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Abstract

Background: In recent years, the relationship between cancer cells and electromagnetic radiation has received much attention.
Objectives: The present study aimed to evaluate the effects of different intensities of electromagnetic fields on gastric cancer cell
lines (AGS).
Methods: After preparing AGS and Hu02 (normal) cell lines, they were exposed to magnetic flux densities of 0.25, 0.5, 1, and 2 mil-
litesla (mT) for 18 h. The cell viability was studied by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
The expression levels of hes1 and hsa-circ-0068530 RNAs were studied by the quantitative Real-time-PCR technique.
Results: The inhibition of gastric cancer cell line growth was observed under the influence of electromagnetic fields at different
intensities. However, they did not affect the viability of normal cells. A sharp increase in the expression of hes1 and hsa-circ-0068530
genes was observed in normal cells exposed to 2 mT electromagnetic fields.
Conclusions: In general, it can be concluded that the effect of electromagnetic fields on gastric cancer cells depends on their in-
tensity. Magnetic flux densities of 0.25 and 0.5 mT had anti-cancer effects and magnetic flux density of 2 mT showed carcinogenic
effects.
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1. Background

In recent decades, the use of electricity has expanded
significantly and become one of the hallmarks of advanced
societies. Therefore, researchers have focused on the bi-
ological effects of electromagnetic fields. Several studies
have shown a relationship between electromagnetic fields
and multiple types of cancer (1, 2). Low-frequency electro-
magnetic fields can induce heat in tissues and cells. This
increase in temperature can lead to cell death (3). It has
also been reported that short-term exposure of pregnant
rats to the electromagnetic field causes teratogenicity ef-
fects in the developing fetus (4). Some researchers believe
that low-frequency electromagnetic radiation acts like ion-
izing waves and causes DNA damage by inducing muta-
tions (5). Increasing the concentration of free radicals and
changes in cell behavior following electromagnetic fields

irradiation can lead to DNA damage (6). Low-frequency
electromagnetic fields can affect cell growth (7), morphol-
ogy and cell shape (8), carcinogenicity (9), cell differentia-
tion (10), and programmed cell death (11). Exposure to low-
frequency electromagnetic fields could increase oxidative
stress in chick embryos (12), cultured mammalian cells (13),
and human erythrocytes (14). Gastric cancer is a multifac-
torial disease in which bacterial contamination, environ-
mental factors, and host genetic agents play an important
role in its progression (15). A review of statistics from the
last 30 years shows that the incidence of gastric cancer in
Iran is higher than the global average, and despite the de-
crease in the incidence of gastric cancer in the world, its
incidence is increasing in Iran (16). Studies show that the
onset and progression of cancer depend on several factors,
including genetic background (17).
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The hes1 gene is a target gene for the Notch1 signaling
pathway and plays an important role in preserving neural
stem cells and intestinal precursor cells and determining
cell fate and apoptosis (18). The Notch1 receptor is also one
of the most frequent receptors in the Notch signaling path-
way. The expression of Notch1-3 and hairy enhancer of split
1 (hes1) has been reported in the human gastric mucosa
(19). As known, Notch1 controls the number and fate of in-
testinal stem cells by increasing hes1 (20). Studies have also
shown that Notch receptors and their ligands play an im-
portant role in some cancers (21). The expression of Notch1
and hes1 is associated with cancer cell proliferation and an-
giogenesis, as reported that the expression of these genes
is very high in cancer stem cells (CSCs) (22, 23).

A group of non-coding RNAs that have a circular struc-
ture is called circRNAs that have been identified for their
role in regulating gene expression at the transcriptional
level and, subsequently their sponge miRNA function (24).
In recent years, the association of circRNAs with a variety of
cancers has attracted much attention and has been cited as
a biomarker for cancer diagnosis (25).

2. Objectives

This research evaluated the effect of extremely low fre-
quency (ELF) magnetic flux densities (MFDs) of 0.25, 0.5, 1,
and 2 mT on hes1 and hsa-Circ-0068530 expression levels.

3. Methods

3.1. Cell Culture

Two AGS cell lines and a Hu02 fibroblast cell line were
purchased from the National Genetic Re-sources Center of
Iran. Ham’s F12 medium (Gibco, USA) was used for gastric
cancer cell line culture, and Dulbecco’s modified Eagle’s
medium (DMEM; Gibco, USA) was used for culture of nor-
mal Hu02 cells. A humidified incubator at 37± 2°C with 5%
CO2 was used to maintain each cell line (26).

3.2. Exposure System

Figure 1 shows the exposure system that included a
solenoid cylinder explained in our previous study (27, 28).
The cells were exposed to ELF magnetic flux densities of
0.25, 0.5, 1, and 2 mT for 18 h. The control and exposure
cells were incubated in a constant condition of tempera-
ture, humidity, and CO2 (26).

3.3. MTT Assay

The MTT assay was used to evaluate cell viability accord-
ing to our previous study (26).

Figure 1. Magnetic field exposure setup

3.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-
PCR)

The Real-time PCR was used to measure expression
changes of hes1 and hsa-Circ-0068530. Total RNA was ex-
tracted by using TRIzol reagent (TRI Sigma-Aldrich) accord-
ing to the manufacturer’s instructions. Total extracted RNA
concentration was qualified by measuring the absorbance
at 260 nm. Then, cDNA was synthesized from the total ex-
tracted RNA using the cDNA Synthesis Kit (Biofact, Korea)
with oligo (dT) or random primers. Finally, qRT-PCR was
performed by Bioneer ExicyclerTM’s 96 Detection System.
The primer sequences are listed in Table 1.

Table 1. Sequences of GAPDH, hes1, and hsa-circ-0068530 Primers

Genes Sequences

hsa-circ-0068530

Forward 5’-GGAAATGACAGTGAAGCACCTCC-3’

Reverse 5’-GAAGCGGGTCACCTCGTTCATG-3’

hes1

Forward 5’-GAGTGCATGAACGAGGTGAC-3’

Reverse 5’-GGTCATGGCATTGATCTGGG-3’

GAPDH

Forward 5’-GCACCGTCAAGGCTGAGAAC-3’

Reverse 5’-GGATCTCGCTCCTGGAAGATG-3’

The 2-∆∆CT method was applied to determine relative
changes in gene expression in samples (26, 29). Each exper-
iment consisted of six separated flasks of cells. After extrac-
tion of RNA and synthesis of cDNA, the qRT-PCR test was
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done in duplicate.

3.5. Statistical Analysis

All statistical analyses were performed with SPSS 25.0
(IBM, SPSS, Chicago, USA). The values are expressed as mean
± standard deviation (SD) from three independent exper-
iments performed in duplicate. Statistical analyses were
carried out using a two-independent-sample and Mann-
Whitney U test. Bivariate correlations between variables
were analyzed by the Spearman test. Differences in values
were considered significant if P-value < 0.05.

4. Results

4.1. MTT Assay

The results showed a significant difference in the sur-
vival rate of the tumor and normal cells following expo-
sure to different electromagnetic fields (P < 0.05). Electro-
magnetic fields decreased the survival rate of tumor cells
while normal cells continued to multiply and their per-
centage increased. The inhibitory effect of tumor cell divi-
sion was observed from an intensity of 0.5 to 2 mT (Figure
2). Thus, electromagnetic fields showed inhibitory effects
on cell division in the gastric tumor cell line.

4.2. hes1 Expression

The expression of the hes1 gene in tumor cells was de-
pendent on the intensities of electromagnetic fields, but in
normal cells, no change in the expression of this gene was
observed with increasing the intensity of the electromag-
netic field. The expression of hes1 in gastric cancer cells
was downregulated at intensities of 0.25 and 0.5 mT com-
pared to controls, but with an increase in the electromag-
netic field to 2 mT, this gene was overexpressed (Figure 3).

4.3. hsa-circ-0068530

There was a significant difference in the expression
of hsa-circ-0068530 between normal and tumor cells ex-
posed to different intensities of the electromagnetic field.
The expression of this circRNA in tumor cells initially
showed a decreasing trend when exposed to the intensities
of 0.25, 0.5, and 1 mT, which overexpressed sharply with in-
creasing the electromagnetic field to 2 mT (2.5 times com-
pared to the control (Figure 4). In normal cells, the expres-
sion of hsa-circ-006853 decreased under exposure to elec-
tromagnetic fields in comparison with the control group,
and the greatest decrease was seen in the magnetic flux
density of 2 mT.

4.4. Correlation Analysis

A positive significant correlation (r = 0.908, 95% P <
0.0001) was observed between the expression levels of hsa-
circ-0068530 and hes1 genes in the AGS cell lines exposed to
electromagnetic fields (Figure 5A). But, there was no signif-
icant correlation between the expression levels of hsa-circ-
0068530 and hes1 genes in normal cells exposed to electro-
magnetic fields (P = 0.540) (Figure 5B).

5. Discussion

In this study, AGS gastric cancer cell line and normal fi-
broblast cell line were exposed to ELF-MFDs of 0.25, 0.5, 1,
and 2 mT. The results showed that normal cells continued
to proliferate over time and their viability increased. How-
ever, the survival rate of tumor cells decreased following
exposure to the electromagnetic fields. Therefore, it seems
that the magnetic fields can damage gastric tumor cells
and prevent them from growing and multiplying. Interac-
tion of ELF-MF with living organisms can induce different
biological effects that depend on the type, MFD, frequency,
and time of exposure (30, 31).

In recent years, concerns have been raised about the
strong electromagnetic fields of household appliances,
and more importantly, high-pressure towers and cell
phone waves, on human health. It seems that with the in-
creasing intensity of electromagnetic fields, their biolog-
ical effects on living systems increase (32). The produc-
tion of liver cysts with fibrotic bands, severe obstructive
hepatitis, and edema in chick embryos exposed to 50 Hz
electromagnetic field (33), DNA damage due to oxidative
stress (34), and slow cell division due to the inhibition of
mitotic spindle formation (35) have been reported. In the
present study, normal fibroblast cells following exposure
to magnetic fields showed no reduction in viability, which
is contrary to the findings of the above-mentioned studies.
This can be attributed to the different magnetic intensi-
ties used in the present study. The inhibitory effect of mag-
netic fields on the growth and proliferation of gastric can-
cer cells can be attributed to the DNA fragmentation of can-
cer cells, inhibition of antioxidant enzymes, and reduced
cell tolerance to oxidative stress. These events affect the cell
signal transduction pathways and the expression of genes
specific for the inflammatory response, cell growth, differ-
entiation, and proliferation, and generally reduce cancer
cell growth and inhibit its proliferation (36). Cancer and
normal cells showed different cellular behaviors to inter-
act with electromagnetic fields. It has been shown that
electromagnetic fields induce an increase in free radicals
in the environment. On the other hand, an increase in free
radicals leads to oxidative stress, which is one of the causes
of cell death (37). In normal cells, several detoxification
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Figure 2. Effects of magnetic flux densities of 0.25 - 2 mT on cell survival of gastric cancer cell and normal cell lines (*** P value < 0.001)
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Figure 3. Effects of magnetic flux densities of 0.25 - 2 mT on hes1 gene expression in normal and gastric cancer lines
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Figure 4. Effects of magnetic flux densities of 0.25 - 2 mT on hsa-circ-0068530 expression in normal and gastric cancer lines
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Figure 5. Correlation analysis between hes1 and hsa-circ-0068530 gene expression in A, gastric tumor cells; and B, normal cell lines exposed to magnetic flux densities of 0.25
- 2 mT

processes regulated through antioxidant enzymes balance
the ROS levels. Therefore, the homeostasis of ROS is well
sustained, which can contribute to the maintenance of re-
dox balance in normal cells (38).

In the present study, significant differences in terms
of hes1 expression were observed in gastric tumor cells ex-
posed to different electromagnetic field intensities. Ex-
pression of this gene decreased at low intensities of elec-

tromagnetic field (0.25 and 0.5 mT) in tumor cells but in-
creased sharply at higher intensities (2 mT). It seems that
intensities above 2 mT of electromagnetic fields may lead
to increased expression of this gene in tumor cells. Re-
search has shown that hes1 is overexpressed in cancer stem
cells Therefore using down-regulation of hes1 by target-
ing therapy can reduce the number of CSCs (23). Hence,
hes1 is an oncogene that can lead to the development of
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gastric cancer (39). A decrease in hes1 expression was ob-
served at low intensities of 0.25 and 0.5 mT of magnetic
fields. However, when the intensity of the electromagnetic
field increased to 2 mT, a sharp increase in the expression
of this gene was observed in gastric cancer cells, which
could indicate the carcinogenic effect of electromagnetic
fields at high intensities. Therefore, it seems that the elec-
tromagnetic field can also exert its anti-proliferative effect
through changes in the Notch transduction pathway. How-
ever, more studies are needed in this area.

One of the most important molecular elements in-
volved in regulating gene expression is circRNAs, which
can originate in either exon or intron regions (40). In re-
cent years, the role of circRNAs in causing cancer has re-
ceived much attention, which has led to the identification
of a large number of circRNAs involved in a variety of can-
cers (41). As known, CircRNAs have multiple regions for
binding to miRNAs and act as miRNA sponges. They play a
role in various cancers (42). In the present study, a sharp in-
crease in the expression of hsa-circ-0068530 in a magnetic
flux density of 2mT could indicate its carcinogenic role in
gastric cancer. In normal cells, no significant difference
was observed in the expression hsa-circ-0068530 at differ-
ent intensities of magnetic fields. In this study, the expres-
sion of hsa-circ-0068530 in the cancer cell line was stud-
ied for the first time, so its importance must be confirmed
in other studies. Correlation analysis was performed to
find the relationship between the hes1 gene and its circRNA
hsa-circ-0068530, which showed a direct relationship be-
tween gene expression and its circRNA in tumor cells in
electromagnetic fields. There was no correlation between
hes1 and hsa-circ-0068530 gene expression in normal cells.
Considering the effect of electromagnetic fields on reduc-
ing the expression of this circRNA in normal cells, it can be
said that the electromagnetic field is safe for normal cells.

5.1. Conclusion

The inhibition of AGS gastric cancer cell growth un-
der exposure to electromagnetic fields at intensities of 0.25
and 0.5 mT was observed, indicating the cytotoxic effect of
these waves on the tumor. At intensities of 1 and 2 mT, the
electromagnetic fields showed an increase in the expres-
sion of hes1 and hsa-circ-0068530 genes, which could in-
dicate the carcinogenic effects of electromagnetic fields at
high intensities.
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