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Review Article 
A Promising Approach to Improving COVID-19 
Symptoms: Using Antioxidant Supplements

Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) that causes COVID-19 
disease could progress to Acute Respiratory Distress Syndrome (ARDS). The immune cells’ 
migration in response to the virus leads to cell death by releasing oxidizing free radicals. These 
oxidizing free radicals mediate NF-κB (Nuclear Factor ‘kappa-light-chain-enhancer’ of activated 
B-cells) activation and induce transcription of cytokine-producing genes that eventually causes 
cytokine storm and septic shock. The over-expression of oxidative stress and enhancing Reactive 
Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) production activate transcription 
factors like NF-κB. So repeating this cycle intensifies the host’s inflammatory responses. In this 
way, antioxidants as compounds that inhibit oxidation by terminating chain reactions are suggested 
to alleviate COVID-19 symptoms. In the present review study, the pathogenesis of the virus, the 
virus immunopathology, and the balance between immune responses and oxidative stress are 
discussed. Also, in this review, due to the importance of oxidative stress in the pathogenesis 
of the disease, some of the most important antioxidant agents whose therapeutic effects have 
been shown in improving many viral infections, ARDS, and acute lung injury, are recommended 
to improve the patient’s condition infected with SARS-CoV-2. Besides, the recent COVID-19 
clinical studies in this field are summarized in this review article. In the present review study, 
the pathogenesis of the virus, the virus immunopathology, and the balance between immune 
responses and oxidative stress are discussed. Also, in this review, due to the importance of 
oxidative stress in the pathogenesis of the disease, some of the most important antioxidant agents 
whose therapeutic effects have been shown in improving many viral infections, ARDS, and acute 
lung injury, are recommended to improve the patient’s condition infected with SARS-CoV-2. 
Besides, the recent COVID-19 clinical studies in this field are summarized in this review article. 
According to these studies, melatonin through promoting sleep quality, decreasing vascular 
permeability, reducing anxiety, and regulating blood pressure; vitamin C through decreasing the 
mortality rates and the requirement for mechanical ventilation; glutathione through decreasing 
respiratory distress in the pneumonia of COVID-19 patients; and high selenium levels could 
improve the COVID-19 patients’ clinical outcomes.
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1. Introduction

n December 2019, a new disease called 
Coronavirus Disease-2019 (COVID-19) 
due to Severe Acute Respiratory Syn-
drome-Coronavirus-2 (SARS-CoV-2) 
spread worldwide and became a pandem-
ic. This virus comprises a positive-sense 

single-stranded RNA and proteins enveloped by a mem-
brane. The virus is a SARS-CoVs variant that has 82% 
genomic similarity with SARS-CoV-1 and also 50% ho-
mology of genomic sequence with the Middle East Respi-
ratory Syndrome-related Coronavirus (MERS-CoV) [1].

COVID-19 pathogenesis 

SARS-CoV, including SARS-CoV-2, is transmitted 
through respiratory droplets and maybe the fecal-oral 
route. Coronaviruses mainly target vascular endothelial 
cells, alveolar and airway epithelial cells, and alveolar 
macrophages. These cells express the Angiotensin-Con-
verting Enzyme 2 (ACE2), the host SARS-CoVs target 
receptor [2, 3].

Because SARS-CoV-2 used the same receptor as 
SARS-COV-1 to enter the host cell, the mentioned cells 
are likely to be infected by this virus [4, 5]. During infec-
tion with SARS-CoV-2, the virus’s average incubation 
period is 4-5 days before the start of symptoms [6-9], 
and 97.5% of patients who have symptoms show signs 
in 11.5 days [8].

During hospitalization, COVID-19 patients frequently 
show dry cough and fever. Rarely, symptoms of head-
ache/dizziness, breathlessness, muscle or joint pain, di-
arrhea, nausea, and bloody coughs may occur [10-13]. 
A load of SARS-CoV-2 peaks 5-6 days following the 
start of symptoms, which is remarkably quicker than the 
SARS-CoV peak, where the virus load peak is about 10 
days after symptoms’ onset [14-17].

Acute Respiratory Distress Syndrome (ARDS), a se-
vere form of COVID-19, develops approximately 8 to 
9 days after the onset of the symptom [11, 17]. It is re-
ported that 70% of COVID-19 cases die following re-
spiratory failure, which results from ARDS. Also, 28% 
of COVID-19 mortality is due to cytokine storm devel-
opment from widespread cytokines released by the im-
mune system in response to viral infection and or sec-
ondary infection [18].

Indeed, uncontrolled inflammation progresses to numer-
ous organ damages, causing organ failure in particular 

heart, liver, and kidneys. Ultimately most SARS-CoV in-
fected patients who have developed renal failure die [19].

Immunopathology of SARS-CoV-2

SARS-CoV-2, as a cell-cytotoxic virus, during part of its 
replication cycle, leads to the death and damage of cells 
and tissues infected [20]. As seen in SARS-CoV patients 
[21], infection and proliferation of the virus in epithelial 
cells of the airway system can increase virus-associated 
pyroptosis accompanied by vascular leakage [22]. 

Pyroptosis is a more severe inflammation resulting 
from programmed cell death or apoptosis, typically 
observed in cell cytotoxic viruses [23]. The mentioned 
event is a probable stimulus for the subsequent inflam-
matory response [24]. 

Alveolar macrophages and epithelial cells employ vari-
ous Pattern Recognition Receptors (PRRs) to identify 
Pathogen-related Molecular Patterns (PAMPs) like viral 
RNA and Damage-related Molecular Patterns (DAMPs), 
including ATP, DNA, and ASC oligomers [25]. In addi-
tion, Interleukin (IL)-1β release (as a critical cytokine) 
during pyroptosis is enhanced during SARS-CoV-2 in-
fection [11]. Also, the flow of local inflammation, includ-
ing the augmented release of inflammatory cytokines 
and chemokines like Interferon (IFN)γ, IL-6, IP-10, and 
Macrophage Inflammatory Protein 1 (MCP1), has been 
observed in the blood of patients [25]. These cytokines 
are described in SARS-CoV and MERS-CoV as an in-
dicator of T Helper 1 (TH1) cells [26]. Monocytes and 
T lymphocytes, as the main inflammatory cells, migrate 
from the blood to the infected region following the re-
lease of these cytokines and chemokines [27, 28]. 

Lymphopenia and an elevation in neutrophil/lympho-
cyte ratio following recruitment of inflammatory cells 
from blood to pulmonary tissue and lymphocytes infil-
tration into the airways are seen in approximately 80% 
of patients with SARS-CoV-2 [6, 29]. 

In most people, these recruited cells remove the infec-
tion in the lungs and reduce the immune response, which 
in turn improves the patient’s condition. However, In 
some patients, the immune response is impaired, which 
causes a cytokine storm that develops general inflam-
mation of the lungs. Also, higher plasma levels of IL-7, 
IL-2, IL-10, Tumor Necrosis Factor (TNF), Granulocyte 
Colony-Stimulating Factor (G-CSF), Macrophage In-
flammatory Protein 1α (MIP1α), IP-10 and MCP1 have 
been demonstrated in severe cases of COVID-19 pa-
tients who require intensive care in hospitals [30].
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Also, IL-6 levels as a significant inflammatory cy-
tokine are elevated over time in these patients and in-
creased comparatively more in non-survivors than in 
survivors [31]. Unrestricted infiltration of inflammatory 
cells can induce the massive production of proteinases 
and Reactive Oxygen Species (ROS) that develop lung 
injury, besides direct virus-induced damage. 

Collectively, these factors lead to extensive alveolar 
damage, including alveolar cells desquamation, forma-
tion of hyaline membrane, and pulmonary edema [27, 
28]. Figure 1 shows these pathways of SARS-CoV-2 im-
munopathology.

Following these events, the pulmonary gas exchange ef-
ficiency is limited, which causes a lack of oxygen in the 
blood and impaired breathing. Also, the lungs become 
more vulnerable to secondary infections. Besides local 
damage, cytokine storm has multiple body impacts. High 
titer of cytokines like TNF can develop septic shock and 
multiple organ failures like myocardial damage and cir-
culatory failure [32].

Examining all dimensions of proinflammatory pro-
cesses observed in the “cytokine storm” in patients with 
COVID-19 plays an essential role in improving targeted 
immunosuppressive regimens. Understanding the pre-
cise balance between innate antiviral and inflammatory 

Keshavarz Shahbaz S, et al. Improving COVID-19 Symptoms. J Inflamm Dis. 2021; 25(2):105-126

Figure 1. Immunopathology of SARS-CoV-2

SARS-CoV-2 infection and proliferation in bronchial epithelial cells induce the pyroptosis of virus-infected cells as part of the virus 
replication cycle. Pyroptosis is a probable stimulus for the following inflammatory response. Following pyroptosis, a wave of local 
inflammation occurs, including an elevation in the secretion of pro-inflammatory cytokines and chemokines, which attracts inflam-
matory cells to the infected region. Neutrophils, as the main inflammatory cells of the innate immune system, are absorbed into the in-
fected region by these cytokines. Neutrophils launch aggressive responses following recognizing danger signals, leading to the release 
of circulating Neutrophil Extracellular Traps (NETs) and the Reactive Oxygen Species (ROS) production and release in an oxidative 
microenvironment. Activated neutrophils could return to blood and produce ROS, which can oxidize polyunsaturated fatty acids in 
the Red Blood Cell (RBC) membrane, causing a marked change in the organization of membrane lipids. The mentioned modifications 
in the RBC membrane affect the release of oxygen and carbon dioxide and RBC’s ability for deformity in the capillary, which in turn 
can lead to thrombosis. Neutrophils’ reactivation in response to RBC membrane modifications also exacerbates this defective circle. 
In this way, antioxidant agents (melatonin, vitamin E, vitamin C, N-acetylcysteine, glutathione, and selenium) could be applied for 
COVID-19 treatment and prevention through neutralizing ROS and other their immunomodulating properties.
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immune responses is crucial for developing effective 
biomarkers and the treatment of COVID-19.

The correlation between oxidative stress / inflam-
matory pathway and COVID-19 

Increases in Reactive Oxygen Species (ROS) and 
Reactive Nitrogen Species (RNS) along with the en-
hanced production of pro-inflammatory factors like 
IL-6, TNF, and IL-8 from alveolar macrophages and 
bronchial epithelial cells are among the most important 
mechanisms involved in chronic pulmonary obstruction 
disease, ARDS, and Acute Lung Injury (ALI) [33, 34]. 
These events may eventually lead to the destruction of 
the alveolar wall and the collapse of the small airways 
through the activation of neutrophils and macrophages 
[35]. Neutrophils initiate aggressive responses following 
the detection of DAMPs, which lead to their rapid immi-
gration to the infected region, the circulating Neutrophil 
Extracellular Traps (NETs) release, and the ROS release 
and production of an oxidative eruption [36]. Patients 
demonstrated increased levels of NET as an indicator of 
neutrophil activation [37].

Also, exposure to pro-oxidants results in the nuclear 
displacement of redox-sensitive transcription factor (Nu-
clear factor erythroid 2–related factor 2; Nrf2), which 
activates antioxidant defense. However, viral respiratory 
infections can cause inflammation and oxidative damage 
by inhibiting Nrf2-dependent pathways and activating 
NF-κB factor signaling [38].

To date, neutrophils have been thought to migrate unilat-
erally from the inside of vessels to tissue outside of vessels, 
but recent investigations have revealed that neutrophils can 
re-emigrate into the blood circulation during the reverse 
Transendothelial Migration (rTEM) process. rTEM neu-
trophils, due to their special physical property like relative 
rigid appearance, may postpone their passage into tissue 
microvasculature and lengthen sinusoids contact. 

Consequently, these neutrophils may be mechanically 
captured in the main organ microvasculature, resulting 
in different organ injuries and failure of multiple organs 
[36]. Dysregulated neutrophils via producing excessive 
ROS can promote a regional inflammatory response that 
eventually develops systemically, explaining how they 
participate in systemic disorders like atherosclerosis and 
thrombosis [39]. Inadequate activation of neutrophils is 
also a general description of distributed capillary leak-
age syndrome and vascular thrombosis observed in se-
vere cases of COVID-19 [40]. Furthermore, the lipids 
composition of the membrane, cytoplasmic proteins, and 

transmembrane receptors like integrin could be affected 
by the over-production of ROS in numerous cells. Spe-
cially, these outcomes affect Red Blood Cells (RBCs) 
function, which may lead to inefficiencies. Initially, ex-
cess ROS affects the RBCs membrane. Increased ROS 
levels can oxidize polyunsaturated fatty acids, causing a 
marked change in the transverse and lateral distribution 
and organization of membrane lipids. Also, the oxygen 
and carbon dioxide diffusion as well as RBC’s ability to 
deform the capillary could be affected by the mentioned 
biophysical and biomechanical changes in the RBC 
membrane, which subsequently can lead to thrombo-
sis. Neutrophil reactivation in response to modifications 
of the RBC membrane also exacerbates the considered 
defective circle [41]. Figure 1 depicts the mentioned 
SARS-CoV-2 immunopathology pathways. 

Finally, these changes resulted in pulmonary gas ex-
change decline following endothelial damage, increased 
permeability of pulmonary capillaries, and pulmonary 
edema [42]. Various human and experimental model 
studies with severe septic shock demonstrate that su-
peroxide (O2-) and peroxynitrite (ONOO-) hyperpro-
duction and release lead to heart, lung, liver, and brain 
failure [43]. Despite insufficient clinical data, many viral 
diseases such as SARS-CoV are accompanied by mod-
erate to severe septic shock, which may enhance ROS 
and RNS production. These molecules’ overproduction 
is correlated with high expression of NADP oxidases, 
inducible Nitric Oxide Synthase (iNOS), xanthine oxi-
dase, and cyclooxygenase-2 which activate transcription 
factors such as NF-κB, thereby intensifying the inflam-
matory response of the host [44, 45].

O2- and ONOO- mediators cooperate as primary me-
diators in inducing inflammatory interleukins produc-
tion. Besides, O2- and ONOO- mediators will continue 
to overexpress the ROS and RNS, resulting in mitochon-
drial respiration interference because mitochondrial dys-
function usually occurs in a state of septic shock [46].

On the other hand, the escape of viruses from innate 
immune responses, particularly inhibition of interferon 
production, will induce oxidative stress. The IFN-I/III 
low levels cause long-term proliferation of the virus, 
resulting in the facilitation of oxidative stress. It is of-
ten employed by respiratory viruses [47], and modified 
oxidized proteins have been found in bronchoalveolar 
lavage (BALs) from patients with ARDS or cases at risk 
for ARDS [48]. These observations indicate a disbalance 
between the production of ROS by enzymes like Nico-
tinamide Adenine Dinucleotide Phosphate (NADPH) 
oxidase and the clearance of ROS by endogenous an-
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tioxidants [49]. This disbalance can deviate specific in-
nate immune responses (IFN-I/III) of the virus to less-
specific but compensatory antiviral immune responses 
derived from the redox-sensitive NF-κB transcription 
factor [50]. Also, tissue injury and inflammation prog-
ress follow ROS elevation. An increase in ROS leads to 
the oxidation of lipids, DNA, and protein, which serve 
as DAMPs [51, 52]. Oxidative stress caused by the virus 
accompanied by virus-infected cells necrosis stimulates 
the oxidized endogenous ligands release and production 
that function as potent DAMPs and toll-like receptors 
(TLRs) recognized them [53]. In a virus-induced ALI 
mouse model, oxidative stress prompts pulmonary dam-
age by rearranging the NF-κB-induced pro-inflammato-
ry factors production like IL-1β, IL-8, TNF-α, and adhe-
sion molecules [54].

Older people are more vulnerable to COVID-19 [55]. 
Pathogenic viruses that infect the respiratory system, like 
SARS-CoV-2, may significantly enhance ROS produc-
tion in the elderly, and their levels reach a certain thresh-
old, leading to activation of NF-κB and damage to in-
flammatory tissue [56]. Furthermore, the more unusual 
male susceptibility to oxidative stress [57] may support 
the point that men, compared to women, are more pre-
disposed to severe COVID-19 [58, 59].

SARS-CoVs can also lead to lymphopenia due to in-
creased Fas signaling-dependent apoptosis in lympho-
cytes. Besides virus-induced Fas-dependent apoptosis, 
a decrease in T cell counts can further be due to oxida-
tive stress [60, 61], usually observed in COVID-19 and 
ARDS [54, 62]. Preoxidative stimuli also lead to the 
necessary regulatory proteins oxidation in T cells like L-
plastin and cofilin [60, 61, 63, 64]. As a result, T cells be-
come highly activated or even die. As mentioned in the 
previous sections, activated neutrophils and MPS cells 
are primarily responsible for the widespread diffusion of 
ROS to lung tissue, and ROS itself will enhance the NET 
formation and eventually further tissue damage. In addi-
tion, massive secretion of TNF-α during cytokine storm 
can potentiate ROS production by activating NADPH 
oxidases [65]. Also, ROS production induced by TNF-α 
can help spread the signs of COVID-19 to other tissues 
like the brain [66].

ROS production imbalance is also crucial in the patho-
genesis of comorbidities [67], suggesting the importance 
of oxidative stress in the progress of severe type of CO-
VID-19. Increase in glucose levels as well as ischemia-
reperfusion during ventilation in patients with CO-
VID-19 increases the production of ROS. The elevated 
levels of ROS can cause NLRP3-dependent pyroptosis, 

which is more amplified in the bacterial lipopolysac-
charides (LPS) presence [67]. In addition, SARS-CoV 
protein-like papain significantly stimulated the PAP/
MAPK/STAT3 pathway in lung epithelial cells, resulting 
in promoter activation of TGF-β1. The effect mentioned 
above in vitro and in vivo is associated with the proper 
modulating of fibrotic responses [68].

ROS-dependent secretion of the TGF-β can also be in-
volved in the lymphopenia mentioned in COVID-19 be-
cause TGF-β is a dominant immune suppressant that acts 
on T cells. As a result, the pre-oxidative status in T cells 
(ROS elevation and GSH decline) increases the growth 
of Treg cells [69]. A relative expansion in Treg can also 
neutralize the T cell-dependent immune defense against 
SARS-CoV-2. In agreement with this hypothesis, studies 
have described that, unlike other T cells, cell populations 
of Treg in patients with COVID-19 are not diminished 
[70]. In general, oxidative stress may play an essential 
role in the pathogenesis of severe COVID-19. Accord-
ingly, antioxidants therapy can effectively bypass the se-
vere inflammation associated with oxidative statuses in 
patients with COVID-19 [71].

Treatment with antioxidant supplements

For a long time, antioxidant therapy has been suggested 
for septic shock. Hippocrates applied myrrh (Commiph-
ora mukul) for anti-inflammatory goals and a medicinal 
therapeutic approach [72]. Antioxidant therapy is cur-
rently utilized for several disorders [73], like the failure 
in the respiratory system, particularly ALI or ARDS, 
which their results have recently been published in a 
meta-analysis study [74].

In this way, antioxidant therapy could probably be ap-
plied for COVID-19 by promoting supportive lung pro-
tection and ventilation strategies that are crucial to im-
proving clinical outcomes in COVID-19 patients. Figure 
1 shows the effective roles of antioxidants in neutralizing 
SARS-CoV-2 immunopathology pathways. 

Blocking the distinct pro-inflammatory cytokines with 
antibodies or using just antioxidants, due to the complex 
nature of the disease, has not been confirmed to be very 
useful, and it only acts as a support to ventilation and 
other medications [75].

Nowadays, combining antioxidants and anti-inflamma-
tory substances through using natural compounds ame-
liorates systemic problems. Many natural compounds 
have been used for centuries in the Asian subcontinent 
with limited toxicity, and they showed multiple effects 
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Table 1. Experimental and clinical outcomes of antioxidants 

Treatment Experimental Outcomes Clinical Outcomes Ref.

Melatonin

Antioxidant and anti-inflammatory effects in the lungs:
a. Significant decrease in nitrite/nitrate levels 
b. Suppression of proinflammatory cytokine elevation 
(IL-6, IL-8, and TNF-α)

Reduce the severity of ARDS in preterm 
newborns [81]

Melatonin

Reduces NO, MDA, and OH levels 
Increases the activities of GSH and SOD 
Inhibits proinflammatory cytokines production (TNF‐α) in 
RSV‐infected mice

Ameliorates RSV‐induced lung inflammatory 
injury [84]

Melatonin

The mitophagy induction and activation through the 
Sirt3/FOXO3a/Parkin signaling pathway lead to a de-
crease in:
a. The NLRP3 inflammasome function 
b. The consequent IL-1β release within atherosclerotic 
lesions

Marked attenuation of 
a. Atherosclerosis plaque size
b. Vulnerability

[89]

Melatonin

Represses and decreases:
a. The NLRP3 inflammasome activation via both sup-
pressing the extracellular histones release and activation
b. Macrophages and neutrophils infiltration into the lung

Marked reduction of the pulmonary injury [90]

Melatonin

Interferes with the NLRP3 pathway 
Reduces inflammation and oxidative stress
Enhances mitochondrial function at the levels of nonsep-
tic aged mice

Blunts the septic shock [96]

Melatonin

Inhibits TGF-β1-induced fibrogenesis in lung fibroblast 
by repressing YAP1 translocation from the nucleus to the 
cytoplasm as the main downstream effector of the Hippo 
pathway

Markedly attenuates bleomycin (BLM)-
induced experimental lung fibrosis in mice [117]

Melatonin
Decreases ROS and VEGF release
Inhibits cell viability and tube formation of HUVECs 
through the downregulation of HIF1α/ROS/VEGF 

Serve dual roles in the inhibition of angio-
genesis
Maybe a possible anticancer agent in solid 
tumors with abundant blood vessels

[122]

Melatonin and 
Vitamin C and D - Improved clinical outcomes in COVID-19 

patients [123]

Vitamin C
Significant reduction in inflammatory parameters, includ-
ing D-dimer and ferritin
Leaning to minimizing FiO2 requirements

Intravenous administration of vitamin C 
reduces 
a. Mortality
b. The requirement for mechanical ventila-
tion in COVID-19 patients

[128]

Vitamin C

In sepsis and ARDS patients, a 96-h vitamin C infusion did 
not notably affect:
a. Improving organ dysfunction scores 
b. Changing inflammation markers and vascular damage

Fifteen grams of vitamin C for 4 days may 
reduce mortality [129]

Vitamin C

Severe septic patients were examined with two distinct 
vitamin C doses (low dose and high dose for 24 hours) 
- Both treatment groups: 
a. Elevated plasma levels of vitamin C
b. Any side effects are reported
c. A greater decrease in SOFA, C-reactive protein (CRP), 
procalcitonin, and thrombomodulin

Diminishes the mortality rate during 28 
days:
a. The lower dose (38.1%) 
b. The higher dose (50.6%)
c. The placebo (65.1%) 

The mechanical ventilation time or days 
in the ICU hospitalization were similar 
between groups

[129]

Vitamin C -
Decreases 28-day mortality rate
Improves the oxygen care situations in 
patients with COVID-19

[135]

Selenium Sodium selenite reverses the elevation in platelet aggre-
gation and thromboxane B2 Significant decreases in the glucose level [140]

Selenium
Decreases in
a. The SOFA score
b. The CRP levels 

Restitute serum levels of selenium to levels 
corresponding to enzymatic saturation 
and the Swedish reference interval for all 
patients hospitalized in the ICU on day 5

[145]

Trace elements 
/zinc; sele-

nium; vitamins 
(vitamin C; 
β-carotene; 

α-tocopherol)

Significant enhancement in vitamin and trace element 
serum levels after the six months of supplementation

The administration of trace elements 
(selenium and zinc) alone or accompanied 
with vitamins:
a. Significant decrease in infection during 
the two years of supplementation
b. In low doses:
Immediately correct corresponding defi-
ciencies in the elderly
c. Zinc and selenium decrease infection

[146]
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Treatment Experimental Outcomes Clinical Outcomes Ref.

Selenium (50-
100 µg/ day)

Improved immune function 
a. Increases T lymphocyte activity (higher IFN-γ produc-
tion)
b. Enhanced T cells proliferation
Strengthened cytosolic glutathione peroxidase

More immediate elimination of the polio-
virus: 
The poliovirus reverse transcriptase-poly-
merase chain reaction products extracted 
from the feces of the supplemented 
patients contained a lower number of 
mutations

[147]

Selenium-
enriched yeast 

capsules

A dose-dependent improvement of:
a. T cell proliferation
b. IL-10 and IL-8 levels contradicted the positive effects 
with low content of granzyme B in CD8 cells did not af-
fect specific antibody responses to mucosal influenza

Both beneficial and harmful effects on cel-
lular immunity to flu 
It was affected by the form of selenium 
supplemental dose and delivery matrix

[148]

Selenium
Significant higher selenium levels in surviv-
ing COVID patients’ specimens as compared 
with non-survivors

[150]

Selenium
A notable association between the cure 
rate of COVID-19 patients and background 
selenium status in cities outside Hubei

[151]

NAC Decreases in the plasma and red cell glutathione concen-
trations in patients with ARDS 

Increases oxygen delivery
Improves lung compliance
Eliminates pulmonary edema

[155]

Liposomes (L-
NAC)

Animals exposed to LPS decrease:
The chloramine concentration, lipid peroxidation, ACE 
damage, pneumonia, and thromboxane, leukotriene B2 
and B4 concentrations in the lungs 

Attenuates the LPS-induced lung injuries [160]

NAC

Improves oxygen delivery time
No effect on mechanical ventilation times-
pan
Diminishes rate of mortality 

[161]

NAC Reduces IL-8 and soluble receptor TNF p55 levels

Improves oxygen delivery and lung statics 
compliance
Decline the time of mechanical ventilation 
and the duration of hospitalization in the 
ICU

[162]

NAC

Decreases in
NF-κB activation
a. IL-8
b. ICAM-1 and IL-6 displayed no significant difference 

It may be helpful in slow-downing the 
inflammatory response to sepsis [163]

NAC The level of microalbuminuria was similar in both groups 
of NAC-treated and control 

Elevation in SOFA, particularly cardiovascu-
lar failure in NAC-treated group study [164]

NAC
Improves oxidative stress parameters (decreased MDA 
and enhanced TAOC)
Decreases proinflammatory cytokines like TNF-α

NAC treatment may help decrease oxidative 
and inflammatory damage in pneumonia 
patients

[168]

Glutathione Blocking NF-κB and developing “cytokine storm syn-
drome”

Decreases of respiratory distress in the 
pneumonia of COVID-19 [171]

Glutathione and 
vitamin E and B Maybe effective in COVID-19 treatment [180]

Vitamin E Significantly normalizes liver enzymes levels and neutral-
izes HBV-DNA

Positive effects on chronic hepatitis B treat-
ment [181]

Vitamin E and C Improves the resistance of LDL to oxidative stress by 
almost 30% 

Reduces:
a. The mechanical ventilation days 
b. 28-day mortality

[183]

Vitamin E and C Maintaining cell membrane stability Sustaining a compe-
tent immune response against infection

Reduces: 
a. The incidence of ARDS or pneumonia 
after surgery
b. The organ failure
c. The progression to death within 28 days

[184]

NLRP3: NLR family pyrin domain containing 3; SOFA: Sequential Organ Failure Assessment ; CRP: C-Reactive Protein; ARDS: Acute 
Respiratory Distress Syndrome; LPS: Lipopolysaccharides; ACE: Angiotensin-Converting Enzyme; TNF: Tumor Necrosis Factor; 
ICAM: Intercellular Adhesion Molecule 1; NAC: N-acetylcysteine; NO: Nitric Oxide; MDA: Malondialdehyde; TAOC: Total Anti-
oxidant Capacity; GSH: reduced Glutathione; SOD: Superoxide Dismutase; VEGF: Vascular Endothelial Growth Factor; HUVECs: 
Human Umbilical Vein Endothelial Cells
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like activating the mechanisms of antioxidant defense in 
addition to inhibiting pro-inflammatory signaling. How-
ever, it is crucial to conduct human experiments to ex-
amine the pharmacokinetics and pharmacodynamics of 
these compounds before using them as a treatment [71, 
76] (Table 1). In the present review study, the use of sev-
eral antioxidants combination will be described below 
that may be helpful in the treatment of COVID-19.

Melatonin 

Melatonin is a hormone composed of the amino acid 
tryptophan, synthesized in the pineal gland and is in-
volved in regulating circadian rhythms, including sleep 
and wakefulness, as well as regulating blood pressure. 
The antioxidant and anti-inflammatory characteristics of 
melatonin are its main therapeutic properties [77, 78].

Melatonin has very potent antioxidant properties. It 
binds to at least 10 free radicals per molecule, while 
classical antioxidants, like vitamins E and C, are at-
tached to only one substance [79]. Furthermore, mela-
tonin with high bioavailability can penetrate the placenta 
and Blood-Brain Barrier (BBB) [80]. The melatonin’s 
antioxidant features are indirectly correlated with the 
enhanced function of glutathione peroxidase, superox-
ide dismutase, catalase, and glutathione reductase. In a 
study by Guito et al., melatonin was used to treat new-
borns with respiratory disorders, and its antioxidant and 
anti-inflammatory effects were observed in the lungs 
[81]. The antioxidant effect is achieved via enhancing 
the function of antioxidant enzymes, including superox-
ide dismutase, and intensifying the effect of other anti-
oxidants. Melatonin is not antiviral, but due to its anti-
inflammatory and antioxidant properties, it has indirect 
antiviral effects [82]. There is considerable evidence to 
suggest that melatonin limits viral disease, so it has been 
used in respiratory disease and viral infections [82]. Wu 
et al. described the positive effects of melatonin in over-
coming virus-induced ARDS in 2019 [83, 84].

Because inflammatory responses represent an impor-
tant role in the pathology of COVID-19, many studies 
are used and analyzed the anti-inflammatory effects of 
melatonin to control this disease. Owning to the un-
known molecular biology of SARS-CoV-2, SARS-
CoV-1 data are used in this field. The direct interaction 
of ORF8b encoded viral protein with the NLRP3 during 
SARS-CoV-1 infection [85] activates the components of 
the inflammasome, including ASC adapter protein and 
caspases 4, 5, and 11. The event mentioned above results 
in cell membrane demolition and diffusion of inflamma-
tory cell contents to the extracellular area [86], in addi-

tion to concomitant induction of pro-inflammatory cyto-
kines (like IL-18 and IL-1b) [87]. Therefore, inhibition 
of pyroptosis by inhibiting NLRP3 is a necessary step in 
pulmonary infections. A study of the inhibition mecha-
nism of NLRP3 [88] declared that melatonin acts as an 
inflammatory inhibitor of NLRP3 [89]. In the bacterial 
pneumonia model, i.e., the ALI mouse model induced 
by LPS, it has been determined that melatonin strongly 
suppresses pneumonia by intervening with the NLRP3 
inflammatory pathway and preventing the pyroptosis of 
macrophages [90]. Recent studies suggest that melato-
nin may be an efficient pyroptosis inhibitor and related 
pathologies [91-95]. According to clinical reports of CO-
VID-19, people with ALI and ARDS are also at high risk 
for septic shock and cardiac arrest. Volt et al. reported 
that melatonin administration could stop septic shock 
through the NLRP3 pathway [96].

One of the most critical effects of melatonin, which 
is controversial, is the regulation of circadian rhythms, 
including sleep and wakefulness. COVID-19 leads to 
long-term progressive stress, anxiety, and sleep depriva-
tion that require systematic scientific analysis.

The body’s immunity and the individual’s ability to 
combat COVID-19 and other infections are affected by 
the strong adverse effects of these factors. Some factors, 
such as stress and sleep deprivation, can have dual effects 
on the immune system function. The duration of exposure 
to these factors determines how they affect the immune 
system. Short-term stress has immunomodulatory effects 
compared to continued stress that represses immunity.

Chronic stress decreases the number and function of 
immune cells and the immune-suppressive mechanism 
(like enhancing the number or activity of Tregs), and 
the inflammatory response [97]. Short-term and chronic 
sleep deprivation also exert similar effects like stress 
on the immune system. Lack of long-term sleep causes 
more negative effects on the immune system, while lack 
of short-term sleep causes a hormonal effect. 

The immune system has its rhythms like the nervous 
and endocrine systems. For example, the peak of progen-
itor cell proliferation toward their subsequent differentia-
tion into macrophages and granulocytes coincides with 
the melatonin overnight release. Phagocyte function pro-
gresses simultaneously as the nocturnal melatonin peak is 
based on circadian rhythm [98]. Furthermore, a reduction 
in Natural Killer (NK) cell counts and function at night, 
accompanied by anti-inflammatory cytokines, are corre-
lated with a simultaneous increase of pro-inflammatory 
cytokines and an increase in T cell number [99].
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The proinflammatory effect increases over a limited 
period (overnight only) and is offset by a robust anti-
inflammatory response that is prevalent during the day. 
In lack of sleep, a significant enhancement in proinflam-
matory cytokine levels has been observed: duplicating 
cytokine IL-1b mRNA levels [100], increasing IL-6 and 
TNF-α receptor levels, and decreasing IL-10 levels [98]. 
Interestingly, lack of sleep results in several chronic in-
flammatory diseases like cardiovascular, metabolic, cog-
nitive, and other diseases [101, 102].

Insomnia for 48 hours decreases lymphocyte prolifera-
tion, and sleep deprivation for 72 hours reduces phago-
cyte activity [103]. In normal volunteers, sleeping less 
than six hours a week diminishes phagocytic neutrophil 
count, levels of NADPH oxidase, and CD4+ T cells, 
which are required for resistance against infections and 
appropriate responses to vaccines. NADPH oxidase lev-
els remain low even one week after compensation of 
sleep deprivation, indicating long-term effects of lack 
of sleep [104]. In addition, individuals with a lack of 
sleep who were vaccinated against the influenza A virus 
showed significantly lower antibody levels than those 
vaccinated without a lack of sleep [105].

Limited immune responses to vaccines have also 
been reported in immunosenescence groups [106, 107]. 
Therefore, adjuvant compounds are required to improve 
the vaccine’s effectiveness in the elderly during the CO-
VID-19 pandemic, and melatonin as one of these agents 
may be used for this purpose [108]. NK cells, CD4 T 
cells, besides cytokine production, are crucial for an ef-
ficient response to the vaccine, which is enhanced by 
melatonin. Consequently, melatonin improves age-relat-
ed immunity. In young populations, prophylactic vacci-
nation via prophylactic/therapeutic melatonin may be a 
practical approach due to the immunomodulatory char-
acteristics of the melatonin [109].

Melatonin, as an immune-modulating antiviral agent, 
suppresses paralysis and mortality in mice infected with 
poisonous doses of encephalomyocarditis virus [110]. 
It is declared that inappropriate sleep diminishes the in-
dividual’s ability to resist viral infections. Persons with 
insomnia are predisposed to the common cold [111], and 
melatonin may be a contributing factor in this condition 
[112]. Therefore, melatonin consumption can improve 
the body’s protective functions against infections.

Pulmonary fibrosis is one of the most common com-
plications of COVID-19, which may progress to severe 
cardiopulmonary and pulmonary hypertension disease. 
Mechanical ventilation has some side effects like pulmo-

nary fibrosis [113], which leads to mesenchymal-epithe-
lial changes due to applied mechanical stress [114].

Animal studies have revealed that inhibiting oxidative 
stress as an additional fibrosis risk factor [115] could 
prevent fibrosis development [116]. The antioxidant role 
of melatonin should be investigated for preventing com-
plications of COVID-19 in future studies. The ability 
of melatonin for patients’ protection against pulmonary 
fibrosis via the Hippo/YAP pathway has also been previ-
ously described [117].

Given that COVID-19 has already infected millions of 
people whereas SARS-CoV-1 infected just tens of thou-
sands, using melatonin to inhibit pulmonary fibrosis may 
even be more influential than reducing acute infection of 
SARS-CoV-2 [118]. Lack of long-term sleep resulted in 
oxidative stress development and decreased function of 
antioxidant enzymes [119, 120]. As a result, prolonged 
lack of sleep or chronic stress diminishes immune sys-
tem function besides increasing oxidative stress and 
inflammatory setting. Therefore, people with chronic 
stress or lack of sleep are prone to infection [121]. Con-
sequently, returning to routine sleep habits and decreas-
ing anxiety by using melatonin may promote community 
health during a COVID-19 pandemic.

As mentioned before, severe inflammation and immune 
responses induce the apoptosis of lung tissue epithelial 
and endothelial cells and also increase the production of 
Vascular Endothelial Growth Factor (VEGF) factor, which 
through angiogenesis exacerbates pulmonary edema and 
recalls more immune cells and ultimately provokes the 
disease. Experimental data propose that melatonin medi-
ates VEGF suppression in vascular endothelial cells [122].

Recently, Hancock et al. examined COVID-19 patients 
treated in their disease course with melatonin, vitamin D, 
and vitamin C. From these patients, old and high-risk pa-
tients received at least two intravenous doses of vitamin 
C. Also, the active cancer patients took a higher dose of 
vitamin C. They observed that melatonin and vitamin C 
and D supplementation unexpectedly improved clinical 
outcomes in COVID-19 patients, including patients with 
various risk factors [123]. As a result, melatonin pro-
motes sleep quality by decreasing vascular permeability, 
reducing anxiety, regulating blood pressure, and finally 
improving the COVID-19 patients’ clinical outcomes. 
Therefore, melatonin can effectively regulate inflamma-
tion and oxidation and improve the condition of patients.
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Vitamin C

Ascorbic acid, known as vitamin C, is a cofactor for 
many enzymes and is a water-soluble vitamin. Vitamin 
C is required to synthesize collagen, proteoglycans, and 
intercellular matrix components. Also, its antioxidant 
properties help purify active oxygen species, inhibit oxi-
dative stress effects, and reinforce the immune system. 
In addition to boosting the immune system response and 
controlling cytokine storms, vitamin C plays a protec-
tive role against viral infection. Numerous studies have 
reported that the consumption of high vitamin C concen-
trations helps remove the virus [124].

Carr et al. reported that vitamin C, with its antioxidant 
effects, could improve pneumonia and prevent lower re-
spiratory tract infections under certain conditions [125]. 
Studies have reported that lower respiratory tract infec-
tions could also be caused by COVID-19. Therefore, vi-
tamin C can be one of the possible effective options for 
its treatment [126]. A recent study by Cheng et al. found 
that high-dose intravenous injection of vitamin C (200 
mg/kg) significantly reduced mortality by reducing oxi-
dative stress, which is caused by cytokine storm [127]. 
It is worth noting that taking high doses of vitamin C 
is safe. Heidra et al. also reported that intravenous ad-
ministration of vitamin C (1 g every 8 hours for 3 days) 
reduced mortality and the requirement for mechanical 
ventilation in COVID-19 patients [128]. A recent clini-
cal trial in the United States on 167 patients with ARDS 
reported that taking 15 g of vitamin C for 4 days may 
reduce mortality [129]. Therefore, vitamin C with the 
mentioned properties can be used as an appropriate op-
tion to control the condition of patients with respiratory 
distress syndrome.

The sodium-dependent vitamin C transporter is the 
main transporter on the intestine’s surface that allows 
vitamin C to be adsorbed at the intestinal surface. Sub-
sequently, the glomerulus easily filtered it and absorbed 
it again on the proximal surface of the tubule via iden-
tical transporter [130]. Vitamin C suppresses NADPH 
oxidase, which consequently inhibits induction of O2- 
and iNOS mRNA expression. Consequently, OONO- 
and O2- production is prevented by vitamin C. It also 
hinders the tetrahydrobiopterin oxidation (cofactor of 
eNOS) and prevents the separation of the link between 
NO and eNOS, which is involved in the production of 
O2-. In this way, vitamin C diminishes pathological va-
soconstriction and lack of vascular permeability [45]. In 
addition, vitamin C restrains the protein phosphatase 2A 
activation, which causes occludin to be dephosphorylated 
and maintains tight junctions integrity. So another effect 

is the conservation of mitochondrial permeableness via 
stimulating apoptotic pathways [131]. Besides, vitamin C 
suppresses TNF-a production and the expression of Intra-
cellular Adhesion Molecules (ICAMs), which improves 
the leukocyte’s adhesion to microcirculation [132].

Lowered plasma levels of vitamin C are observed be-
cause of acute or chronic consumption, poor intake, en-
hanced oxidative stress, or loss of vitamin [133]. There is 
a close correlation between levels of this vitamin and the 
degree of organ failure and mortality [134]. In one study, 
severe sepsis patients were evaluated after consuming 
two distinct doses of vitamin C (50 mg/kg in 24 h and 200 
mg/kg in 24 h) compared with a placebo. Both treatment 
groups showed elevated plasma concentrations of vita-
min C without side effects. In addition, patients receiv-
ing vitamin C showed a greater decrease in Sequential 
Organ Failure Assessment (SOFA), C-Reactive Protein 
(CRP), procalcitonin, and thrombomodulin compared 
to the placebo group. The mortality rate during 28 days 
was also reduced in the group with the lower dose of 
vitamin C (38.1%) compared with the high-dose group 
(50.6%) and the placebo group (65.1%). The mechanical 
ventilation time or days in the ICU hospitalization were 
similar between groups. In the initial study of patients 
with sepsis and ARDS, 96 hours of vitamin C injection, 
unlike the placebo, did not progress to vascular injury, 
dysfunction of organs, and increased inflammatory mark-
ers. Finally, the authors conclude that a more comprehen-
sive investigation is required to assess the potential role 
of vitamin C in ARDS outcomes [129]. Recently, Gao 
et al. reported that high-dose vitamin C (6 g/12 h intra-
venous infusion on the first day and 6 g once for the fol-
lowing 4 days) might decrease 28-day mortality and im-
prove oxygen care situations in patients with COVID-19 
without adverse effects [135]. In contrast, an open-label, 
randomized, and controlled trial on patients with severe 
COVID-19 infection reported that high-dose intravenous 
vitamin C (6 g daily) did not yield significantly better 
outcomes. There was no significant difference in levels 
of SpO2 at discharge time, the ICU hospitalization period 
time, and mortality among the two groups [136].

Selenium

Selenium is a rare metallic element with a wide range 
of pleiotropic effects, including antioxidant properties. 
Selenium is mainly supplied through food. Selenium as 
an antioxidant compound plays a critical role in reduc-
ing free radicals and the effects of oxidative stress. Anti-
inflammatory effects are considered other properties of 
selenium. Its high concentration has also shown antivi-
ral properties. The biologically active form of selenium 
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in the body is selenoprotein (glutathione peroxidase); 
each molecule contains 4 selenium atoms [137]. Sele-
nium plays a significant role in immunogenesis by in-
hibiting NF-κB signaling, a key mediator in immune and 
inflammatory responses, especially the production of 
proinflammatory cytokines affecting the cytokine storm 
of COVID-19. Selenium also preserves the function of 
endothelial cells [138] and may involve in SARS-CoV-
2-induced endotheliitis [139]. In addition, selenium’s 
anti-thrombotic features have also been identified [140].

Studies have shown that isolated fibroblasts from 
older people are four times more susceptible to oxida-
tive stress than younger cells and uptake more selenium. 
Considerably, adding a high selenium concentration to 
these cells enhances glutathione peroxidase function and 
reduces ROS [141]. In the elderly, low or borderline se-
lenium levels affect life span and mortality [142-144]. 
In Sweden, 71% of older people hospitalized in ICU are 
selenium deficient [145]. Selenium supplementation sig-
nificantly diminishes infection in the elderly [146].

Broome et al. found that selenium (50-100 µg/d) im-
proves immune function, strengthens cytosolic gluta-
thione peroxidase, increases T lymphocyte activity, and 
enhances T cells proliferation. Besides, selenium supple-
ments demonstrate quicker poliovirus clearance. This 
finding indicates that selenium can also help improve the 
condition of these patients [147].

Selenium deficiency is correlated with enhanced mor-
tality risk, poor immune function, and reduced percep-
tion, while higher concentrations of selenium or seleni-
um supplementation exhibit antiviral effects [137].

In a 12-week Randomized Clinical Trial (RCT) in 
healthy volunteers (minimum concentration <110 ng/
mL) with daily selenium-enriched yeast capsules, both 
beneficial and harmful effects were reported [148]. In 
this research, influenza vaccine immune response (im-
mune challenge) was evaluated in supplementation with 
selenium and placebo groups. Supplementation with se-
lenium caused a dose-dependent improvement in T cell 
proliferation, IL-10, and IL-8 levels, which contradicted 
the positive effects of low content of granzyme B in CD8 
cells. Besides, selenium supplementation did not affect 
specific antibody responses to mucosal influenza [148].

Selenium-derived compounds have also been used 
as therapeutic drugs. Interestingly, the organoselenium 
ebselen composition is one of them, which has antioxi-
dant characteristics and antibacterial, antiviral, and anti-
inflammatory properties [149].

By examining COVID-19 patients and selenium levels 
in a clinical trial (Deutsches Register Klinischer Studien, 
ID: DRKS00022294), Moghaddam et al. concluded that 
people living in areas with a limited or nutritionally re-
stricted selenium supply and COVID-19 patients with 
underlying or long-term illnesses are at risk for severe 
selenium deficiency, and it may be helpful to enrich their 
diet or take selenium supplements [150]. Zhang et al. 
also described a strong association between COVID-19 
treatment rates and selenium status [151].

To counteract the effects of SARS-CoV-2, it has been 
suggested that selenium should be administered more 
than the Recommended Daily Allowance (RDA), 200 to 
400 µg of selenium per day, which is almost equivalent 
to 600 to 1200 µg of sodium selenite [140]. Recent stud-
ies on hantavirus infection and sepsis in the ICU have 
exhibited remarkable tolerance to elevated doses of sel-
enite in acute care therapy [152-154]. This treatment ap-
pears appropriate and safe to supply the selenium stores 
in a short-term period of 2-3 weeks in these life-threat-
ening conditions [150].

N-acetylcysteine

N-acetylcysteine (NAC) is a vital alpha-amino acid 
synthesized in the body from the methionine metabolism 
and functions as an antioxidant. Clinical results recom-
mend that the antioxidant properties of N-acetylcysteine ​​
may be beneficial in acute respiratory infections treat-
ment or prevention. Clinical trial studies have reported 
that the administration of N-acetylcysteine can enhance 
oxygen exchange, improve pulmonary edema, and con-
sequently alleviate the condition of ARDS patients [155].

Glutathione, another main antioxidant, is synthesized 
by N-acetylcysteine [156]. Clinical trial investigations 
have suggested that N-acetylcysteine was applied as a 
glutathione precursor to restrict oxidative stress injury in 
the lung due to its ability to enhance intracellular gluta-
thione content. 

The main characteristic of many lung diseases is gluta-
thione metabolism changes in the alveoli and lung tissue 
[157]. N-acetylcysteine enhances glutathione synthesis, 
increases the transferase function of glutathione, and af-
fects free radicals [158]. Administrating N-acetylcyste-
ine reduces the IL-6, IL-8, soluble TNF receptor p55, 
and ICAM levels. The mechanisms mentioned above 
can be involved in the effective regulation of the inflam-
matory immune response [159].
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Another study has explained that applying liposomes 
(L-NAC) increases N-acetylcysteine uptake and intra-
cellular concentration. They also reported that intrave-
nous L-NAC (25 mg/kg) pretreatment results in high 
concentrations of non-thiol proteins and high levels of 
N-acetylcysteine in lung homogenates. Furthermore, 
supplementation with N-acetylcysteine in animals ex-
posed to LPS decreases the chloramine concentration, 
lipid peroxidation, ACE damage, pneumonia, and lung 
leukotriene B2 and B4 and thromboxane concentrations 
in the lung [160]. Another clinical trial study in patients 
with ALI or ARDS revealed that supplementation thera-
py for 4 days with 150 mg/kg N-acetylcysteine followed 
by 50 mg/kg N-acetylcysteine improves oxygen delivery 
from the first to the fourth day and reduced mortality. 
Nevertheless, this treatment has no known effect on me-
chanical ventilation [161]. 

Another similar study evaluated the effects of hemody-
namics on inflammatory markers in patients with septic 
shock following N-acetylcysteine treatment. The authors 
of this study reported that this treatment enhanced oxy-
gen delivery, improved lung statics compliance, and re-
duced the level of IL-8 and soluble receptor TNF-p55. 
On the other hand, the timespan of mechanical ventila-
tion and the duration of hospitalization in the ICU were 
also observed to be shorter in patients treated with N-
acetylcysteine [162]. 

Another study in patients with sepsis reported a de-
crease in NF-κB activation with a reduction in IL-8, but 
no significant difference was reported in ICAM-1 and 
IL-6 [163]. The other related research assessed micro-
albuminuria and organ failure in severe sepsis patients 
after N-acetylcysteine supplementation (50 mg/kg/4 h 
followed by 100 mg/kg/24 h). In this study, similar levels 
of microalbuminuria were observed in both groups; even 
the N-acetylcysteine group exhibited score elevation in 
Sequential Organ Failure Assessment (SOFA), notably 
cardiovascular dysfunction. Then, they declared that N-
acetylcysteine might not attenuate endothelial damage 
in severe clinical sepsis [164]. Another study discovered 
that intravenous supplementation (every 8 hours / 10 
days) at a dose of 70 mg/kg N-acetylcysteine or 62 mg/
kg 2-oxothiazolidine-4-carboxylate, a cysteine ​​prodrug 
(OTZ-procysteine), reduces heart rate index and duration 
of ALI. Nonetheless, N-acetylcysteine or OTZ supple-
mentation did not affect on mortality rate. The timespan 
of ALI may be shortened by this type of therapy [165].

N-acetylcysteine is a recognized mucolytic drug em-
ployed for bronchitis and COPD treatment an d  also re-
presses neutrophils’ NET formation in vitro [166]. Also, N-

acetylcysteine plays an effective role in inhibiting immune 
suppression of T cells in an oxidative setting; consequently, 
it could convert lymphopenia in COVID-19 [167].

In a randomized controlled trial in China on 39 patients 
with pneumonia, high-dose N-acetylcysteine treatment 
ameliorated parameters of oxidative stress (diminished 
Malondialdehyde (MDA) and enhanced Total Antioxi-
dant Capacity (TAOC) and decreased pro-inflammatory 
cytokine (TNF-α) [168].

Glutathione

Glutathione is synthesized by the cysteine amino ac-
ids, glutamic acid, and glycine in the liver. Glutathione is 
also one of the introduced antioxidants that can fight oxi-
dative stress conditions through complex mechanisms 
and also diminish the production of proinflammatory cy-
tokines [169]. Glutathione, along with selenium, forms 
the enzyme glutathione peroxidase, which, as mentioned 
before, plays an important antioxidant role in the body.

Evidence suggests that N-acetylcysteine and glutathi-
one can inhibit the activation of the NF-κB factor, which 
plays an important role in transcribing the genes of many 
inflammatory mediators associated with ARDS [170]. 
Therefore, N-acetylcysteine and glutathione may also 
be plausible treatments for COVID-19 patients. The ef-
fects of high-dose glutathione in two patients with new 
coronavirus pneumonia in New York City were recently 
investigated. Administration of glutathione (2000 mg) 
improved shortness of breath in these patients reason-
ably, and its regular use caused further relief of respira-
tory problems [171].

Glutathione plays a role in preventing ROS and their 
derivatives that damage vital components of cells. These 
derivatives include peroxides, lipid peroxides, free radi-
cals, heavy metals, and organic pollutants. Also, reduced 
Glutathione (GSH), due to the complex reaction of the 
SH group in its structure, participates in various bio-
chemical reactions, including the reduction of the disul-
fide bridge and making conjugated compounds through 
attachment to xenobiotics or endogenous molecules.

Once the GSH molecules reservoir is established, any 
unanticipated elevation in its consumption will lead to a 
free molecules reduction and the competitive pathways 
impairment. Indeed, GSH could be stolen from enzymes 
that used GSH as a substrate or cofactor. The current 
finding is related to describing how GSH deficiency can 
change the pathways affected in severe symptoms of vi-
ral infection. Among the various GSH activities, some 
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effective functions of glutathione on the exacerbated in-
flammation are involved in COVID-19, as well as the 
disease symptoms caused by it, including the followings:

1. One of the principal roles of GSH is cells’ protection 
from ROS by neutralizing and subsequently reducing 
ROS as the major signaling molecules involved in the 
inflammatory disorder’s development. The association 
between activation of proinflammatory cytokines and 
ROS production is well known [172]. ROS production 
by neutrophils at regions of inflammation also impairs 
endothelial function and causes tissue damage [173].

2. The GSH conjugation to xenobiotics takes place abun-
dantly in the body. The enzyme glutathione S-transferase 
catalyzes the conjugation of GSH to lipophilic xenobi-
otics and causes further drugs excretion or metabolism. 
The conjugation process is represented by N-Acetyl-P-
Benzoquinone Imine (NAPQI) metabolism as a reac-
tive metabolite produced by cytochrome P450 action on 
paracetamol (acetaminophen). After combining glutathi-
one with NAPQI, the resulting product is excreted [174].

3. GSH is employed as a substrate or cofactor for many 
enzymes. For example, prostaglandin H synthase, a rate-
limiting enzyme that produces thromboxane and pros-
taglandins, which are required for regulating vascular 
function, catalyzed the reactions that require GSH as a 
key cofactor [175]. Besides, Leukotriene C4 (LTC4), the 
important cysteinyl leukotrienes precursor, is catalyzed 
by the conjugating Leukotriene-A4 (LTA-4) with GSH 
by the enzyme leukotriene C4 synthase. These mole-
cules are dominant mediators in airway narrowing [176].

4. S-nitrosoglutathione (GSNO), a bioavailable Nitric 
Oxide (NO) source and an endogenous S-nitrosothiol in-
volved in NO signaling, is synthesized by GSH. GSNO 
production can be a stable source of NO that can prop-
erly transmit the NO signal [177]. Nitric oxide synthase 
eNOS and nNOS synthesize NO, which along with 
GSH, can efficiently regulate neuron and capillaries 
function and modulate blood flow based on local cal-
cium influx [178].

The competition among mentioned functions and sev-
eral other pathways that consume GSH, as well as se-
vere oxidative stress and inflammatory reactions due to 
infection with viruses, divert the main activity of GSH 
like nitric oxide-mediated vasodilatation. Also, when 
other biochemical processes utilize GSH, protecting the 
patient against the inflammatory process is not achieved, 
which can be lethal [178].

Vitamin E

Vitamin E is a combination of eight fat-soluble mol-
ecules that comprise four tocopherols, the most active 
form of vitamin E in humans, and four tocotrienols. Vi-
tamin E can also modulate the function of the immune 
system as an antioxidant, and its deficiency impairs both 
humoral and cellular immunity [179]. Investigation 
demonstrates that selenium is significantly involved in 
reducing the body’s free radicals with the participation 
of a group of vitamin E-related enzymes. A recent study 
by Linani et al. reported that administrating glutathione 
accompanied vitamin E was effective in COVID-19 
treatment [180]. In another randomized, low-population 
clinical trial (small pilot RCT), the positive effects of vi-
tamin E in chronic hepatitis B treatment were investigat-
ed. The results indicated that the vitamin E significantly 
normalized liver enzyme levels and neutralized HBV-
DNA in the experimental group. Same data have also 
been reported in clinical trials in the pediatric group after 
vitamin E administration, leading to immune responses 
to viruses and seroconversion of anti-HBe [181]. 

In addition, It is reported that vitamin C could im-
prove the antioxidant effects of vitamin E and inhibits 
the peroxidation of lipids, and suppresses lipid-soluble 
ROS. Under a DB-RCT study, the authors observed a 
decrease in mechanical ventilation days and a notable 
decline in mortality at 28 days in vitamin C- and vitamin 
E-treated patients [182, 183]. Simultaneous administra-
tion of vitamin E and vitamin C in patients after surgery 
reduced the ARDS or pneumonia progression, reduced 
organ dysfunction, and reduced the progression to death 
within 28 days. Although the antioxidant effect is the pri-
mary function of vitamin E, it also has other properties 
like maintaining cell membrane stability and sustaining 
a competent immune response against infection [184].

2. Conclusion

Complications of severe SARS-COV-2 include Acute 
Lung Injury (ALI), respiratory distress syndrome 
(ARDS), pulmonary failure, cardiac failure, septic 
shock, and sudden cardiac arrest that may happen within 
a few days. SARS-CoV-2 causes the death and damage 
of virus-infected cells and tissues as part of the virus rep-
lication cycle. Viral infection and proliferation in airway 
epithelial cells can lead to elevated pyroptosis, a possible 
stimulus for the ensuing inflammatory response. Fol-
lowing pyroptosis, a wave of local inflammation occurs, 
including an increase in the secretion of inflammatory 
cytokines and chemokines, which attract components 
of the innate immune system into the lungs. Among the 
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important components of the innate immune system, 
neutrophils are drawn into the infection region by these 
cytokines. By releasing toxic mediators, these cells pro-
duce extensive free radicals, ROS, and RNS (O2- and 
ONOO-) and ultimately cause oxidative stress damage 
to lung tissue.

Thus, the primary inflammatory responses are ac-
companied by cytokine storm and the recruitment of 
inflammation cells. Also, the inflammatory responses-
dependent oxidative stress exacerbates inflammation, 
the immune cells proliferation, and apoptosis induction 
in epithelial and endothelial cells that, subsequently in-
tensifies cytokine storm. Cytokine storm causes disease 
progression to the stage of ARDS or even death.

Because of the importance of the oxidative stress pro-
cess in the progression of infectious diseases, treatment 
based on antioxidants has been suggested in septic shock 
caused by many infections. Antioxidants are compounds 
that inhibit oxidation by terminating chain reactions. To 
balance oxidative stress, complicated systems of antioxi-
dants and enzymes must work together.

Despite the widespread use of antioxidant therapy to 
control various conditions, this treatment has not yet 
been experimented with in COVID-19. However, treat-
ment with antioxidants contributes to the improvement 
of respiratory failure, particularly in ALI or ARDS, as 
supportive strategies and lung-protective ventilation 
are the primary and ultimate goal of approaches to im-
proving the effectiveness of COVID-19 patients’ treat-
ment. Therefore, we suggest managing these medical 
conditions using substances with antioxidant properties 
(melatonin, vitamin E, vitamin C, N-acetylcysteine, glu-
tathione, and selenium) along with standard supportive 
treatments to control these medical conditions and re-
duce the mortality rate.
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