance against oxidative stress
(40). Nevertheless, it is not clear how Klotho causes resis-
tance against oxidative stress through inducing SOD2 ex-
pression (40). This mechanism appears to be one of the
antiaging pathways by which Klotho can contribute to in-
creased longevity, as Klotho is able to increase other antiox-
idant enzymes including catalase (41). According to some
researchers, Klotho can have an anti-aging function in dif-
ferent ways including inhibiting the insulin-IGF1 signal-
ing and increasing resistance against oxidative stress (40,
42). It appears that the ability of Klotho in activating FOXO
firstly depends on its ability in inhibiting the insulin/IGF-
1/PI3K/Akt signaling although Klotho might activate FOXO
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through other pathways (40). For example, FOXO can be ac-
tivated by inhibiting serum- and glucocorticoid-inducible
kinase (SGK) and activation of c-Jun NH2-terminal kinase
(43, 44).

4.2. Klotho and MAPK

Oxidative stress is able to activate MAPKs through
apoptosis signal-regulating kinase 1 (ASK1), thus enhanc-
ing the activity of MAPKs (37) ASK1 or kinase-kinase MAPK
(MAP3K5) is able to activate MAPKs including p38 in re-
sponse to factors such as oxidative stress (37). Further-
more, Klotho is able to deactivate ASK1. Possibly, Klotho
can reduce ASK1 either directly or through reducing oxida-
tive stress, though this mechanism is hypothetical (45). On
the other hand, H2O2 is able to activate ERK1/2 through
Raf-Ras pathway as well as the kinase tyrosine pathway in-
cluding platelet-derived growth factor subunit B and Src as
well as protein kinase C delta (PKC-delta) (46). Klotho ap-
pears to be effective in ERK1/2 reduction through reducing
oxidative stress and inhibiting Raf-Ras pathway. Although
Klotho affects PDGF-beta and PKD-delta along with Src, no
research is available on this effect.

4.3. Klotho and TRPC6

Recent studies have shown that soluble Klotho pro-
tects the heart against driving forces of cardiac hypertro-
phy (47). A study found that Klotho can protect the heart
by inhibiting Transient Receptor Potential Cation Channel
Subfamily C Member 6 (TRPC6) (48). The response of the
heart to the damage and stress factors often causes the de-
velopment of heart failure and death through pathologi-
cal growth and remodeling (49). One of the key steps that
regulate development of pathological growth of heart and
remodeling is the activity of Calmodulin-dependent serine
threonine calcineurin phosphatase protein, which is acti-
vated through abnormal calcium signaling (50). The fam-
ily of TRPC channels are calcium-permeable cation chan-
nels which can be present in the membrane of medications
(51). TRPC family includes seven members, categorized into
two groups based on their function and structure (51). Cur-
rent evidence suggests that the calcium cascade through
the cardiac TRPC signal is crucial in signaling the path-
way of calcineurin and hypertrophic growth of the heart
(51). Expression of TRPC channels in hypertrophic hearts
increases in response to stimulation of different factors,
where inhibiting these factors can have a protective role
for the heart. Likewise, soluble Klotho has been found to in-
hibit TRPC6 channels and protect the heart against patho-
logical growth and remodeling (52).

Although the relationship between Klotho and MAPK
can also be notable, its mechanism is still unknown. Ac-
cording to previous studies, oxidative stress is one of the

factors that stimulates ERK1/2 activity through Ras activa-
tion. On the other hand, Klotho is also considered a factor
that reduces oxidative stress (53, 54). Thus, Klotho may re-
sult in diminished ERK1/2 activity through reducing oxida-
tive stress. Another research has discovered that Klotho is
able to deactivate P38 (55). P38 has been defined as a factor
that enhances TRPC6 activity (56). Accordingly, Klotho may
lead to inhibition of TRPC6 channels through reducing p38
activity.

Other studies have introduced other mechanisms for
the effect of Klotho on cardiac hypertrophy through
TRPC6. According to these researchers, IGF-1 receptors can
cause activation of PI3k and enhanced activity of TRPC6.
Nevertheless, Klotho is able to inhibit the activity of IGF-1
receptors of its downstream signals (48).

4.4. Others Mechanisms

Studies suggest that reduced Klotho can stimulate
Wnt signaling pathway and cause aging either directly or
through inducing reduction of stem cells (57). Klotho re-
duction inhibits autophagy, where this reduction results
in direct acceleration of aging as well as reduction in and
aging of stem cells (58). The reduction in Klotho increases
IGF-1 signaling and oxidative stress, antidiuretic hormone,
and aldosterone (58). All these processes can accelerate the
course of aging and its associated diseases in some way
(58).

Recent studies have emphasized the protective role of
Klotho in the vascular system, for example, maintaining
endothelial homeostasis and vascular function (59, 60).
Clinical studies have indicated that low Klotho levels are as-
sociated with arterial stiffness in patients with kidney dis-
ease (61). Furthermore, Klotho can stimulate nitric oxide
synthetase and NO production, such that in animal sam-
ples with low levels of Klotho, NO level has been associated
with a reduction in its production (62). Nevertheless, it
should be emphasized that various factors are involved in
NO production and one cannot consider Klotho as the only
factor or the major factor.

4.5. The Effect of Exercise on Klotho

Studies on the effect of exercise training on Klotho are
limited. Nevertheless, the investigations by Matsubara et
al. (2014) are notable in this area. They found that 12 weeks
of aerobic exercise results in elevation of Klotho and im-
proved vasodilation in postmenopausal women of 50-76
years old (63). Mostafidi et al. (2016) also reported that ath-
letes enjoy higher levels of Klotho compared to non-athlete
individuals (64). It has also been discovered that PPAR-γ is
one of the main pathways of Klotho production, and its el-
evation results in the production of Klotho in rats’ kidneys
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(65). Exercise might be effective in producing Klotho by ac-
tivating PPAR-γ, though this mechanism is hypothetical.
The reason is that despite increased expression of PPAR-
γ in skeletal muscles, no clear results have been found
regarding its expression in kidneys induced by exercise.
Some studies have suggested that elevation of angiotensin-
3 results in diminished production of Klotho in the kidneys
(65). Therefore, a decline of angiotensin-2 resulting from
exercise can be another possible mechanism for Klotho
production, which should be taken into account in case of
exercise-induced Klotho elevation (65, 66). In this regard,
our research indicated that moderate-intensity aerobic ex-
ercise for eight weeks leads to enhanced serum Klotho (37).
In this research, we indicated that elevation of Klotho in
response to exercise results in diminished oxidative stress.
This, in turn, led to a significant reduction in P38 and ERK1/2
levels. All of these results led to diminished pathological
cardiac hypertrophy and development of physiological hy-
pertrophy in middle-aged Wistar rats (37).

5. Conclusions

Aging has different effects on the cardiovascular sys-
tem as well as proteins such as Klotho. Since the role of
Klotho on the cardiovascular system has been confirmed,
its reduced values in response to aging can lead to in-
creased oxidative stress, enhanced activity of MAPK and
TRPC6 signals. These signals lead to cardiac fibrosis and de-
velopment of pathological hypertrophy. However, doing
exercise can prevent it or at least control it. Indeed, exer-
cise can reduce the activity of MAPK and possibly TRPC6
pathways through enhancing Klotho and reducing oxida-
tive stress. This mechanism has been shown in Figure 1.

Figure 1. The mechanism of effect of exercise and middle-age on cardiac hypertro-
phy (37).
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