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Abstract

Background: Mutations in bacteria frequently occur that display a crucial need for new antimicrobial agents. Metallo-β-lactamases
(MBLs) are a growing threat to maintaining the effectiveness of beta-lactam antibiotics. Resistance to beta-lactam antibiotics is one
of the most common types of antibiotic resistance, which causes the ineffectiveness of antibiotics.
Objectives: This study aimed to identify a novel inhibitor using molecular dynamics simulations to inhibit VIM-2 Metallo-β-
lactamases and overcome carbapenem resistance in Pseudomonas aeruginosa strains.
Methods: Computational biology tools were employed for this study, including molecular dynamics, binding free energy, virtual
screening, and docking. Natural compounds were taken from the ZINC databank and prepared. At the next stage, the prepared
compounds were screened based on docking energy in the active site of VIM-2 MBL by Schrödinger (Maestro) software, and better
compounds were selected. Captopril was chosen as a positive control inhibitor for VIM-2 MBLs. Ultimately, molecular dynamics
simulations were performed using GROMACS software, and outputs were analyzed.
Results: Maestro software’s screening results showed that ZINC00517765 was the best inhibitor with -12.29 kcal mol-1 docking energy.
The ADME investigations revealed that ZINC00517765 had an appropriate range of pharmacokinetics, lipophilicity, and drug-likeness
features as an inhibitor of VIM-2 MBL. Molecular dynamics outcomes explicated that VIM-2 MBL in the presence of ZINC00517765 had
better stability during simulation. The results of the MM-PBSA study illustrated that ZINC00517765 with -72.29 kJ mol-1 binding free
energy was more potent than Captopril with -23.39 kJ mol-1.
Conclusions: This study showed that VIM-2 MBL in the presence of ZINC00517765 has suitable stability during simulation. Also,
more hydrogen bonds and stronger binding free energy than Captopril confirm that ZINC00517765 is a proper candidate for further
studies and laboratory investigation.
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1. Background

The decreased effect of β-lactam antibiotics on Gram-
negative pathogens is a growing clinical problem, lead-
ing to antibacterial drug resistance in organisms such
as Stenotrophomonas maltophilia, Pseudomonas aeruginosa,
Klebsiella pneumoniae, and Escherichia coli (1, 2). Each year,
about 2.8 million people are diagnosed with bacterial in-
fections in the United States who are resistant to one or two
types of antibiotics, leading to 35,000 deaths (3). Bacteria
become resistant to antibiotics by mutations, and bacte-
rial resistance manifests a vital need for novel antimicro-
bial agents (4, 5). Most bacterial resistance is due to the

overexpression of β-lactamases, which can hydrolyze and
inactivate many β-lactam antibiotics (6, 7). Antibiotic re-
sistance has increased the attention of the World Health
Organization in recent years as an important challenge for
humans (7). Although β-lactam antibiotics such as car-
bapenem, cephalosporins, monobactams, and penicillins
are currently used, antibiotic resistance necessitates stud-
ies to find new compounds with better and broader activ-
ity (8-10).

In the last two decades, Metallo-β-lactamases (MBLs)
have been identified as major role-players in the mech-
anism of resistance to carbapenems, which are the last
resort of β-lactam antibiotics for the treatment of infec-

Copyright © 2022, Journal of Health Reports and Technology. This is an open-access article distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in
noncommercial usages, provided the original work is properly cited.

http://dx.doi.org/10.5812/ijhls.121109
https://crossmark.crossref.org/dialog/?doi=10.5812/ijhls.121109&domain=pdf
https://orcid.org/0000-0002-5557-0903
https://orcid.org/0000-0003-3961-8409
https://orcid.org/0000-0003-4080-9210
https://orcid.org/0000-0002-4330-9759


Moosavi SS et al.

tions caused by multi-drug-resistant pathogens (10, 11).
β-lactamases (BLs) are arranged in two classes, includ-
ing MBLs (metallo-BLs) containing a hydroxyl ion (as ac-
tive nucleophile) and one or two zinc ions (in the bind-
ing site), and SBLs (serine-BLs) utilizing a catalytic serine
for antibiotic hydrolysis (12, 13). MBLs are zinc-dependent
enzymes that hydrolyze almost all β-lactams, such as
cephalosporins and carbapenems (14). SBLs have Ambler
classes (A, C, and D), but MBLs cover class B with three sub-
groups (B1, B2, and B3). Also, chromosomal and plasmid-
mediated genes can encode BLs (7).

The unique structure of the active site, di-zinc coor-
dination, and water bridge hydrolysis mechanism enable
subclass B1 to inactivate a variety of substrates (15). The β-
lactam ring of antibiotics can be hydrolyzed by SBLs based
on the serine residue through an enzyme-acyl intermedi-
ate around the active site. On the other hand, MBLs can
catalyze the hydrolysis of the β-lactam ring by utilizing
the Zn ions (one or two) in the active site (16, 17). The
most common clinical problems in MBLs are with the B1
subclass, including VIM (Verona integrin-encoded Metallo-
β-lactamase), NDM (New Delhi Metallo-β-lactamase), and
IMP (IMiPenamase) (18, 19). VIM is currently the most com-
mon among the B1 subclass of MBLs in P. aeruginosa, and
the primary source of global prevalence is VIM-2 (20). De-
velopmental studies have critical roles in finding new in-
hibitors to overcome MBLs and treat bacterial resistance
(21). In parts of Asia, VIM exists in more than 99% of pa-
tients with MBL-positive multidrug-resistant strains (22).

Captopril ((D-3-mercapto-2-methylpropranoyl-L-
proline) found by Bristol-Myers in Boston) has been used
for several decades as a suitable drug for high blood pres-
sure prevention. Captopril also can inhibit different MBLs
of all subclasses (23, 24). In the present study, captopril
was selected as a positive control for the inhibition of
VIM-2 MBL. In addition, virtual screening was chosen to
find strong and new inhibitors for time and cost-saving
purposes. Also, molecular dynamics simulations were
performed by the GROMACS package.

2. Objectives

The purpose of this investigation was to recognize a po-
tent inhibitor for VIM-2 MBL and compare it with captopril
as a reference inhibitor.

3. Methods

3.1. Molecular Docking

Natural compounds from the ZINC databank (25) in
mol2 format containing 61953 structures were achieved.

The VIM-2 MBL crystal structure (ID: 4C1E) in the PDB for-
mat was obtained from the RCSB (Protein Data Bank) (23).
Both proteins and compounds were prepared, and Mae-
stro 12.5 (26) was employed for the docking study. In addi-
tion, the ADME (absorption, distribution, metabolism, and
excretion) calculation was performed using an online plat-
form (27). Captopril was chosen as the positive control for
docking and molecular dynamics (MD) simulation (23).

3.2. Molecular Dynamic

In the next step, two complexes of ligand-protein (MBL-
ZINC00517765 and MBL-Captopril) were extracted from the
results of the docking study for MD simulation. The ACPYPE
server (28) was used to produce the topology parameters
file for compounds. GROMACS software (Amber99sb force
field) and TIP3P water model with cubic box were applied
to simulate the systems (29, 30). The physiological condi-
tion (the salt ion environment (NaCl 0.15M)) was fixed, and
the charge was neutralized for three systems by adding Na+

or Cl- (9 Na, 11 Na, 10 NA ions to free MBL, MBL-ZINC00517765,
MBL-Captopril, respectively) to the solvent (31). The tem-
perature and pressure were determined by employing NPT
and NVT ensembles (1 bar with Parrinello-Rahman barostat
and 310K using a v-rescale thermostat) (32). After simula-
tion, the radius of gyration (Rg) and principal component
analysis (PCA) were employed to investigate the flexibil-
ity and motion, and root mean squared fluctuation (RMSF)
with root mean square deviation (RMSD) were used to esti-
mate the fluctuations and H-bond (inter-molecular hydro-
gen bonds). The simulation time for all systems was 120
nanoseconds.

3.3. Binding Free Energy

Molecular mechanics Poisson–Boltzmann surface area
(MM-PBSA) is a reliable method for calculating the binding
free energy (∆Gbind). In the present study, the GROMACS
Tool (g_mmpbsa) was used to study binding free energy.
This approach has been used in computational drug de-
sign as an appropriate technique for measuring binding
free energy (33-35). The following equation expresses the
binding free energy:

G of binding = G of complex – (G of protein + G of ligand)
Where the free energy of a state (L denotes ligand and

P represents protein) was computed through processing
ligand-receptor conformations (36-40).

4. Results and Discussion

4.1. Virtual Screening

The docking study by Maestro 12.5 software deter-
mined the power of the new compounds based on
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inhibitory potential in the active site of VIM-2 MBL.
The top nine compounds based on docking energy in-
cluding ZINC00517765, ZINC04023122, ZINC12659408,
ZINC12889936, ZINC01531046, ZINC02108368,
ZINC72326107, ZINC20113415, and ZINC10475480 are listed
in Figure 1. Molecular docking results (docking energy) for
top structures were between -12.29 kcal mol-1 and -10.12 kcal
mol-1. Docking’s study displayed that ZINC00517765 with
-12.29 kcal mol-1 was stronger than the positive control
(captopril) with -10.12 kcal mol-1 docking energy.

4.2. ADME Investigations

One of the major problems with the usefulness
of new inhibitors is their safety inadequacy. Drug
development usually encounters various unforeseen
challenges in different phases. The potency of the top
inhibitors was measured in terms of pharmacokinet-
ics, lipophilicity, and drug-likeness impacts. Captopril
and the nine compounds including ZINC00517765,
ZINC04023122, ZINC12659408, ZINC12889936,
ZINC01531046, ZINC02108368, ZINC72326107, ZINC20113415,
and ZINC10475480 were analyzed. Table 1 shows that
ZINC00517765 was in the acceptable region as a drug
in terms of absorption, distribution, metabolism, and
excretion. Also, captopril features were similar to those of
ZINC00517765.

4.3. Interactions of VIM-2 MBL with ZINC00517765 Before Simu-
lation

As can be seen in Figure 2, MBL via Asn210 in its ac-
tive site interacted with captopril by hydrogen bonding.
Captopril also interacted with the MBL active site through
Zn501 and Zn502. On the other hand, ZINC00517765
formed two hydrogen bonds by interaction with Asn210
from the MBL active site. Furthermore, Tyr67 and Trp87
in the MBL active site formed a pi-pi stacking interaction
with ZINC00517765 and Arg205, and Zn501 and Zn502 in-
teracted with the MBL active site, which confirmed that
ZINC00517765 was more potent and formed more bonds
with the MBL active site.

4.4. Stability Analysis

After MD simulation to evaluate the stability of the
crystal structure and changes during the simulation,
RMSD (Figure 3A), Rg (Figure 3B), RMSF (Figure 3C), In-
termolecular H-bonds (Figure 3D), and PCA (Figure 3E)
analyses were performed on MBL-ZINC00517765, MBL-
Captopril, and free MBL. The RMSD results for free MBL,
MBL-ZINC00517765, and MBL-Captopril were 2.18, 2.13, and
2.09 Å, respectively. The RMSD results showed that from

50 nm to the end of the simulation, all the systems ob-
tained stable conditions, but the stability of the MBL-
ZINC00517765 complex was better than those of the other
two systems. Based on the Rg analysis, the protein fluc-
tuated during the simulations, and these changes were
fewer for the MBL-ZINC00517765 complex, indicating that
this complex had better stability. The Rg values for all sim-
ulations were between 16.2 and 16.8 Å, but the Rg value
for MBL-ZINC00517765 was between 16.2 and 16.7 Å. In ad-
dition, RMSF analysis was performed using the simulation
results, which showed that free MBL in the residues Val36
with 2.21 Å, Glu38 with 2.20 Å, Asp63 with 3.62 Å, Tyr67 with
2.32 Å, Trp87 with 2.45 Å, His116 with 1.77 Å, and Val211 with
3.32 had the highest fluctuations. Also, Val41 with 2.20 Å,
Arg127 with 1.73 Å, Arg141 with 2.75 Å, Cys198 with 1.81 Å, and
Leu216 with 2.37 Å had the most fluctuations in the MBL-
Captopril system. The RMSF analysis demonstrated that
MBL-ZINC00517765 in the residues including Arg109 with
1.38 Å, Glu156 with 2.24 Å, Ser159 with 2.41 Å, Ser161 with 2.92
Å, and Glu232 with 1.98 Å had the most fluctuations. Inter-
molecular H-bond analysis revealed that during simula-
tion, ZINC00517765 formed more hydrogen bonds with the
active site of MBL than did Captopril. The PCA displayed the
movements of proteins. The PCA outcomes showed that
MBL-ZINC00517765 had less motion than the other two sys-
tems and confirmed the results of other analyses, includ-
ing Rg, intramolecular H-bonds, RMSF, and RMSD.

4.5. Free Binding Energy

After simulation, the binding free energy was com-
puted for the MBL-ZINC00517765 and MBL-Captopril com-
plexes using MM-PBSA software. According to the RMSD
chart, the binding free energy was assessed at the end of
the simulation (with minimum fluctuations), and the re-
sults exhibited that MBL-ZINC00517765 with -72.29 KJ.mol-1

was stronger than MBL-Captopril with -23.39 KJ. mol-1. Also,
the values of electrostatic energy and Van der Waals energy
were better for MBL-ZINC00517765 than for MBL-Captopril
(Table 2).

5. Conclusions

According to the results of molecular dynamics, vir-
tual screening, and docking studies, ZINC00517765 can in-
hibit MBL. The results showed that MBL in the presence
of ZINC00517765 has stable conditions and is better than
Captopril. Finally, further study on ZINC00517765 is recom-
mended to overcome bacterial infections as a suitable in-
hibitor. We hope that the results of this study will help re-
searchers to find a drug for MBL.
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Figure 1. Docking energies of Captopril and the top nine compounds, as well as 2D structures, ZINC IDs, and molecular weight
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Table 1. Pharmacokinetics, Lipophilicity, and Drug-likeness Features of the Top Nine Compounds Compared with Captopril

Molecule Name GI Absorption Log Kp (Skin
Permeation) cm/s

Lipinski Bioavailability Score Synthetic
Accessibility

BBB Permeant

ZINC00517765 High -6.49 Yes; 0 violation 0.56 2.78 No

ZINC04023122 High -5.83 Yes; 0 violation 0.85 2.98 Yes

ZINC12659408 Low -6.75 Yes; 0 violation 0.56 5.04 No

ZINC12889936 Low -8.50 Yes; 1 violation:
NorO>10

0.11 4.21 No

ZINC01531046 High -6.63 Yes; 0 violation 0.85 1.47 No

ZINC02108368 Low -7.32 Yes; 0 violation 0.56 3.76 No

ZINC72326107 High -6.85 Yes; 0 violation 0.56 3.07 No

ZINC20113415 High -10.29 Yes; 0 violation 0.56 3.84 No

ZINC10475480 High -8.19 Yes; 0 violation 0.56 2.76 No

Captopril High -7.38 Yes; 0 violation 0.56 2.47 No

Figure 2. Interaction of ZINC00517765 and captopril with the VIM-2 MBL active site before simulation

J Health Rep Technol. 2022; 8(2):e121109. 5
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Figure 3. RMSD (A), Rg (B), RMSF (C), Intermolecular H-bonds (D), and PCA (E) values for MBL-ZINC00517765 (blue), MBL-Captopril (dark red), and free MBL (yellow)

Table 2. Molecular Energy Values of MBL-ZINC00517765 and MBL-Captopril Com-
plexes

Energy (KJ.mol-1) MBL-Captopril MBL-ZINC00517765

∆ESASA -17.92 ± 0.27 -20.93 ± 0.58

∆Esolv 253.69 ± 15.17 275.57 ± 10.53

∆Eelect -173.77 ± 7.35 -215.81 ± 8.36

∆Evdw -85.39 ± 4.81 -111.12 ± 8.85

∆Gbinding -23.39 ± 5.92 -72.29 ± 10.74
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