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Abstract

Context: Renal cell carcinoma (RCC) is a common cancer that is a urogenital cancer. Cell destruction and tumor metastasis are

carried out in the context of a flow of immune changes that are carried out through signaling pathways such as the Janus

kinase/signal transducer and activator of transcription (JAK/STAT) pathway.

Objectives: In this systematic review, we investigated the role of JAK/STAT signaling in the treatment and pathology of RCC.

Methods: This systematic review was written on the basis of the preferred reporting items for systematic reviews and meta-

analyses (PRISMA) criteria, and the principle of non-bias was respected. All the articles from 2014 - 2024 were extracted from the

Web of Science, PubMed, and Scopus databases. We extracted drug inhibitors, angiogenesis factors, and necrotic factors

associated with JAK/STAT signaling in RCC.

Results: We reviewed 13 studies and concluded that JAK/STAT was the master signaling pathway that caused immune

suppression and stimulation of angiogenesis, thus fostering RCC metastasis. Among the STAT proteins, STAT3 registered the

highest frequent signaling activity in human RCC. STAT1, STAT3, and STAT6 were also implicated in phosphorylated interferon-γ
(IFN-γ) and IFN-α pathways. Suppression of the JAK2-STAT1/STAT3 pathway increases suppressor of cytokine signaling 3 (SOCS 3)

levels. Wogonin inhibits STAT3, vascular endothelial growth factor A (VEGFA), and epidermal growth factor receptor (EGFR), as

ruxolitinib inhibits JAK/STAT and AG490, which are specific for the JAK pathway.

Conclusions: The JAK/STAT shows high therapeutic potential for RCC treatment, which is related to the tumor growth stage

and prognosis. This pathway could be an elective treatment for RCC patients.
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1. Context

Janus kinase (JAK) is a signal transducer and

transcription activator involved in an intracellular

communication pathway that regulates cell

proliferation, differentiation, apoptosis, and immune-

related processes, including inflammation, tissue repair,
and autoimmune regulation (1-3). The JAK family

comprises four isoforms: JAK1, JAK2, JAK3, and tyrosine

kinase 2 (TYK2), which function as signaling mediators

for other proteins, such as the signal transducer and

activator of transcription (STAT) (4, 5). In mammals,

STATs are expressed as seven proteins (STAT1-4, STAT5A,

STAT5B, and STAT6) within the same family. Each

interleukin exerts its effects through the

phosphorylation of specific members of these seven

proteins (6, 7). This signaling pathway is activated by

necrosis factors, which utilize JAK family members to

influence a range of STATs. These, in turn, regulate T

lymphocytes, gamma interferon (INF-γ), natural killer

(NK) cells, and the inflammatory responses of the

immune system (1, 6, 8). Among the diverse array of
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inflammatory and necrotic factors, the JAK/STAT

signaling pathway plays a critical role in the pathology

of various cancers. For instance, interleukin 6 (IL-6)
employs the JAK/STAT pathway in hepatocellular

carcinoma (HCC), acting as a type of STAT signaling
antagonist that reduces HCC immune resistance

without causing harm. This mechanism has made the

pathway a promising target for many chemotherapies
(9, 10). Similarly, gefitinib has been shown to decrease

the destruction rate of mucoepidermoid carcinoma
(MCC) cells, likely by inhibiting JAK/STAT

phosphorylation (11). Additionally, the breakdown of

carbon ions, which reduces leukemia inhibitory factor

(LIF) and subsequently diminishes STAT3 activation, has

been proposed as a potential treatment for squamous
cell carcinoma (12). The JAK/STAT signaling pathway also

plays a significant role in regulating angiogenesis and
necrosis factors in the kidney, where it is directly linked

to metastasis and renal tumor growth (13, 14). Western

blot analyses have demonstrated that alterations in
phosphorylated STAT levels in the kidney are among the

most critical changes observed in renal carcinoma (15).
In this systematic review, we explore the potential for

treating renal cell carcinoma (RCC) by targeting the

JAK/STAT signaling pathway.

2. Objectives

This study presents RCC cell therapy based on STAT

signaling as a new treatment direction. Recent studies

have contributed their findings to this review,

collectively investigating the therapeutic potential of

this pathway in addressing one of the deadliest forms of

cancer.

3. Methods

3.1. Protocol and Registration

This systematic study was conducted in accordance

with the established criteria outlined in the preferred

reporting items for systematic reviews and meta-

analyses (PRISMA). To ensure adherence to the principle

of non-bias, the Cochrane handbook for systematic

reviews of Interventions (version 5.1.0) was utilized for

evaluating clinical studies. The studies were rigorously

assessed with respect to allocation concealment, as well

as the blinding of participants, study personnel, and

outcome assessors. The research question guiding this

systematic study was formulated based on the PICO

framework (patient/population, intervention,

comparison, outcomes) that was: Is inhibiting the

JAK/STAT signaling pathway a treatment for renal

carcinoma?

3.2. Eligibility Criteria and Search Strategy

We assessed published studies from January 2014 -
2024 in databases such as Web of Science, PubMed, and

Scopus. The definition of renal carcinoma was

considered on the basis of the international
classification of diseases 11 (ICD-11), and its details were

adjusted on the basis of the definition of the American
Cancer Society (ACS). All studies that investigated renal

carcinoma on the basis of the above definition were

reviewed. Studies that directly investigated JAK/STAT

signaling were included in the study. Studies with the

following characteristics were eliminated:

- Studies that were not open access were selected on

the basis of the PRISMA checklist if the abstract was

complete, and the corresponding author was contacted

for the results if more information was needed. Studies

whose abstract structure was not complete on the basis

of these criteria were excluded from the review.

- Non-English studies were excluded.

- Studies that did not have open access and whose

basic information was unavailable in the abstract.

- Studies that were based on animal investigations.

- Our research question was based on the treatment
of RCC, so studies that investigated the therapeutic

effect of a specific drug were not excluded from the
study population.

We evaluated published studies from January 2014 to

2024 using databases such as Web of Science, PubMed,

and Scopus. To identify similarities and review

comparable systematic studies, we conducted a title

search within the Cochrane database. Keywords were

derived from the MeSH database. Two teams, each

consisting of two individuals, independently searched

the databases, first Web of Science, followed by PubMed

and Scopus, using the keywords "JAK/STAT inhibitors"

and "renal carcinoma". In alignment with PRISMA

criteria, duplicate, non-English, and conference entries

were initially excluded. Subsequently, titles and

abstracts were screened by both groups. All articles

included were in vitro types and meeting the inclusion

criteria were shared with the coauthor for

consolidation. In cases where access to articles was

restricted, the first author supervised the review process

to resolve the issue. Ultimately, thirteen studies were

selected, and their full texts were thoroughly evaluated.

No additional articles were included through manual

citation searches (Figure 1).
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Figure 1. Data extraction and synthesis stages

3.3. Data Collection and Synthesis

The corresponding author and first author formed

the summary table (Appendix 1 in Supplementary File)

and reviewed the studies via the Cochrane tool on risk of

bias 2 (RoB 2) (16). To extract the data, a group of three

authors independently examined the side signaling

pathway, related immunity elements, and the JAK/STAT

pathway from the articles, without communication. The

results were reviewed under the supervision of the

corresponding author and first author, and all the

articles and results were reviewed under the supervision

of the first author and second author according to the

Cochrane guidelines to minimize bias error and ensure

the accuracy of the information. The following

information was extracted from the articles: First

author, main protocol (human or laboratory), study

main aim, related immunity elements, main findings,

JAK/STAT type, side signaling pathway, investigation

method, and inhibitors.

4. Results

4.1. Search Results

After excluding review articles, case reports, and

letters to the editor retrieved from PubMed, Scopus, and

Web of Science, duplicate entries were removed, and the

remaining abstracts were screened. Full-text non-

English papers were excluded after extensive screening.

Forty-nine studies were screened independently by two

teams of authors (Figure 2). The lead author and co-

author, coordinating the process, performed an

exhaustive screening, and thereby 13 articles pertaining

to our research question were incorporated. Following

the systematic review, we cross-checked the Cochrane

library database for duplication and to ensure

uniqueness. There were no duplicate or overlapping

studies with similar results found.

4.2. Renal Cell Carcinoma Follows a Specific Janus
Kinase/Signal Transducer and Activator of Transcription
Signaling Pathway

All the articles reviewed discussed STAT pathways and

kinases, with STAT3 being the most frequently reported

signaling molecule in human renal carcinoma tissue

cultures. Following STAT3, STAT1 was the most

commonly mentioned growth factor in the literature.

The measurement methods employed in these studies

adhered to accepted standards, primarily utilizing

Western blot and ELISA techniques to assess high-

signaling pathways. Certain studies, such as those by

Meng et al. and Deng et al., investigated tissue

progression using STAT and JAK inhibitors, focusing on

the STAT2, STAT3, and JAK2 pathways (17, 18). Fasler-Kan et

al. identified STAT1, STAT3, and STAT6 pathways as

phosphorylated types associated with interferon-γ (IFN-

γ) and IFN-α (19). Tumors appear to exhibit elevated

levels of STAT3, with Meng et al. also noting an increase

in STAT2 within the same pathway. In RCC tissue, the

STAT3 pathway is mediated by JAK2, while increased

levels of IFN-γ and STAT1-JAK2, induced by INF, can be

https://brieflands.com/articles/jid-160171
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Figure 2. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 flow diagram for new systematic reviews. * Articles excluded base on method
criteria.

detected in RCC under high-chemokine conditions.

Huang et al. proposed this pathway as a therapeutic

target for RCC, demonstrating its inhibition using

cinnamaldehyde. A group of genes associated with

JAK/STAT signaling were found to be altered in renal

tumors. Significant changes in STAT2 mRNA were

detected using TIMER data, and the upregulation of IFN

signaling genes, along with mediators such as JAK2,

STAT1, and interferon-stimulated gene 15 (ISG15), as well

as antiviral genes, was observed in renal cancer tissue.

Collectively, the reviewed articles highlight the STAT

pathway (particularly STAT3) and kinases, especially

JAK2, as central signaling pathways in renal tumor

progression. These findings clearly identify this

signaling pathway as a critical factor for the diagnosis,

prevention, and treatment of RCC (19-29).

4.3. Janus Kinase/Signal Transducer and Activator of
Transcription Inhibitors Upregulate the Immune System to
Reduce Renal Degeneration

Limiting the expression of SOCS genes presents a safe

approach for treating and controlling RCC through the

JAK/STAT signaling pathway. Several drugs have been

shown to regulate STAT-related pathways, with

cinnamaldehyde effectively suppressing the JAK2-

STAT1/STAT3 pathway while increasing SOCS3 levels. Li et

al.’s study demonstrated that the expression levels of

https://brieflands.com/articles/jid-160171
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Figure 3. The most complexes that signaled Janus kinase/signal transducer and activator of transcription (JAK/STAT) in renal cell carcinoma (RCC). Abbreviations: IFN, interferon;
TNF, tumor necrose factor; IGF, insulin-like growth factor; IL, interleukin; NK, natural killer; AGE, advanced glycation end products; KIF2C, kinesin family member 2C; SOCS,
suppressors of cytokine signaling.

these genes in examined tissues were associated with a

reduction in their activity (26). In this study, SOCS3 and

SOCS1 were identified as critical genes linked to the

JAK/STAT signaling pathway in RCC. Huang et al.

attributed the development of renal tumors and RCC

pathology to the diminished inhibition of JAK/STAT by

SOCS4 (24). While SOCS proteins are not the sole

therapeutic targets, a group of proteins associated with

this signaling pathway can be targeted to prevent the

activation of necrotic and proinflammatory factors

during cancer progression. Research has identified a

broad spectrum of compounds capable of inhibiting

tumor progression, including JAK/STAT antagonists. Guo

et al. explored various compounds, with wogonin being

the most significant, followed by baicalein and acacetin

(27). Meng et al. utilized ruxolitinib to study the effects

of GBP2 gene on STAT2 and STAT3, while AG490 was

specifically linked to the kinase pathway (17). Figure 3

illustrates the most important compounds that can be

employed to inhibit the JAK/STAT pathway in RCC.

4.4. Janus Kinase/Signal Transducer and Activator of
Transcription Protects Tumors from Immune System
Poisoning

The JAK/STAT pathway, one of the most critical

signaling pathways in the immune system,

demonstrates a strong correlation with cytokines and

inflammatory factors in RCC (Figure 4). A significant

positive correlation was observed between STAT2 and T

cells (CD3D, CD3E, and CD2) as well as B cells (CD19 and

CD79A). Additionally, macrophages, neutrophils, and

dendritic cells exhibit positive changes in response to

STAT2 alterations. Available studies consistently

highlight the upregulation of IFN and the JAK/STAT

pathway. Liang et al. reported that this correlation

extends to specialized subpopulations, including M2

macrophages, T Helper 1 (Th1) cells, T-bet cells, GATA3

cells, and Th2 cells (23). Furthermore, STAT3 shows a

strong correlation with IL-12 and IL-15, while SOCS4

inhibits this pathway, playing a potential role in RCC

treatment. The SOCS family is also linked to STAT6.

Notably, STAT3, STAT6, and IRF1 are key signaling

pathways within this family, with connections to growth

factors such as vascular endothelial growth factor

(VEGF). STAT3 targets genes associated with tissue

inhibitors of metalloproteinases (TIMP1), which play

crucial roles in tissue necrosis and fibrosis. Inhibitor

complexes exhibit high affinity for STAT3, often

maintaining this affinity with VEGF-A and epidermal

growth factor receptor (EGFR). Reducing angiogenesis

by limiting VEGF is considered a viable therapeutic

strategy for RCC (30, 31). The JAK/STAT pathway facilitates

bidirectional communication between

proinflammatory factors, cytokines, and growth factors.

Stimulation by TNF or IGF correlates with increased

STAT1 activation, while IFN-α or IL-6 enhances STAT3, and

IL-4 activates STAT6. In RCC, STAT2 expression is reduced

in B cells, mesenchymal stem cells (MSCs), and NK T

cells. IFN increases phosphorylated STAT1 levels, and IFN-

γ enhances the JAK2/STAT1 pathway. JAK3, on the other

https://brieflands.com/articles/jid-160171
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Figure 4. Most important inhibitor complexes of Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway

hand, can be utilized to deplete Treg cells and modulate

PD-1, cytotoxic T-lymphocyte associated protein 4

(CTLA4), lymphocyte-activation gene 3 (LAG3), T-cell

immunoglobulin and mucin-domain containing-3 (TIM-

3), and granzyme B (GZMB). In conclusion, the

relationship between the JAK/STAT pathway and

inflammatory, necrotic, and angiogenic factors holds

significant therapeutic potential for RCC. Suppressors of

TNF, IFN, and IGF regulate the JAK/STAT pathway, leading

to the cascade control of T and B cells, as well as necrotic

positive regulators such as TIMPs.

5. Discussion

Focusing on signaling pathways as alternative

treatments for inflammation and cancer offers a more

accessible, tolerable, and patient-friendly approach. By

concentrating on the components of the immune

system, the balance of cytokines, and immune

mediators, treatment strategies can be tailored to

regulate inflammatory and necrotic factors in cancer.

Chen et al. reported that propofol inhibits the

progression of kidney cancer cells by modulating and

reducing the expression of transforming growth factor

beta 1 (TGF-β1), IL-6, tumor necrosis factor alpha (TNF-α),

and hypoxia-inducible factor 1-alpha (HIF-1α), which are

substrates of the sirtuin 1 signaling pathway (32). Our

findings indicate that JAK3 activity extends to a broad

range of T and B cells (33). FOXP3 facilitates the immune

escape of kidney cancer cells, thereby limiting the

ability to prevent metastasis. JAK3 signaling activates

FOXP3 and other Tregs, suggesting its therapeutic

potential (34, 35). Cancer cells often evade the toxicity of

NK cells, and under complex conditions, the levels of

these cells decrease. The STAT2 signaling pathway

weakens NK cells, B lymphocytes, and mesenchymal

https://brieflands.com/articles/jid-160171
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cells (36, 37). Yin et al. using the HOOK1 complex,

demonstrated increased NK cell activity and reduced

angiogenesis, thereby preventing RCC metastasis (31).

Vascular endothelial growth factor, a key angiogenesis-

stimulating factor, plays a significant role in fetal

development but also contributes to tumor metastasis,

angiogenesis, and growth throughout the body (38).

Recent studies have identified VEGF as a critical

indicator of RCC (39, 40), making it a focal point in

kidney immunotherapy. Guo et al.’s compounds inhibit

the STAT3 pathway in association with vascular

endothelial growth factor A (VEGFA) and EGFR, a

mechanism similar to that of HOOK1 in NK cells (27).

While many immunotherapy drugs target the body’s

defense mechanisms against tumors, controlling

lymphocytes and fibrosis-promoting factors, our results

emphasize a unified concept: Focusing on JAK/STAT

inhibition enables the regulation of other signaling

pathways in RCC. Inhibiting this pathway controls sub-

signaling pathways involved in tumor growth,

suppresses the expression of tumor growth factors such

as TGF and TNF, and exposes cancer cells to effective

immune system attacks. Although immunotherapy

complexes in RCC impact the JAK/STAT pathway, certain

drugs are specifically designed to target this pathway.

Baricitinib, a selective JAK1/2 inhibitor, exhibits

moderate effects on TYK2 with minimal inhibition of

JAK3 (41). Tofacitinib, another selective JAK1 inhibitor, is

used for rheumatoid arthritis (RA) patients with

cardiovascular disease (42). Tofacitinib inhibits JAK/STAT,

especially STAT3 and STAT1, and ruxolitinib inhibits the

inflammatory pathway in this disease by suppressing

the phosphorylation of STAT1 and STAT3 (43). EK100, an

anti-inflammatory drug for immune-related diseases,

was shown in our study to inhibit the JAK1/2 pathway,

thereby controlling inflammation through the mitogen-

activated protein kinase/activator protein-1 (MAPK/AP-1)

pathway (44). In another model, flonoltinib maleate

(FM) demonstrated greater inhibition of JAK2 compared

to JAK1 and JAK3 (45). Guo et al. identified a range of

protein and chemical complexes targeting this pathway,

with wogonin being the most notable, alongside its

control of STAT3, VEGFA, and EGFR (27). Deng et al.

inhibited the JAK2/STAT3 pathway using AG490, a

specific JAK inhibitor, highlighting the therapeutic

potential of this signaling pathway (18).

Partial nephrectomy in the early stages of RCC is a

good choice to control extensive metastasis, which is

usually combined with other immunotherapies to form

a multi-therapy treatment (44). In more severe cases,

extensive nephrectomy is performed to remove the

entire kidney and surrounding affected tissues and is

supported by immunosuppressive therapies (45). In

addition to losing part or all of the kidney,

immunosuppressive therapies are associated with a

high risk of other infections (46, 47). These types of

therapies are associated with infectious and

inflammatory problems because they do not specialize

in each component of the immune system. What we

have discussed as a therapeutic approach in our results

is a new direction for pre-nephrectomy chemotherapy.

Inhibition of STATs, in addition to preventing the

progression of cancer tissue, allows tissue regeneration.

The JAK/STAT inhibitors control parallel genetic

pathways such as TIM-3 and CTLA4, which play a

fundamental role in limiting cancer tissue. Overall,

complexes acting as JAK/STAT antagonists are expected

to control the progression of kidney tumors. Our

findings indicate that this pathway serves both

diagnostic and prognostic roles in RCC. By linking this

signaling pathway to TGF-β, IFN, IL-6, and TNF, it reduces

the expression of tumor growth factors. Suppressing

this pathway enhances immune response functionality,

reduces immune escape, and mitigates the loss of

toxicity caused by NK cells in the tumor

microenvironment of the kidney. Tumor metastasis to

other organs, such as the bladder and upper organs like

the lungs, can be effectively controlled using STAT3

inhibitors. Renal carcinoma represents a complex

condition, and our discussion highlights the

overarching role of JAK/STAT signaling. This systematic

study presents unbiased results to guide future research

into this pathway in other renal disorders. One of our

studies revealed that high expression of STAT2 is

associated with reduced mesenchymal activity in

tuberculosis. This emerging topic has implications for

both kidney transplantation and renal stem cell

transplantation, warranting further detailed

investigation.

5.1. Conclusions

The JAK/STAT signaling pathway interferes with RCC

and can be used to disrupt tumor metastasis and

prevent cell death. The inhibition of JAK/STAT signaling

appears to be a specialized pathway for the treatment of

renal carcinoma, with greater therapeutic effects and

lower morbidity.

5.2. Limitation

Unfortunately, no human study using STAT and JAK

inhibitors was available to us. A limitation of this

treatment approach is the lack of human treatments,

and the focus so far has been entirely on STATs in the

form of in vitro models.
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5.3. Future Research Directions

We strongly recommend that future studies use STAT

inhibitors in the clinic to treat RCC to complete the

results. It also seems that this pathway could be effective

in nephrotic syndrome, which we suggest that further

clinical studies be conducted on it.
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