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Abstract

Background: Hydrogen sulfide (H2S), a novel gasotransmitter, exhibits antioxidant and neuroprotective properties and has

been implicated in the mitigation of neurodegenerative disorders.

Objectives: The present study aims to investigate the potential protective effects of exogenous H2S, administered as sodium

hydrosulfide (NaHS), on cognitive deficits in a streptozotocin (STZ)-induced rat model of Alzheimer’s disease (AD).

Methods: Adult male Wistar rats (180 - 200 g) were divided into five groups: Control, Sham, STZ, STZ + Saline, and STZ + NaHS.

To induce AD, STZ (3 mg/kg, 10 μL/injection site) was bilaterally administered into the lateral ventricles. Rats were then treated

daily via intraperitoneal injection with saline or NaHS (5.6 mg/kg) for 21 days. Memory performance was assessed using the

passive avoidance (PA) test.

Results: The STZ significantly reduced step-through latency (STL) and time spent in the light compartment (TLC), while

increasing time spent in the dark compartment (TDC) and the number of entries into the dark compartment. Treatment with

NaHS in STZ-administered rats prevented these adverse effects.

Conclusions: The results suggest that NaHS improves STZ-induced memory dysfunction in the PA test. Thus, NaHS may hold

therapeutic potential for memory impairment in AD.
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1. Background

Hydrogen sulfide (H2S) is widely acknowledged for

its significant physiological and pathological roles

within the central nervous system. Functioning as a

neuromodulator, H2S modulates neuronal and glial

activity, facilitating long-term potentiation (LTP) and

augmenting hippocampal N-methyl-D-aspartate

(NMDA) receptor function — a region critical for

learning and memory (1). Beyond neuromodulation, H2S

demonstrates anti-inflammatory, antioxidant, and anti-

apoptotic effects, which are implicated in alleviating

central nervous system degenerative disorders, e.g.,

Alzheimer’s disease (AD) (2, 3). In AD contexts, H2S acts as

a scavenger of reactive oxygen species (ROS), shielding

neurons from oxidative stress, a key feature of

neurodegeneration (4). Furthermore, H2S is integral to

cognitive regulation, with studies highlighting its

contribution to memory consolidation and learning

processes (5). Both clinical and preclinical investigations

consistently report diminished H2S levels in the plasma

and brain tissues of individuals with cognitive

disorders, including AD and schizophrenia, with these

reductions correlating to the extent of memory

impairment (6, 7). For example, in schizophrenia, lower

H2S concentrations are linked to cognitive
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deterioration, emphasizing its potential role in

cognitive dysfunction (8). Preclinical AD models reveal

that depleted H2S exacerbates pathological progression,

whereas exogenous H2S administration rescues

cognitive deficits (9). Notably, intracerebroventricular

(i.c.v.) formaldehyde administration in rats suppresses

hippocampal H2S synthesis by downregulating

cystathionine β-synthase (CBS), resulting in learning

and memory impairments (10).

Conversely, sodium hydrosulfide (NaHS), an H2S

donor, mitigates neuroinflammation and spatial

memory deficits in β-amyloid (Aβ)-induced AD rat

models (6). The NaHS also reduces Aβ (1 - 40)-triggered

apoptosis in the hippocampal CA1 region and

neutralizes oxidative stress-induced cytotoxicity (11, 12).

In APP/PS1 transgenic mice, H2S supplementation

enhances spatial memory, curtails Aβ generation, and

diminishes senile plaque deposition, likely through

oxidative stress inhibition and antioxidant pathway

activation (13). However, the therapeutic potential of

NaHS in the streptozotocin (STZ)-induced rat model of

AD remains unexplored. The present study aims to

investigate this potential.

2. Objectives

To determine the protective effects of exogenous H2S,

administered as NaHS, on STZ-induced impairments in

learning and memory retrieval in rats.

3. Methods

3.1. Animals

Sixty adult male Wistar rats (180 - 200 g) were housed

in standard polycarbonate cages under controlled

environmental conditions (temperature: 23 ± 3°C; 12-h

light/dark cycle). Animals had free access to standard

rodent chow and water. Behavioral experiments were

conducted during the light phase (08:00 - 16:00).

3.2. Experimental Design

To evaluate the protective effects of NaHS, an H2S

donor, on STZ-induced memory impairment, rats were

randomly allocated to five groups (n = 10): (1) Control

(intact), (2) sham (vehicle injection), (3) STZ, (4) STZ +

vehicle (saline), and (5) STZ + NaHS (5.6 mg/kg, Sigma-

Aldrich, USA). Rats in the NaHS group received daily

intraperitoneal (i.p.) injections of NaHS (5.6 mg/kg,

Sigma-Aldrich, USA) dissolved in normal saline for 21

days post-surgery. Learning and memory were assessed

using the passive avoidance (PA) test on day 22 following

STZ administration.

3.3. Induction of Alzheimer’s-Like Pathology

Intracerebroventricular (i.c.v.) The STZ

administration was used to model sporadic AD

pathology by inducing brain insulin resistance, as

previously described by Sharma and Gupta. Ketamine

hydrochloride (60 mg/kg, i.p.; Alfasan) and xylazine (8

mg/kg, i.p.; Alfasan) were injected, and then the rats

were secured in a stereotaxic apparatus (Stoelting, USA).

The STZ (3 mg/kg, 5 µL per ventricle; Sigma-Aldrich) was

dissolved in distilled water and administered bilaterally

into the lateral ventricles (coordinates: AP: -1.0 mm, ML:

±1.4 mm, DV: -3.4 mm relative to bregma) using a

Hamilton syringe. Sham and vehicle groups received

equivalent volumes of distilled water or saline,

respectively (14).

3.4. Passive Avoidance Test

This device was employed to assess learning and

memory performance using a two-chamber shuttle box

(20 × 30 × 20 cm) consisting of a light and a dark

compartment divided by a guillotine door (6 × 8 cm).

The dark compartment’s floor was equipped with

stainless steel rods (1 cm apart) connected to a shock

generator (Borj Sanat, Iran). The test comprised three

phases: Habituation, acquisition, and retention.

For habituation, rats were placed in the light

compartment and allowed to explore both

compartments for 5 minutes with the guillotine door

open. In the acquisition phase, following habituation,

rats underwent three 5-minute trials (30-minute inter-

trial interval). Upon entering the dark compartment

during the third trial, the door was closed, and a single

foot shock (1.5 mA, 50 Hz, 1 s) was delivered via the grid

floor. Rats remained in the dark compartment for an

additional 10 seconds to reinforce the association

between the dark compartment and the shock. This

procedure was repeated after 2 minutes if the rat re-

entered the dark part of the apparatus. Acquisition was
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considered complete if the rat avoided the dark

compartment for 120 seconds.

To evaluate retention, forty-eight hours post-

acquisition, memory retention was tested. Rats were

positioned in the light compartment, and the step-

through latency (STL, time to enter the dark

compartment), total time spent in the dark

compartment (TDC), total time spent in the light

compartment (TLC), and the number of entries into the

dark compartment were recorded over 600 seconds. No

shock was delivered during this phase. Impaired

memory retention was indicated by reduced STL,

increased TDC, and a higher number of dark

compartment entries.

3.5. Statistical Analysis

All data are presented as mean ± SEM. Statistical

analysis was performed using one-way ANOVA followed

by Tukey’s post-hoc test. The collected data were

analyzed using SPSS software v: 29.0.2.0. A P-value of less

than 0.05 was considered statistically significant.

3.6. Ethical Considerations

The principles of medical research ethics were

followed in accordance with the Declaration of Helsinki

and the guidelines of the National Committee on Ethics

in Medical Research. The proposal was approved by the

Medical Ethics Committee of Qazvin University of

Medical Sciences (IR.QUMS.REC.1396.106). Anesthesia

was administered during surgical procedures to ensure

animal welfare.

4. Results

4.1. Effect of Streptozotocin on Passive Avoidance Memory
Performance

The STL, TLC, TDC, or the number of entries into the

dark compartment during the retention test did not

show significant differences between the control and

sham groups (P > 0.05, Figures 1 - 4). In contrast, the STZ

group exhibited significant impairments in memory

performance. Specifically, STL and TLC were significantly

reduced (P < 0.001), while TDC and the number of dark

compartment entries were significantly increased (P <

0.001) compared to the control and sham groups,

indicating STZ-induced memory deficits (Figures 1 - 4).

4.2. Effect of Sodium Hydrosulfide Treatment on
Streptozotocin-Induced Memory Impairment

Treatment with NaHS (5.6 mg/kg, i.p.) significantly

ameliorated STZ-induced memory impairments in the

PA test. Compared to the STZ and STZ + Saline groups,

the STZ + NaHS group showed a significant increase in

STL (P < 0.05, Figure 1) and TLC (P < 0.05, Figure 2),

alongside a significant decrease in TDC (P < 0.05, Figure

3) and the number of dark compartment entries (P <

0.05, Figure 4). These findings suggest that NaHS

treatment effectively mitigated STZ-induced memory

deficits.

5. Discussion

The present study investigated the neuroprotective

potential of NaHS, a H2S donor, against an

intracerebroventricular STZ-induced rat model of AD.

Our findings demonstrate that NaHS treatment for 21

days significantly attenuated STZ-induced cognitive

impairment, as evidenced by improved performance in

PA tests. Specifically, NaHS reversed STZ-induced

decreases in STL and time spent in the light chamber,

while reducing time spent in the dark chamber and

entries into the dark part of the shuttle box. These

results suggest that H2S ameliorates synaptic

dysfunction and memory decline associated with STZ

administration, highlighting its therapeutic potential

in AD-like pathology.

The mechanism of the positive effect of H2S on

improving cognitive disorders in AD has not yet been

fully determined, but based on previous studies, several

reasons can be cited for its protective effects, such as its

antioxidant, anti-inflammatory, and anti-apoptotic

properties (15). The neuroprotective properties of H2S

identified in this study may be attributed to its well-

documented functions in regulating oxidative stress

and inflammatory responses. As an effective neutralizer

of ROS, H2S bolsters endogenous antioxidant

mechanisms, such as glutathione production and

superoxide dismutase activity (16).

Supporting these observations, prior research has

illustrated the neuroprotective efficacy of NaHS across

diverse pathological contexts (17). For example, another

study found that NaHS alleviates homocysteine (Hcy)-

induced cognitive impairment by diminishing reactive
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Figure 1. Step-through latency (STL); comparison of STL during the retention test across experimental groups [***P < 0.001 vs. control and sham groups; +P < 0.05 vs.
streptozotocin (STZ) and STZ + saline groups].

Figure 2. Total time in light compartment (TLC); comparison of TLC during the retention test across experimental groups [***P < 0.001 vs. control and sham groups; +P < 0.05 vs.
streptozotocin (STZ) and STZ + saline groups].

aldehyde buildup via enhanced glutathione levels and

aldehyde dehydrogenase 2 (ALDH2) activation (10).

Parallel findings by Karimi et al. revealed that NaHS

mitigates cognitive deficits following traumatic brain

injury (TBI) (18). Further studies indicate that NaHS

reduces Aβ25 - 35-triggered neuronal degeneration,

inflammatory markers, and apoptotic pathways (6, 19).

Zhang and Bian demonstrated that NaHS decreases

apoptosis and downregulates autophagy-related

proteins, such as Vps34, Beclin-1, and LC3II, in brain-

injured models (20). Additionally, Jiang et al. linked

NaHS to attenuated TBI-induced blood-brain barrier

(BBB) dysfunction, cerebral edema, and lesion size,

correlating these effects with reduced oxidative stress

and elevated antioxidant enzyme activity (21). In

cerebral ischemia, NaHS was shown to dose-

dependently diminish brain injury and post-ischemic

edema (22, 23). Notably, H2S, a metabolite of NaHS, acts

as a ROS scavenger, protecting neurons from oxidative

damage (24), which suggests antioxidant mechanisms

underpin its neuroprotective role. Lu et al. further
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Figure 3. Total time in dark compartment (TDC); comparison of TDC during the retention test across experimental groups [***P < 0.001 vs. control and sham groups; +P < 0.05 vs.
streptozotocin (STZ) and STZ + saline groups].

Figure 4. Number of dark compartment entries; comparison of the number of entries into the dark compartment during the retention test across experimental groups [***P <
0.001 vs. control and sham groups; +P < 0.05 vs. streptozotocin (STZ) and STZ + saline group].

reported that H2S enhances astrocytic glutamate uptake

under H2O2-induced stress, underscoring its therapeutic

relevance in oxidative brain injury (25). The NaHS also

promotes hippocampal neuron survival during oxygen-

glucose deprivation and reoxygenation (26).

Beyond antioxidant effects, Lu et al. identified H2S as

a regulator of intracellular pH in neural cells (27), while

Gong et al. observed that NaHS counteracts

lipopolysaccharide (LPS)-induced cognitive decline by

suppressing pro-inflammatory mediators (28). Chu et al.

extended these findings, showing preoperative NaHS

administration alleviates surgery-related memory

deficits via reduced systemic and cerebral pro-

inflammatory cytokine levels (29). Collectively, these

studies emphasize the dual antioxidant and anti-
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inflammatory pathways through which NaHS exerts its

protective neural effects, offering mechanistic insights

into its therapeutic potential.

5.1. Conclusions

The present study demonstrates that systemic NaHS

administration improves cognitive deficits induced by

STZ. Our findings provide novel evidence for the

protective role of NaHS against STZ-induced cognitive

impairment. Based on existing literature and current

results, NaHS reduces glutamate excitotoxicity, oxidative

stress, and enhances antioxidant enzyme activity in the

brain, and may serve as a promising neuroprotective

agent for neurodegenerative disorders characterized by

intellectual decline, such as AD.
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