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Abstract

A growing global prevalence of acute kidney injury (AKI) and chronic kidney disease (CKD), high costs of kidney transplantation, a
shortage of kidney donors, and low survival rate after dialysis have popularized mesenchymal stem cell (MSC) therapy via transplan-
tation. However, the risks of tumorigenesis, immune rejection, pathogen transmission, loss of differentiation, and morphological
changes after long-term culture have prompted researchers to develop a safer and more effective therapy method. Therefore, cell-
free approaches have been developed to reduce the risks associated with stem cell-based therapies. In cell-free therapy of AKI and
CKD, MSC-derived extracellular vesicles, with nanometer sizes, are used, called exosomes. Exosomes have a lipid bilayer membrane
with various genes, microRNAs, and proteins for kidney repair. As known, MSC-derived exosomes have improved the kidney regener-
ation process for various reasons, such as increased safety and reduced inflammation, immune rejection, and tumorigenesis. With
the advancement of exosome isolation techniques, the possibility of using biologically active molecules for renal injury prediction
and diagnosis has emerged. The use of urinary exosomes in AKI and CKD diagnosis is based on changes in the expression of specific
molecule cargos of exosomes. This review article summarizes the diagnosis and therapeutic applications of exosomes in AKI and
CKD.
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1. Context

Kidney disease is a severe problem worldwide, and its
prevalence has been increasing in recent years. Kidney
disease is divided into two main categories: Acute kidney
injury (AKI) and chronic kidney disease (CKD) (1). Acute
kidney injury is a condition in which kidney function de-
clines abruptly, lasting for seven to 90 days, resulting in
decreased glomerular filtration rate and urine output, as
well as increased serum creatinine (2, 3). Chronic kidney
disease is a broad term that refers to a group of diseases
that impair the structure and function of the kidneys for
more than three months and progress to end-stage renal
disease (ESRD) (4, 5). Disease expression variation is influ-
enced by the etiology, pathophysiology, severity, and pro-
gression rate (6).

Kidney transplantation and dialysis are the two main
treatments currently available for kidney regeneration.
Both are unsatisfactory, and the increase in survival rates
after treatment is insufficient. Dialysis has several draw-
backs, including high mortality rate, hospitalization, loss
of independence, depression, and high drug costs (7). The

limitations of kidney transplantation are the shortage of
kidney donors, the risk of infection or cancer transmission,
the high cost of the surgeon, and severe immune rejection
(8). As a result, the development of practical therapeutic
approaches has opened up new opportunities for kidney
regeneration (9, 10).

Over the last few decades, many studies have shown
that transplanting stem cells to patients with kidney dis-
ease improves their kidney function (11). Among all stem
cell types, mesenchymal stem cells (MSCs) have been iden-
tified as one of the most effective cell types for induc-
ing kidney regeneration due to their ease of isolation
and expansion and lack of teratoma risk, immunosup-
pressive properties, and absence of ethical problems (12,
13). Despite the benefits of MSC-based therapy, there are
some drawbacks, including the possibility of tumorigen-
esis, prion, and viral transmission, loss of differentiation
and morphological changes after long-term culture, and
the possibility of antibody production in the host body af-
ter repeated administration of MSCs (14, 15). Cell-free ap-
proaches have been used in recent years to reduce the ad-
verse effects of MSC-based cell therapy. Exosomes are a
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group of extracellular vesicles with sizes ranging from 30
to 100 nm produced inside multivesicular bodies (MVBs) in
almost all types of cells and secreted from the original cell
to the target recipient cell, which is one of the tools used in
cell-free approaches (16, 17). As known, MSC-exosomes con-
tain pro-regenerative molecules from their origin cell and
mimic MSC functions in tissue regeneration in cell therapy,
mediating intercellular communication; thus, they are a
popular substitute for cell therapy and have the potential
to regenerate tissues and be used in tissue engineering
without the risk of tumorigenesis or high immune rejec-
tion (18, 19).

Aside from the availability of diagnostic markers for
AKI and CKD, such as serum creatinine and urine output,
urinary exosomes have aided in making the diagnostic
process more sensitive and faster. Changes in the expres-
sion of specific molecules in urinary exosomes derived
from the kidney, prostate, and bladder organs can be used
as biomarkers to assess kidney health. The lipid bilayer
structure of exosomes protects their cargo from degrada-
tion, allowing them to be isolated and analyzed for dif-
ferences in disease biomarker expression levels (20). For
example, in ischemia/reperfusion (I/R) models, miRNAs of
urinary exosomes revealed the state of kidney injury or fi-
brosis (21).

This review article will concentrate on the role of MSC-
derived exosomes in treating kidney disease and summa-
rize the latest findings on the diagnosis and application of
urinary exosomes.

2. Evidence Acquisition

2.1. Acute Kidney Injury

Acute kidney injury is a sudden impairment of renal
function and structure associated with a high morbidity
and mortality rate in hospitalized patients. Clinical signs
of AKI include a sudden rise in serum creatinine, a decrease
in urine volume, and a fall in glomerular filtration rate
(GFR) (2, 3, 22). The most important definitions of AKI are
based on RIFLE (risk, injury, failure, loss, and end-stage re-
nal disease) classification, AKIN (AKI network), and KDIGO
(kidney disease improving global outcomes) (Table 1) (2, 23,
24).

The area, number of patients, and definition of AKI
play a role in AKI epidemiology (25, 26). In affluent coun-
tries, hospital-acquired AKI is more common in older and
severely ill patients (27-29). The leading causes of AKI in
developing countries, depending on patient accommoda-
tion, are healthcare-related conditions such as nephro-
toxic drugs and sepsis in urban areas and community-
acquired conditions such as infectious disease and diar-
rhea in rural areas (30-33). A meta-analysis of 154 studies

based on the KDIGO definition of AKI was conducted to es-
timate the global incidence of AKI in developed countries
in North America, Northern Europe, and Eastern Asia. They
discovered that one in every five adults and one in every
three children in the world suffer from AKI during a hos-
pital stay (34). The etiology of AKI is divided into three
categories: Pre-renal, post-renal, and intrinsic (35, 36).
Glomerular filtration rate decreases in the pre-renal cat-
egory without impairment of the renal parenchyma; the
leading causes in this category are renal hypoperfusion,
cardiac failure, intravascular depletion, sepsis, hypoten-
sion, pancreatitis and liver diseases (cirrhosis), bleeding,
and burns (37-39). Acute obstruction of the urine flow, such
as ureteric calculus, causes post-renal AKI, which causes
an increase in intra-tubular pressure, impairment of renal
blood flow, and inflammations lowering GFR, eventually
leading to renal failure (40, 41). Intrinsic AKI, also known
as acute renal failure, is when the kidney suffers from vari-
ous direct and sudden damages. The most common causes
of intrinsic AKI are Acute Tubular Necrosis (ATN), nephro-
toxins, vasculitis, bacterial or viral infections, allergic in-
terstitial nephritis, hepatorenal syndrome, and glomeru-
lonephritis (2, 36, 42).

2.2. Chronic Kidney Disease

Chronic kidney disease is defined as persistent abnor-
malities in the structure and function of the kidney lasting
for more than three months or a reduction in GFR of less
than 60 mL/min per 1.73 m2 (4). The CKD global incidence
is increasing, with a global prevalence of 13.4%, and the
number of ESRD people ranges from 4.902 to 7.083 million
(43). The CKD etiologies include AKI, hypertension, toxic
insults, diabetes mellitus, age, obesity, and nephrectomy
(6, 44). Besides, CKD has a wide range of characteristics
and mechanisms, some of which are associated with AKI
pathologic mechanisms. Also, CKD is characterized by per-
icyte migration, pericyte phenotype change, microvascu-
lar loss, chronic tubular hypoxia, cellular senescence, colla-
gen deposition, myofibroblast proliferation, tubular loss,
and replacement with collagen scars, chronic leukocyte in-
filtration, and end-stage renal failure (45-48). End-stage re-
nal failure (ESRD) is the final stage of CKD in which the
kidney fails, and dialysis or kidney transplantation is re-
quired to survive (49). Diabetes mellitus (DM) is one of the
major causes of CKD, in which the inflammation and ox-
idative stress of the kidney, resulting from hyperglycemia,
lead to the production of inflammatory cytokines and the
development of diabetic nephropathy. Diabetic nephropa-
thy (DN) is a diabetic kidney disease that results in ESRD
by causing structural (glomerular basement membrane
thickening and glomerular sclerosis) and functional (GFR
reduction, albuminuria, proteinuria, and hyperfiltration)
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Table 1. Acute Kidney Injury Definition Based on RLIFE, AKIN, and KDIGO

Class RIFLE SCr or GFR Stage AKINSCr Stage KDIGO SCr

Risk Increased SCr × 1.5 or GFR decrease
> 25% (within 7 days)

1 Increase in SCr ≥ 0.3 mg/dL or ≥
150% to 200% (1.5 to 2-fold) from
baseline (within 48 hours)

1 Increase in SCr by ≥ 0.3 mg/dL
within 48 hours or increase in SCr
1.5 to 1.9 times the baseline which is
known or presumed to have
occurred within the prior 7 days

Injury Increased SCr × 2.0 or GFR
decrease > 50%

2 Increase in SCr to more than 200%
to 300% (> 2 to 3-fold) from
baseline

2 Increase in SCr to 2.0 to 2.9 times
the baseline

Failure Increased Scr × 3.0 or GFR decrease
> 75% or SCr ≥ 4.0mg/dL or acute
increase ≥ 0.5 mg/dL

3 Increase in SCr to more than 300%
(> 3-fold) from baseline or SCr ≥
4.0 mg/dL with an acute increase of
at least 0.5 mg/dL or initiation of
renal replacement therapy

3 Increase in SCr to 3.0 times the
baseline increase in SCr to ≥ 4.0
mg/dL or initiation of renal
replacement therapy

Loss Persistent acute renal failure =
Complete loss of kidney function >
4 weeks

End-stage kidney disease End-stage of kidney disease (> 3
months)

changes in the kidney (50, 51). Because of the difficulty
of diagnosing CKD in the early stages due to the asymp-
tomatic condition, disease diagnosis is delayed, and avail-
able treatments for CKD regeneration are limited.

2.3. Exosomes

2.3.1. Discovery and Definition of Exosomes

For the first time, scientists observed 50 nm extracel-
lular membrane vesicles carrying transferrin receptors re-
leasing from reticulocytes in 1938. Multivesicular endo-
somes holding vesicles with transferrin receptors were ob-
served fusing to the membrane of a sheep reticulocyte
and releasing those vesicles into the extracellular environ-
ment; and in 1987, the term “exosome” was coined to de-
scribe this type of extracellular vesicle (52, 53). Exosomes
are cup-shaped lipid bilayer vesicles with a size of 30 - 100
nm that are secreted by a variety of cells, including MSCs,
neuronal cells, cytotoxic T cells, and platelets, and found
in various body fluids, including sperm, blood, urine, and
amniotic fluid (16, 54, 55).

2.3.2. Biogenesis of Exosomes

Exosome biogenesis begins with the maturation of an
early endosome to a late endosome or MVB. Invagination
of the endosomal membrane during late endosome for-
mation results in the absorption of intracellular content
and the formation of intraluminal vesicles. Multivesicular
bodies have two fusion pathways: Fusion to the lysosome
and degradation of the cargo, and fusion to the plasma
membrane and release of intraluminal vesicles called exo-
somes into the extracellular space (Figure 1). Evidence sug-
gests that two distinct mechanisms can form intraluminal

vesicles: Endosomal sorting complex required for trans-
port (ESCRT)-independent and ESCRT-dependent mecha-
nisms. ESCRT is composed of four complexes and acces-
sory proteins: ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III.
These complexes cooperate in an orderly manner to iden-
tify ubiquitinated proteins in the endosomal membrane
and form intraluminal vesicles via inward budding. The
ESCRT-independent mechanism, on the other hand, is de-
pendent on lipid raft microdomains enriched with sph-
ingomyelinases and tetraspanin-enriched microdomains
(56-58).

2.3.3. Components of Exosome

Exosomes are complex entities whose contents depend
on the parent cell. Exosomes contain various elements, in-
cluding lipids, proteins, and nucleic acids. Tetraspanins
(CD63, CD81, CD82, and CD9) as surface markers, heat shock
proteins (HSP70, HSP90), MVB formation and release pro-
teins (ESCRT complex, Alix, and TSG101), and MVB mem-
brane transport and fusion (GTPases and annexins, phos-
pholipase and lipid-related proteins) are all common pro-
teins found in exosomes. Exosomes contain a variety of
RNA patterns, including lncRNA, tRNA, mRNA, miRNA, and
rRNA, which are involved in several biological functions in
the recipient cell. According to the data, microRNA is the
most abundant RNA pattern in exosomes. Sphingomyelin,
prostaglandins, cholesterol, phosphatidylserine, various
fatty acids, and leukotrienes make up the lipid content of
exosomes, which play significant roles in structural stiff-
ness and the protection of the inner cargo of exosomes
from degradation (58, 60-62).
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Figure 1. Exosome biogenesis process and two fusion pathways of MVB (59)

2.3.4. Isolation of Exosomes

Exosome purification from bodily fluids and condi-
tioned culture media necessitates tools and established
procedures. There are several suggested approaches, each
with its advantages and disadvantages. Differential ultra-
centrifugation is the most commonly used method due to
advantages such as low cost, short processing time, and
density-based exosome purification. However, the lack of
specificity of this method is a significant drawback, as it
prevents complete purification and permits contamina-
tion with other extracellular vesicles, protein aggregates,
and genetic elements. Furthermore, due to the presence

of complex elements in urine and serum, differential ultra-
centrifugation is ineffective for purifying their exosomes.
Low yield and purification necessitate the use of differ-
ential ultracentrifugation in conjunction with a sucrose
cushion to increase specificity (63-67). Exosomes are fil-
tered from smaller contaminants using the ultrafiltration
purification technique in a quick, easy, and high-yield res-
olution process; however, there is a risk of contamination
fragmentation depending on the pore size. As a result,
some particles and fragments of the same size as exosomes
can pass through the pores using this mechanism (68, 69).
Another method for exosome purification is high-pressure

4 Jentashapir J Cell Mol Biol. 2021; 12(4):e120113.



Taghizadeh Momen L et al.

liquid chromatography (HPLC), which creates a homoge-
neous environment for exosomes while preserving their
biological properties. Although this method is highly pu-
rifying, it is expensive and has limited scalability (70, 71).
Immunoaffinity capture uses antibodies that bind to sur-
face markers on exosomes; however, it produces highly pu-
rified exosomes, is expensive, and has a low yield (72). Ex-
oQuick precipitation methods enable the production of
highly purified exosomes from a small sample volume in
less than two hours (73). Polymer-based precipitation, Mi-
crofluidic technology, field-flow fractionation, and a com-
bination of these techniques are used for isolation; there-
fore, given the impossibility of removing all contaminants,
selecting an appropriate approach to provide the most pu-
rified exosomes is critical (64, 74).

2.3.5. Identification of Exosomes

Following exosome isolation, it is critical to confirm
their characteristics and features. Exosome surface mark-
ers are identified using immunocytochemical analysis,
western blot, and flow cytometry (CD81, CD63, CD82, and
CD9). Atomic force microscopy (AFM), Scanning Electron
Microscopy (SEM), and transmission electron microscopy
(TEM) can all be used to examine morphology and size
(75, 76). Exosome concentration and size distribution can
be determined using dynamic light scattering (DLS) and
nanoparticle tracking analysis (NTA) (77-79). However, the
quick and inexpensive ELISA method is the gold standard
for quantifying exosomes and their markers (80). In re-
cent years, surface-enhanced raman spectroscopy (SERS)
has been introduced as a precise and sensitive method for
identifying and analyzing exosome-like vesicles (81) (Table
2).

2.3.6. Function of Exosomes

Exosomes have a variety of functions depending on
their origin cells. They participate in immune responses,
inflammation, angiogenesis, coagulation, cell-to-cell com-
munication, and spreading pathogens such as prions and
viruses. They also play essential roles in disease diagnosis,
cell-free therapy, and delivery (proteins, genes, and chem-
icals) (82-84). This review article concentrates on the di-
agnosis and regenerative applications of MSC-derived ex-
osomes in kidney disease.

2.4. MSC-derived Exosomes

In 2010, Lai et al. found the paracrine influence of MSCs
on tissue regeneration and demonstrated for the first-time
particles with a size of 50 - 100 nm called exosomes secret-
ing from MSCs in ischemic/reperfusion injury mice (85). As
known, MSC-exosomes have biological functions similar to

their origin cells, and depending on the content; they can
repair cells and tissues, regulate immune and inflamma-
tory responses, suppress apoptosis, and modulate home-
ostasis, cell growth, proliferation, survival, migration, tu-
mor progression, and inhibition (86, 87).

There are numerous cargos in the structure of MSC-
exosomes that differ depending on the source cell.
Tetraspanins, adhesion proteins, antigen-presenting
proteins, cytokine receptors, heat shock proteins, lipopro-
teins, fatty acid-binding proteins, trophic factors, cy-
tokines, chemokines, membrane fusion proteins, trans-
lation and transcription proteins, motility proteins,
structure proteins, and enzymes are among the nearly
2000 proteins identified in MSC-exosomes. The nucleic
acid content of exosomes is enriched with miRNAs,
which are involved in various regulatory and patho-
logical states such as angiogenesis, inflammation, cell
growth, tumorigenesis, and tumor progression. Besides,
MSC-exosome lipid content includes various types of
fatty acids, prostaglandins, lysophosphatidylcholine,
leukotrienes, and other lipids found in all exosomes (88,
89).

The widespread availability of MSCs and large-scale
production of exosomes for cell-free therapy are some of
the benefits of using MSC exosomes as a therapeutic tool
(90, 91). Also, MSC-exosome isolation is more straightfor-
ward, less time-consuming, and less expensive than MSC
isolation (92). Furthermore, exosome therapy is safer than
MSC-based therapies because exosomes lack the potential
to multiply and are free of a substantial quantity of mark-
ers that can be shown as antigens by the host body, result-
ing in reduced immunological rejection (93). In addition,
there are no concerns about cell survival in exosome-based
regeneration, and structural stability for an extended time
at a storage temperature of 20°C makes them an excellent
choice for cell-free therapy (94) (Table 3).

2.5. Diagnosis Application of Urinary Exosomes in Renal Dis-
ease

The complex and unique structure of exosomes, which
resembles the constitution of their parent cell, is a tool for
demonstrating cellular mechanisms in the body and can
thus be used as a biomarker for disease diagnosis. Recent
research has shown that exosomes derived from luminal
epithelial renal cells reflect renal function. Consequently,
urinary exosomal biomarkers can be used to diagnose AKI
and CKD.

2.5.1. AKI Diagnosis

Urine analysis, urine output measurement, and blood
tests are standard AKI diagnostic tools. On the other hand,
Urinary exosomes are valuable sources for diagnosing AKI
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Table 2. Summary of Exosome Features, Isolation, and Identification Methods

Variables Exosome Features

Diameter and shape 30 - 100 nm, cup shape

Origin Release of exosomes to extracellular matrix after fusion of multivesicular body with plasma membrane

Protein content CD63, CD81, CD82, CD9, HSP70, HSP90, ESCRT complex, Alix, TSG101, GTPases, annexins, phospholipase, and lipid-related proteins

Lipid content Phosphatidylserine, various fatty acids, leukotrienes sphingomyelin, prostaglandins, and cholesterol

Nucleic acids miRNA, mRNA, DNA, and non-coding RNA

Isolation techniques Ultracentrifugation, ultrafiltration, immunoaffinity capture, high-pressure liquid chromatography, and precipitation

Identification techniques Immunocytochemical analysis, western blot, flow cytometry, microscopic analysis, ELISA, dynamic light scattering, nanoparticle
tracking analysis, surface-enhanced Raman spectroscopy

in a precise and timely manner. According to one study,
increased levels of urinary exosomes indicated the injury
phase. In contrast, the upregulation of miR-9a, miR-141,
miR-200a, miR-200c, and miR-429 indicated the early re-
covery phase and increased expression level of miR-125 and
miR-351 indicated the late stage of the fibrotic phase of
ischemia/reperfusion-induced AKI in rat models (21). In
another study, researchers assessed the expression levels
of urinary exosomal aquaporin-1 (AQP-1) and aquaporin-2
(AQP-2) to see if these assessments can be applied to detect
early and late stages of cisplatin-induced AKI in rat models.
They observed that a decrease in AQP-2 level of the inner
medulla after 168 h, an increase in AQP-1 level of the outer
medulla after 24 h, and a reduction after 168 h are the mark-
ers of renal impairment in rat models (21, 95). In sepsis-
induced AKI mice models, the upregulation of urinary ex-
osomes’ activation transcriptional factor 3 (uATF3) was a
biomarker for disease diagnosis (96). Besides, miR-30c-
5p and miR-192-5p upregulations have been identified as
promising biomarkers for ischemia/reperfusion-induced
kidney injury (97). 2.5.2. CKD Diagnosis

Many researchers who have looked into biomarker mi-
croRNAs in urinary exosomes have relied on databases or
profiling to identify CKD markers. Lv et al. investigated the
expression levels of miR-29c and miR-21 isolated from uri-
nary exosomes of renal fibrosis (RF) patients to see if uri-
nary exosomes could be used to diagnose RF. They realized
that isolating exosomes and observing the upregulation of
miR-21 and the downregulation of miR29c is a low-cost and
highly sensitive method for diagnosing RF (98). In an in-
vestigation on the use of urine exosomes to diagnose Type
2 Diabetic Nephropathy (T2DN), a decrease in urinary ex-
osomal miR-29c-5p and miR-15b-5p and an increase in let-
7c-5p were the predictors of type 2 DN (99). Furthermore,
bioinformatics analysis has revealed that the upregulation
of miR-30a, miR-133b, and miR-342 in urine exosomes is a
marker of T2DN (100). The elevation of urine exosomal
miR-21, a non-invasive biomarker of CKD, has a deleteri-

ous influence on renal function (101). Another example is
the reduction of miR-200b in non-proximal renal tubule-
derived urinary exosomes as a biomarker for the diagnosis
of renal fibrosis in CKD patients (102). Moreover, miR-451
increases as an early response to renal cell injury in CKD
patients (103).

2.6. Therapeutic Utilization of MSC-derived Exosomes in Kidney
Disease

Anti-apoptotic, antioxidant, anti-fibrotic, anti-
inflammatory, and immunomodulatory properties of
MSCs highlight their therapeutic potential. As a result,
MSC-derived exosomes mimic immunomodulatory and
cytoprotective functions of their parent cell and transfer
regenerative information to injured cells or tissues (55).

2.6.1. MSC-derived Exosomes in AKI Treatment

Tomasoni et al. used cisplatin to induce AKI in
mouse proximal tubular epithelial cells (PTECs). They ob-
served the proliferation of injured PTECs after transfer-
ring human bone marrow MSC-derived exosomes contain-
ing insulin-like growth factor-1 (IGF-1) (104). In cisplatin-
induced AKI mice, Zhou et al. reported that human um-
bilical cord MSC-derived exosomes increased cell prolifer-
ation by activating the extracellular signal-regulated ki-
nase 1/2 (ERK1/2) pathway, reducing blood urea nitrogen
(BUN) and creatinine (Cr) levels, tubular protein casts,
and proximal epithelium necrosis via anti-apoptotic ac-
tions, and acted as an antioxidant (105). Zhu et al. found
that exosomes produced by human bone marrow-derived
MSC exosomes enriched with miR-199a-3p had an anti-
apoptotic effect on renal ischemia/reperfusion injury, one
of the most common causes of AKI, in rat models. By acti-
vating the ERK and AKT pathways, miR-199a-3p decreased
the expression of Semaphorin 3A (Sema3A), cleaved cas-
pase 3, and pro-apoptotic Bcl-2-associated X (Bax) pro-
tein, and increased the expression of B-cell lymphoma-
2 (Bcl-2) (106). Wang et al. investigated the effects of
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Table 3. Summary of Roles of Urinary Exosomes in Diagnosis and MSC-derived Exosomes in Regeneration of Acute Kidney Injury and Chronic Kidney Disease

Kidney Disease Role of Exosome Main Results Reference

AKI

Biomarker Upregulation of miR-16, miR-24, miR-200c, miR-125, miR-351, miR-9a,
miR-141, miR-200a, miR-200c, and miR-429

(21)

Biomarker Downregulation of AQP-2 and AQP-1 after 168 hrs, upregulation of
AQP-1 after 24 hrs

(21, 95)

Biomarker Upregulation of uATF3 (96)

Biomarker Upregulation of miR-30c-5p and miR-192-5p (97)

CKD

Biomarker Upregulation of miR-21 and downregulation of miR-29c (98)

Biomarker Downregulation of miR-29c-5p and miR-15b-5p, upregulation of
let-7c-5p

(99)

Biomarker Upregulation of miR-30a, miR-133b, and miR-342 (100)

Biomarker Upregulation of miR-21 (101)

Biomarker Downregulation of miR-200b (102)

Biomarker Upregulation of miR-451 (103)

AKI

Therapeutic Proliferation of injured PTECs (104)

Therapeutic Enhancement of cell proliferation, anti-apoptotic and antioxidant
effects

(105)

Therapeutic Reduction of Sema3A, cleaved caspase 3, and pro-apoptotic protein
Bax., upregulation of Bcl-2

(106)

Therapeutic Upregulation of autophagosome marker LC3B, reduction of
inflammation and apoptosis, inhabitation of mTOR pathway

(107)

Therapeutic Downregulation of genes related to hypoxia, apoptosis, and
cytoskeleton reorganization

(108)

Therapeutic Antioxidant effect by upregulation of HO-1 and Nrf2/anti-oxidant
response element

(109)

Therapeutic Enhancement of autophagy and prevention of nephrotoxicity (110)

Therapeutic Reduction of CCL2 concentration and recruitment of
macrophages/monocytes for inflammation

(111)

Therapeutic Decreasing oxidative stress, inflammation, fibrotic, and apoptotic
biomarkers, increasing anti-apoptotic and angiogenesis biomarkers

(112)

CKD

Therapeutic Decreasing pro-inflammatory cytokines, medullary oxygenation, and
fibrosis

(113)

Therapeutic Reducing fibrosis and downregulating fibrotic genes (114)

Therapeutic Reduction of EndoMT and apoptosis, enhancement of endothelial cell
proliferation, inhabitation of kidney fibrosis

(115)

Therapeutic Promoting angiogenesis, reducing microvascular architecture, and
endothelial cell apoptosis

(116)

Therapeutic Reduction of renal ischemia, hypoxia, subsequent fibrosis, and
infiltration of inflammatory cells

(117)

Therapeutic No regenerative effects (118)

Therapeutic Suppressing renal fibrosis and EMT and protecting tubular
endothelial cells

(119)

Therapeutic Downregulating of mTOR and fibrotic marker expression
Improvement of renal function and morphology

(120)

Therapeutic Promoting vascular regeneration and cell survival, reduction of urine
volume and albumin excretion, increasing glomerular endothelial
cell proliferation

(121)
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human umbilical cord MSC-derived exosomes (hucMSC-
Ex) on preventing cisplatin-induced nephrotoxicity. They
found that pretreatment with hucMSC-Ex increased the
light chain 3B (LC3B) autophagosome marker expression
in renal proximal tubule epithelial cells by inhibiting the
mammalian target of rapamycin (mTOR) pathway. As a
result, inflammation and apoptosis reduced, and renal
regeneration improved (107). Lindoso et al. used a re-
nal ischemia/reperfusion injury induced by ATP depletion
model and incubated them with MSC-extracellular vesicles
to investigate the role of MSC-derived extracellular vesi-
cles in changing the miRNAs expression of renal PTECs.
They discovered that by modulating the miRNA profile of
PTECs, MSC-extracellular vesicles reduced the expression of
genes involved in hypoxia, apoptosis, and cytoskeleton re-
organization, such as caspase 7 (CASP7), caspase 3 (CASP3),
SHC (Src homology 2 domain-containing) transforming
protein 1 (SHC1), and SMAD4 (108). Zhang et al. investi-
gated the anti-oxidative role of extracellular vesicles de-
rived from human Wharton’s Jelly mesenchymal stromal
cells (hWJMSC) in AKI rat models. Cell apoptosis, serum
neutrophil gelatinase-associated lipocalin (sNGAL) level,
and oxidative stress decreased after hWJMSC-derived ex-
tracellular vesicles were treated. Antioxidant activity in-
creased by the augmentation of the Nrf2/antioxidant re-
sponse element (ARE) pathway and heme oxygenase-1 (HO-
1) expression (109). Jia et al. demonstrated that 14-3-3 ζ
containing hucMSC-ex enhanced autophagy via binding
to autophagy-related protein 16L (ATG16L) and prevented
nephrotoxicity in cisplatin-induced AKI rat models (110).
Shen et al. investigated the protective impact of MSC-
derived exosomes in ischemia/reperfusion-induced kid-
ney damage animal models by administering C-C motif
chemokine receptor-2 (CCR2)-enriched BMMSC-exosomes.
It has been demonstrated that binding CCR2 to the C-C mo-
tif chemokine ligand-2 (CCL2) protein reduces CCL2 con-
centration and recruitment of macrophages/monocytes
for inflammation in renal injury (111). Lin et al. investigated
the synergistic effect of adipose-derived mesenchymal
stem cell (ADMSC) and ADMSC-derived exosome in acute
ischemia/reperfusion injury models. They concluded that
ADMSC-derived exosomes protect the kidney by decreas-
ing oxidative stress, inflammation, fibrotic, and apoptotic
biomarker levels while increasing anti-apoptotic and an-
giogenesis biomarker levels (112).

2.6.2. MSC-derived Exosomes in CKD Treatment

The regenerative effect of MSC-derived exosomes was
studied in pigs with renal artery stenosis due to CKD.
According to the findings, MSC exosomes enriched with
interleukin-10 (IL-10) reduced inflammation by lowering
the pro-inflammatory cytokines interleukin-1 (IL-1) alpha,

IL-1 beta, and tumor necrosis factor-alpha (TNF-alpha), as
well as medullary oxygenation and fibrosis (113). Further-
more, researchers used genetically engineered MSCs that
overexpressed miRNA-let7c and delivered its exosomes to
mice with unilateral ureteral obstruction. Exosome miR-
let7c reduced fibrosis and downregulated fibrotic genes
such as collagen IV1, α-SMA, transforming growth factor-
beta receptor I (TGF-βR1), and (TGF)-β1 (114). Choi et al.
investigated the efficacy of kidney mesenchymal stem
cell-derived exosomes in unilateral ureteral obstruction
(UUO) mouse models with peritubular capillary (PTC) rar-
efaction. They observed that endothelial-to-mesenchymal
transition (EndoMT) and apoptosis reduced while en-
dothelial cell proliferation increased. Furthermore, exo-
somes inhibited macrophage infiltration (F4/80 positive)
and kidney fibrosis (115). Another study found that MSC-
derived exosomes, which contain pro-angiogenic genes
and proteins, improve renal function and recovery by pro-
moting angiogenesis, reducing microvascular architec-
ture, and endothelial cell apoptosis (116). Furthermore, hu-
man adipose-derived MSC (hAD-MSC) exosomes prevented
AKI progression to CKD by activating renal tubular Sox9.
In C57BL/6 mice, treatment with hAD-MSCs-secreting exo-
somes increased tubular epithelial cell (TEC) Sox9 and in-
hibited TEC transformation to a pro-fibrotic phenotype in-
duced by TGF-1. There was also TEC proliferation, reduction
of renal ischemia, hypoxia, subsequent fibrosis, and infil-
tration of inflammatory cells (117). Despite the numerous
benefits of MSC-derived exosomes in CKD regeneration, ex-
osomes derived from human embryonic MSCs had no re-
generative effects on in vitro rat models of CKD induced
by 5/6 nephrectomy (SNX) combined with L-NNA and a 6%
NaCl diet (118).

According to a study of the paracrine effects of bone
marrow-derived MSCs and MSC conditioned medium on
DN regeneration, exosomes improved DN by suppressing
abnormal infiltration of bone marrow dendritic cells, re-
nal fibrosis, and epithelial-mesenchymal transition (EMT)
and protecting tubular endothelial cells (119). In another
study, bone marrow-derived MSC-exosomes improved re-
nal function and morphology in DN rats by upregulating
autophagy markers LC3II and Beclin-1 while downregulat-
ing mTOR and fibrotic marker expression (120). In a DN rat
model, exosomes derived from urine mesenchymal-like
stem cells inhibited the apoptosis of podocytes and tubu-
lar endothelial cells. They also reduced urine volume and
albumin excretion while increasing glomerular endothe-
lial cell proliferation. These exosomes contain factors for
promoting vascular regeneration and cell survival, such
as transforming growth factor-β1, angiogenin, and bone
morphogenetic protein-7 (121).
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3. Conclusions

In conclusion, the protective structure of the exosome
saves its cargo from degradation; thus, the molecular
cargo of exosomes can play essential roles in the early diag-
nosis and treatment of kidney disease. However, there are
not enough studies and clinical trials in this field to ensure
the efficacy of MSC-exosomes in kidney treatment. There
are also difficulties in selecting faster and more effective
methods for isolating and purifying exosomes. Limitation
of exosomal biomarkers for kidney diagnosis in the lab-
oratory and insufficient information about the reference
value of biomarkers imply that their diagnostic standard
is still in its infancy. As a result, accurate detection and
precise conformation of biomarker indices are required to
improve exosome diagnosis application. Furthermore, our
future goals are advancements in the use of MSC-exosomes
in cell-free-based kidney therapy to alleviate disease pain
and reduce treatment side effects in patients.
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