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Humic and Fulvic Acids Induced Thermodynamic and 
Structural Instability of Tyrosinase With Antiproliferative 
Effect on A375 Melanoma Cancer Cell Line

Background: The tyrosinase enzyme catalysis monophenols to melanin pigments through 
the melanogenesis process. For this reason, various inhibitors have been studied for enzyme 
regulations in melanogenesis abnormalities in both the food and cosmetics industries. In this 
study, the effect of humic acid (Hu) and fulvic acid (Fu) on the structure, activity, and stability of 
mushroom tyrosinase (MT) was investigated.

Methods: These two organic acids are the main components of soil humus. Assessment of 
the thermodynamic and structural stability of enzymes was obtained through thechemical and 
thermal denaturations and (8-anilino-naphthalene sulfonic acid) ANS fluorescence analysis. The 
Hu and Fu impact on A375 melanoma cancer cell viability was achieved by MTT assay.  

Findings: The results of enzyme half denaturation concentration (Cm), melting points (Tm), ΔG0 

values and external fluorescence emissions in the presence of Hu and FA proved the reduction 
of the thermodynamic and structural stability of MT by these compounds. The anti-proliferation 
effects of the compounds were confirmed by the inhibitory concentrations of 50% (IC50) of 
31.5 and 42.7 µM and 12.5 and µM at time points of 24 and 48 hours treatments of the A375 
melanoma cell line by Hu and Fu, respectively.

Conclusion: Humic and fulvic acids can be expected to contribute to advancing skin disorder 
science play a crucial role in tyrosinase related disorders and anti-cancer effects, and good 
candidates for medical applications. 
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1. Introduction

he Tyrosinase enzyme has been studied 
as a suitable model for various scientific 
topics. The first studies on this enzyme 
began in 1895 when the damaged edible 
mushroom was exposed to the air [1]. It 

was later named tyrosinase because of color changes [2]. 
The tyrosinase enzyme is a structure of copper-contain-
ing polyphenol oxidase that is involved in the process of 
melanogenesis. This enzyme is widely found in plants 
and animals [3]. This enzyme is responsible for catalyz-
ing the two continuous reactions of monophenolase and 
diphenolase. The cresolase activity occurred through the 
orthohydroxylation of monophenols, and in the catecho-
lase reaction, ortodiphenols were oxidized to otoquinon 
[4, 5]. Today, the known structure of tyrosinase is Agari-
cus bisporus, which is a hetero-tetramer of two heavy 
chains and two light chains with a total molecular weight 
of 120 kDa [6].

Tyrosinase plays a crucial role in the formation of mel-
anin and processes such as internal pigments and their 
browning in nature. Browning is the cause of changes in 
the properties of food products [7]. Normalin formation 
in the brain is another critical role of tyrosinase that can 
be used to control dopamine and be associated with neu-
ronal production in the brain. It may also be associated 
with Parkinson disease [8]. Tyrosinase is also used in im-
munoassay as an antigen to diagnose melanoma [9]. The 
role of this enzyme is known in wound healing, defense 
response, and important physiological processes. Mela-
nin produced by tyrosinase changes the color of the hair 
and the surface of the body. Thus, it protects the skin and 
eyes, resists ultraviolet rays, and prevents overheating 
internal tissues [10]. Mammalian tyrosinase is common-
ly found in melanocytes, which are pigment-producing 
cells found in the hair follicles, skin, and eyes [11, 12]. 
Tyrosinase function is affected and causes disorders such 
as epilepsy and albinism when it is diminished or de-
leted. Tyrosinase deficiency is connected with recessive 
autosomal disorders in both animals and humans [13]. 

Among many applications of tyrosinase inhibitors, the 
cosmetic industry can be mentioned, which are used due 
to their whitening effects on the skin. Kojic acid, hino-
cytol, natural hydroquinones, and cresolase are effective 
bleaching inhibitors, but they also have side effects. Al-
oesin and arbutin are now widely used in the cosmetics 
industry. These compounds have the inhibitory power of 
human tyrosinase [14]. 

As depicted in Figure 1, humic acid (Hu) and fulvic 
acid (Fu) are among two important molecules with cru-
cial biological functions. Hu has a variety of roles in the 
biological world; for example, by increasing cell wall 
permeability and accelerating the production of proteins 
and nucleic acids within the cell and other processes. 
It also helps the growth and proliferation of any other 
living organism. Hus is a group of large molecules and 
heavy polymers formed from the decomposition of or-
ganic matter, especially dead plants and animals. This 
molecule is also an influential factor in soil fertility. 
Since research on this molecule has determined that its 
structure contains active, weakly acidic, carboxyl ben-
zoic, and phenolic agents, which give Hu a superior 
chelating quality, in addition to high-capacity cation 
exchanges, heavy ions should also be considered. These 
macromolecules are soluble in alkali and insoluble in 
water, acids, and alcohols [15]. Significant effects of Fu 
products include the prevention of gastric ulcers, sei-
zures, and allergic reactions. They also have an active 
role in combating tumor cells. Fu is a yellow-brown sub-
stance found in natural materials such as peat, soil, coal, 
and water or lake streams. Fu is formed when plants and 
animals break down. Today, it is added to anti-dandruff 
shampoos and skin creams to treat acne, eczema, and 
psoriasis. It also has anti-inflammatory and anti-bacteri-
al effects, although these are among the effects of local 
Fu treatment. This substance is easily absorbed into the 
bloodstream. Fu can remove all toxins from the body, 
so it is now considered the first line of defense in treat-
ing skin diseases. Traditional medicine claims Fu can 
rehabilitate muscles, bones, and nerves and treat signs 
of aging such as arthritis, diabetes, allergic manifesta-
tions, and insanity [16]. Finding new candidates for anti-
browning to avoid low-cost agricultural products and 
new cosmetic and whitening agents for controlling me-
lanogenesis and the medical drugs for inhibition of skin 
unwanted browning and hyperpigmentation led us to de-
sign this study on Hu and Fu assessments on tyrosinase 
thermodynamic and structural stability and their impact 
on a cellular melanoma cancer A375 cell line. 

2. Materials and Methods

Mushroom Tyrosinase (specific activity 3,600 units/
mg, EC 1.14.18.1), L-DOPA, Hu, and Fu were pur-
chased from Sigma-Aldrich. Hu and Fu powders are sol-
uble in phosphate buffer (PBS; Na2HPO4 and NaH2PO4; 
10 mm; pH 6.8). In this study, isopropanol (2-propanol) 
was used to prepare enzyme and substrate solutions. All 
substances, such as enzymes, substrates, and inhibitors, 
were used in freshly prepared solutions.

T
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Enzyme thermal denaturation with differential 
scanning calorimetry 

Thermal denaturation of the tyrosinase enzyme was 
performed in the presence of Hus and Fus using dif-
ferential scanning calorimetry (DSC). This method can 
be used to obtain thermodynamic parameters of ligand-
protein interactions. DSC was performed using Nano 
DSC 3 (TA Instrument USA), and data analysis was per-
formed using TM-Nano analysis software in the pres-
ence of MT (40 units), HA, and FA concentrations of 
12 μM. Finally, after incubation in the cuvette for 3 min, 
thermal denaturation spectra were obtained at a rate of 
1°C per minute from 273-373K, as depicted in Figure 2. 
The changes in protein molar heat capacity (Cp) were 
illustrated at temperatures ranging from 273 to 373 K. 
In thermal denaturation, the melting point of a protein 
(Tm) is the temperature at which half of the proteins are 
denatured. 

Enzyme chemical denaturation with urea 

A Double beam UV 2100 model spectrophotometer 
was used to assess enzyme chemical denaturation by 
urea at an optical density of 280 nm. Gradual titration of 
the enzyme with urea as a chemical denaturant was used 
to evaluate enzyme chemical stability with and without 
the presence of Hus and Fus. The stability of the enzyme 
under chemical stress conditions was evaluated, and the 
free denaturation energy of Gibbs in the absence of de-
naturant (ΔGH2O), as an indicator of the chemical stability 
of the enzyme, was obtained based on a two-state model 
of denaturation (Equation 1).

1. Native (N)<=>Denatured (D) 

Assuming a two-state mechanism for enzymatic de-
naturation, the process can be explained by monitoring 
changes in enzyme absorbance at titration with urea and 
calculating the denaturation fraction (Fd), and determin-

Figure 2. Thermal denaturation of tyrosinase with and without the presence of humic and fulvic acids and the ΔCp spectra 
obtained using differential scanning calorimetry technique
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ing constant equilibrium (K), as shown below (Equation 
2 and 3).

2. 

Enzyme Chemical Denaturation With Urea   

A Double beam UV 2100 model spectrophotometer was used to assess enzyme 
chemical denaturation by urea at an optical density of 280 nm. Gradual titration of the 
enzyme with urea as a chemical denaturant was used to evaluate enzyme chemical 
stability with and without the presence of Hus and Fus. The stability of the enzyme 
under chemical stress conditions was evaluated, and the free denaturation energy of 
Gibbs in the absence of denaturant (ΔGH2O), as an indicator of the chemical stability 
of the enzyme, was obtained based on a two-state model of denaturation. 
                                               Native (N) <=> Denatured (D)    (1) 

Assuming a two-state mechanism for enzymatic denaturation, the process can be 
explained by monitoring changes in enzyme absorbance at titration with urea and 
calculating the denaturation fraction (Fd), and determining constant equilibrium (K), as 
shown below. 

 

𝐹𝐹� � ��� � �����
��� � ���             �2� 

                                              ������������������=  � � ��
������         (3) 

Yobs is the observed absorption variable parameter, and YN and YD are the absorption values 
for the enzyme in both normal and denatured states, respectively. The following equation 
for the Gibbs free energy standard (ΔG0) for enzyme denaturation is given: 

ΔG� � ������                 �4� 
 In the above equation, R is the universal constant of gases, and T is the absolute 
temperature. ΔG0 changes linearly with temperature (T) in a finite region. 

From the following equation, the values of ΔGH2O and D1/2 are calculated in the 
denaturation conditions for the enzyme alone and the enzyme in the presence of Fu and 
Hu.  

ΔG� � ΔG��� � � ���                   (5) 

Thermodynamic parameters such as ΔG (Gibbs free energy), ΔH (enthalpy), and ΔS 
(entropy) can be calculated by the main thermodynamic Gibbs free energy equation as 
below:  
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Yobs is the observed absorption variable parameter, 
and YN and YD are the absorption values for the enzyme 
in both normal and denatured states, respectively. The 
following equation for the Gibbs free energy standard 
(ΔG0) for enzyme denaturation is given (Equation 4):

4. ΔG0=-RTlnK

 In the above equation, R is the universal constant of 
gases, and T is the absolute temperature. ΔG0 changes 
linearly with temperature (T) in a finite region.

From the following equation, the valuesof ΔGH2O and 
D1/2 are calculated in the denaturation conditions for the 
enzyme alone and the enzyme in the presence of Fu and 
Hu (Equation 5). 

5. ΔG0=ΔGH2O-m [D]

Thermodynamic parameters such as ΔG (Gibbs free 
energy), ΔH (enthalpy), and ΔS (entropy) can be cal-
culated by the main thermodynamic Gibbs free energy 
equation as below (Equation 6): 

6. ΔG0=ΔH-TΔS

ANS external fluorescence as a structural analysis 
of the enzyme 

A solution of 40 mM ANS in distilled water and deion-
ized water was prepared and stimulated at 350 nm. After 
stimulation of the enzyme incubated with Hu and Fu and 
50 μM ANS at 350 nm, the fluorescence emission spec-
tra of solutions were achieved at 400-550 nm using a 
spectrofluorometer (Cary Eclipse model bio-100). These 
spectra were recorded in the presence of ANS alone (50 
μM), ANS, and enzyme (concentration 0.17 mg/mL). 
ANS plus enzyme was incubated with Hus and Fus at 
two concentrations of 2 and 8 μM in 10 mM PBS buffer 
at pH=6.8 and 25°C.

MTT assay and cell viability of A375 melanoma 
cancer cell line 

The MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
tetrazolium bromide as a vital compound that is cata-
lyzed by mitochondrial succinate dehydrogenase has 
been widely used in cell viability assessment. The MTT 
assay is a colorimetric method by which the cell cul-
tures were incubated for 2 hours in a culture medium or 
a Krebs–Hensleit–HEPES buffer (5 mM KCl, 115 mM 
NaCl, 2 mM CaCl2, 1.2 mM MgSO4, 1 mM KH2PO4, 
and 25 mM HEPES at pH 7.4) containing 0.5 mg/mL 
MTT. The incubation buffer was removed after 2 hours, 
and the blue MTT-formazan product was extracted with 
acidic isopropyl alcohol (0.04 N HCl). The absorbance 
of the formazan solution was measured by spectrophoto-
metric technique at 570 nm wavelength after 30 minutes 
of extraction at room temperature.

3. Results

Thermodynamic parameters from thermal and 
chemical denaturation analysis

The enzyme thermal denaturation using the DSC tech-
nique showed changes in ΔCp values as the protein heat 
capacity in a stationary pressure in the presence and ab-
sence of Hus and Fus (Figure 2). From the thermody-
namic equations mentioned in methods, the analysis of 
ΔCp spectra in Figure 2 resulted in the thermodynamic 
parameters including Tm (melting point of enzyme), ΔG 
(Gibbs free energy), ΔH (enthalpy), and ΔS (entropy), 
with their magnitudes reported in Table 1. The chemical 
denaturation of the enzyme with urea was determined 
based on the changes in its absorption spectrum at 280 
nm with and without the presence of Hus and Fus (Fig-
ure 3a). These sigmoidal plots of the two-state chemical 
denaturation process were further analyzed for achieving 
the   ΔGH2O and D1/2 or Cm values in Figure 3b and the 
values were reported in Table 1. Gibbs free energy of en-
zyme denaturation at standard conditions (ΔG0) is used 
as a criterion for the structural stability of tyrosinase.

Enzy m e structural analysis with ANS external 
fluorescence 

The effect of Fus and Hus on the structure of tyrosinase 
was investigated by measuring fluctuations in extrinsic 
protein fluorescence (Figure 4a-b). The figures show the 
enzyme tertiary structure changing with the presence of 
acids resulting, in a gradual increase, in ANS emission 
inte n sities. This external fluorophore has an emission 
spectrum between 400 and 550 nm after exciting with 
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Figure 3. Chemical denaturation of tyrosinase with and without the presence of humic and fulvic acids in the enzyme absorp-
tion at 280 nm and titration with different concentrations of urea

 a) The sigmoidal spectra of the enzyme; b) The secondary Plots of Gibbs free energy of denaturation.
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patches increases its emission intensities. 

MTT assay and antiproliferative of humic acids 
and fulvic acids on the A375 melanoma cell line

The survival rate of the A375 cell line was investigated 
under the treatment of 10-60 µM Hus and Fus concen-
trations in different periods of 24 and 48 hours. As il-

lustrated in Figures 5a and 5b, the cell viability of the 
A375 cancer cell line was affected by the treatment with 
different concentrations of these compounds in a time 
and concentration-dependent manner. Finally, the IC50 
values were obtained at 31.5 and 42.7 µM for Hu and 
12.5 and µM for Fu at time points of 24 and 48 hours, 
respectively. 
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4. Discussion

The tyrosinase thermodynamic and its structural sta-
bility were affected by Hus and Fus as two important 
natural substances. The reduction in both structural and 
thermodynamic stabilities was obtained by assessment 
of different parameters such as Tm, Cm, ΔG0, ΔH, and 
ΔS. In line with the above effects of Hus and Fus on ty-
rosinase as the major enzyme of melanogenesis, from a 
cellular point of view, their anticancer and antiprolifera-
tive effects were proven on the A375 melanoma cell line 
by MTT assay. Mushroom tyrosinase is a good model 

system for investigations of the experimental analysis of 
enzyme inhibitors interactions and generalizing the re-
sults for human melanogenesis and related skin cancer 
disorders [17, 18]. Besides, the assessment of tyrosinase 
activity in our previous study showed inhibitory effects 
of Fus and Hus with Ki of 2.02 and 5.2 μM, respectively 
[19]. The Cp spectra in Figure 2 which were obtained 
by the DSC technique were used for calculating the Tm 
as the major thermal stability parameter of the enzyme 
in Table 1. The Tm values of 338K for the sole enzyme 
and 323 and 328 for the enzyme incubated with Hus 
and Fus proved the induction of tyrosinase instability 
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with these natural compounds. The same results were 
obtained after the chemical denaturation of the enzyme 
with the urea and [ΔG]H2O and Cm values from Figures 
3a and 3b, which are depicted in Table 1, emphasizing 
the induction of chemical instability of Hus and Fus. 
These figures show the sigmoid curve of denaturation 
of the compounds, in which the enzyme is unfolded 
through a two-state manner of denaturation. According 
to a theory developed by Pace et al., Gibbs free energy 
for denaturation (ΔG0) was calculated as a measure of 
the structural stability of a spherical protein [20-22]. 
Besides, the change in thermodynamic and chemical 
stability of tyrosinase, its structural analysis with ANS 
as the tag of hydrophobic patches is illustrated in Fig-
ures 4a and 4b. External fluorescence spectroscopy of 
the enzyme showed a gradual increase in ANS emission 
with increasing concentrations of Hus and Fus, which 
indicates a partial unfolding and fluctuation of the ter-
tiary structure of the enzyme. ANS is a substance that 
tags a hydrophobic patch in the hydrophobic domain of 
proteins structure; in denaturation studies, as the struc-
ture of the protein becomes more open and the dena-
turation increases, the emission of ANS also increases, 
and the higher the amount of this intensity, the greater 
the denaturation. In this study, this increase indicates the 
instability of the enzyme structure under the influence 
of Hus and Fus. As reported in Table 1, a decrease in 
Tm and ΔG0 values   was observed in the combination of 
the enzyme with the mentioned acids, which indicates a 
decrease in its resistance to thermal and chemical dena-
turation, decreasing the thermodynamic stability of the 
enzyme. These results are in agreement with the other 
biological compounds on mushroom tyrosinase thermo-
dynamic and structural stability. In this regard, kinetics 
and thermodynamic parameters of the native tyrosinase 
enzyme and modified enzyme were reduced after it incu-
bated pyruvic, acrylic, 2-oxo-butanoic, 2-oxo octanoic, 
and propanoic acids [23]. 

Furthermore, mono-u n saturated fatty acids (UFAs) 
produced a decrease in the secondary structure of re-
combinant S100A8/A9, whereas arachidonic acid gen-
erated less instability in the protein structure than the 
other UFAs studied. These findings could be related to 
the number of double bonds in UFAs [24]. The tyrosi-
nase activity with gallic acid showed a non-competi-
tive manner, but the  chrysin, naringin, and quercetin 
induced a competitive type of inhibition [25]. From the 
results of this study using Hus and Fus and the above-
mentioned references, the use of biological compounds 
is a strategy for t h e control of tyrosinase activity in 
both melanogenesis and its gene expression in all skin-
related disorders. So, decreasing tyrosinase activity has 
been targeted to prevent and improve skin hyperpig-
mentation, such as m elanoma and age-related blem-
ishes. In another r e search, the recombinant S100A8/
A9 (calprotectin) a n d its modified form reduced the 
activity of tyrosinase by modifying the structure, which 
can control malignant melanoma, the most dangerous 
type of skin cancer [26]. Moreover, the inhibitory effect 
of Cu+ 2 and Ni+ 2 cations on tyrosinase, and the results 
of this study showed that both cations make tyrosinase 
more fragile and less active [27].

The previous works s howed that tyrosinase and the 
tyrosinase-related proteins 1 and 2 as the main proteins 
involved in melanogenesis were overexpressed in the 
A375 melanoma cell line [28, 29]. Tyrosinase, as a gly-
coprotein enzyme, is one of the most important markers 
of malignant melanoma [30]. The action of tyrosinase 
downstream is regulated by a microphthalmia-associat-
ed transcription factor, which is an oncogene in the mela-
noma malignancy process [31]. As presented in Figures 
5a and 5b, the treatment of the A375 melanoma cancer 
cell line with different concentrations of Hus and Fus 
at time points of 24 and 48 hours confirmed the anti-
proliferation effects of the compounds with IC50 of 31.5 
and 42.7 µM and 12.5 and µM, respectively. There are 
various reports on the role of tyrosinase in the control of 

Table 1. Thermodynamic parameters of tyrosinase from chemical and thermal denaturation in the absence and presence of 
humic and fulvic acids

Complex
Chemical Denaturation Thermal Denaturation

ΔGH2O(kJmol-1)  Cm (M) Tm (K) ΔG (kJmol-1) ΔH (kJmol-1) ΔS (Jmol-1K-1)

Enzyme 7.02 1.15 338 - - -

Enzyme+Hu 5.44 1.05 323 0.98 32.5 0.1

Enzyme+Fu 6.5 1.05 328 0.2 194.5 0.59

Hu: Humic acid; Fu: Fulvic acid.
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cancer, e.g. the role of tumor suppressor for edible fun-
gal tyrosinase (mushroom tyrosinase) which was used in 
this study, and others have reported mutagenic properties 
for this protein. Gamma-L-glutaminyl-4-hydroxyben-
zene (GHB) is a phenolic substance that is converted by 
tyrosinase to a quinone and a by-product of its oxida-
tion that blocks both mitochondrial energy production 
and nucleic acids and proteins synthesis [32]. Treatment 
of two cell cultures containing melanoma and leukemia 
cells with purified quinone eliminated tumor growth. In 
the presence of GHB, suppression of tumor growth is 
seen in melanoma cells, while in leukemia cells, tumor 
growth continues due to a lack of tyrosinase. The toxic 
effect of GHB is dependent on the presence of tyrosinase 
[33]. Also, there are reports of a negative effect of ty-
rosinase on cancer. For example, a study has shown that 
tyrosinase increases the mutagenicity of edible fungi. 
This may be due to the production of phenolic and qui-
none compounds. This mutagenicity can be eliminated 
by catalase, superoxide dismutase, glutathione, and di-
methyl sulfoxide, which confirms the role of phenolic 
and quinone compounds in the production of active oxy-
gen [34]. Increased mutagenicity has also been reported 
in samples of cooked edible mushrooms [35]. Aromatic 
hydrazine plays an important role in fungal carcinogen-
esis, so studies have been performed on the relationship 
between hydrazine and edible fungal tyrosinase [36, 37]. 
Other studies on the mutagenicity of agaritine metabo-
lites in the presence of the fungal tyrosinase show that 
among these metabolites, the tyrosinase mutagenicity 
of N-acetyl-4- (hydroxymethyl) phenylhydrazine raises 
[38]. So, with the above different roles of tyrosinase en-
zyme and its related metabolites in different levels of life 
span, focusing on its new biological inhibitors is a good 
strategy to control its unwanted roles. It should be noted 
that in previous research, a similar study was conducted 
in 14 hours, and Hus and Fus showed antiproliferative 
and anticancer effects [39]. In line with this study, other 
studies have shown various effects of Hu in health pro-
motion such as ultraviolet protective properties, anti-in-
flammatory, anti-neoplastic, anti-oxidant, and pro-apop-
totic effects in some other cancer cell lines [40]. 

According to a new study, Fu efficiently suppresses the 
cell survival of human cancer cells lines such as Hep3B, 
HL60, LNCaP, and MCA-102 fibrosarcoma cells [41, 
42]. According to the latest studies, Fu and Hu are ef-
fective in the regulation of apoptosis procedures in some 
cell lines such as cervical cancer cells [43], Hep G2 [44], 
and HL-60 [45]. 

5. Conclusion

The overall results from this study show the effects of 
Hu and Fu on lowering the chemical and physical stabil-
ity and partially unfolding tyrosinase structure in an in 
vitro study and their treatments on A375 melanoma can-
cer cell line inducing anti-proliferative effects and cell 
toxicity. Tyrosinase presented is a good target for cancer 
therapy especially when the Hus and Fus confer their ac-
tivity in both in vitro and in vivo experiments. Thus, Hus 
and Fus can be presented as good candidates for medi-
cal, food, and agricultural applications because of their 
inhibitory and anticancer effects.
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