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Abstract

For tissue engineering and clinical translation strategies, it is essential to have a reliable and safe lineage-specific differentiation of
stem cells. To deal with several problems caused by growth factor delivery systems and growth factors, exosomes have been used
as biomimetic tools to trigger the differentiation of stem cells. It is believed that cell type-specific exosomes can induce lineage-
specific differentiation of stem cells. Exosomes trigger cell viability, cell proliferation and differentiation, embryonic implantation,
and migration. They have been used successfully in regenerative medicine, such as liver fibrosis, renal diseases, cardiac ischemia,
stroke, and skin injuries. The findings highlighted the necessity to take into account the condition and source of exosome donor
cells before selecting them for therapeutic use.

Keywords: Exosomes, Cell Differentiation, Stem Cells

1. Introduction

Various cells secrete exosomes, such as B lymphocyte
cell lines, mast cells, dendritic cells, endothelial cells, stem
cells, neuronal cells, endothelial cells, and cancer cells (1).
Exosomes are released by diseased or viable cell types in a
continuous way or by activation into interstitial spaces or
body fluid. It is notable that these exosomes are released
by cells in vitro (2). As shown by studies, exosomes can
be used to develop cell-free vaccines for a variety of dis-
eases (3). Studies have also mentioned their role in nor-
mal physiological conditions (such as immune response,
lactation, and neuronal function) and pathophysiological
conditions (such as the progression and development of
liver diseases, cancer, and neurodegenerative diseases) (4).
Given the cell origin, exosomes control morphogen trans-
porters in creating polarity in differentiation and develop-
ment (5). A significant necessity in tissue engineering is
inducing lineage-specific differentiation of stem cells reli-
ably and predictably. Generally, biomaterial selection and
properties depend on this factor. Growth factor delivery
systems are usually used to induce lineage-specific differ-
entiation of stem cells. Using growth factors such as bone
morphogenetic factor 2 (BMP2) for clinical applications
has been used by the US Food and Drug Administration

(FDA). Still, available clinical uses of growth factors have
notable ectopic interactions and side effects. Several prob-
lems have been reported caused by BMP2, which are ma-
jor concerns for clinicians (6). To develop biomimetic ap-
proaches and solve the issue of using growth factors and
complicated controlled release mechanisms, the chance of
using exosomes specific to cell type has been studied (7).
In general, it is believed that exosomes act as a mediator of
cellular homeostasis through secreting cellular waste (8).

Research projects on exosomes have been chiefly
on cancer biology and immunology (9). Still, follow-
ing the findings regarding their role in messenger RNA
(mRNA) and microRNA (miRNA) transference (10), many
researchers have worked on using them in regenera-
tive medicine. Studies have shown that exosomes en-
hance the proliferative capacity of epithelial and mes-
enchymal cells through the mitogen-activated protein
kinase (MAPK) pathway (11). Exosomes extracted from
endothelial progenitor cells, endothelial cells, and mes-
enchymal stem cells demonstrate proangiogenic charac-
teristics explained by the presence of miRNAs localized
in them (12). Eventually, exosomes are recognized as the
driving force of immunomodulatory effects of mesenchy-
mal stem cells (MSCs) by triggering the secretion of anti-
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inflammatory cytokines and accelerating the formation of
M2 macrophages (13). Despite the findings supporting ex-
osomes’ capabilities to be used in regenerative medicine,
their capacity to cause lineage-specific differentiation of
stem cells is not supported by reliable evidence. Moreover,
the role of using exosomes secreted from one partition in
the general biology of the recipient cell requires further
studies. Our hypothesis states that exosomes from differ-
ential cells can cause lineage-specific differentiation of na-
tive MSCs.

2. Exosomes Biogenesis and Release

The source of exosomes is the internal budding of the
plasma membrane that happens along with endocytic in-
ternalization. This is a mature process starting from an
early endosome via interaction with the Golgi complex to
the late endosome, where the bilayer membrane secretes
intraluminal vesicles (exosomes). Multivesicular bodies
contain future exosomes. These membranous exosomes
contain proteins, mRNA, DNA, miRNA, lipids, and other
molecules from the cytoplasm of their parent cell (Figure
1). In addition, multivesicular bodies can be sent to lyso-
somes from degradation or fuse with the plasma mem-
brane and release exosomes via exocytosis (14). A variety
of cell types secrete exosomes. They can be extracted from
cultured cells and body fluids such as salvia, urine, blood
plasma, breast milk, ascites fluid, bronchoalveolar lavage
fluid, synovial fluid, amniotic fluid, nasal mucous, cere-
brospinal fluid, bile, and semen. A variety of materials are
found in extracellular vesicles (EVs), such as sugars, pro-
teins, lipids, and nucleic acids (including miRNA, mRNA,
and DNA), which are found inside the vesicles protected
from nucleases and proteases (15). Therefore, exosomes
have a role to play in the intercellular exchange of RNA and
proteins. They also play a role in regulating angiogenesis
or immune responses. It is possible to translate mRNA in
exosomes into recipient cells and also silence the expres-
sion of the recipient cell’s gene and alter their phenotype.
Exosomes also stimulate specific signaling pathways. The
biogenesis of EVs and the content can be determined using
cellular sources that are sensitive to the status of cells and
changes in the environment. A higher release of exosomes
has been seen in acidic pH, hypoxia, oxidative stress, and
heat shock (16).

3. Exosomes in Inducing Odontogenic Differentiation

Exosomes obtained from different types of stem cells
can be used for therapeutic purposes for differentiation
and angiogenesis (17-19). Notably, exosomes of normal

dental pulp stem cells (DPSCs) can cause regeneration of
dental pulp-like tissue (20) and demonstrate the capac-
ity to trigger angiogenesis in vivo and in vitro (21). DP-
SCs extracted from damaged periodontal teeth (P-DPSCs)
demonstrate the capability to retain pluripotency and re-
generation capabilities; however, they are not extensively
used for therapeutic purposes. There is evidence that they
can keep the potency and regenerative potential; however,
their use as a treatment is minimal. Moreover, MSCs se-
crete more exosomes with inflammation than under nor-
mal conditions (22). Consistently, P-DPSCs secrete a higher
level of exosomes compared to DPSCs obtained from pe-
riodontally healthy teeth (H-DPSCs). In addition, another
study showed that exosomes of lipopolysaccharide (LPS)-
preconditioned DPSCs demonstrated a higher ability to
promote Schwann cell proliferation, odontogenic differen-
tiation, and migration compared to exosomes of normal
DPSCs (23).

A new solution to treat dental pulp or periapical com-
plications of permanent teeth with open apices is regen-
erative endodontic procedures (REPs) (24). Stem cells of
the apical papilla (SCAP) are extracted from the dental
papilla and then differentiated into dental pulp cells and
primary odontoblasts that generate root dental pulp and
dentine (25, 26). Exosomes are the principal regulator of
the paracrine activity of stem cells; thus, they affect the
function of recipient cells (27). The authors in (28) intro-
duced SCAP exosomes (SCAP-Exo) into the root fragment
with bone marrow MSCs (BMMSCs) and then transplanted
them into mice with immune deficiency. Their findings
supported the presence of dental pulp-like tissues, and the
freshly formed dentine was added to the dentine in the
root canal. Next, the effects of SCAP-Exo on dentinogene-
sis of BMMSCs were examined. Their findings indicated a
significant increase in the expression of the gene and pro-
tein in dentine sialophosphoprotein and mineralized nod-
ule formation in BMMSCs exposed to SCAP-Exo. In short,
BMCSCs endocytosed SCAP-Exo and enhanced the specific
dentinogenesis. Using exosomes of dental stem cells can
create the potential treatment for dentine-pulp complex
regeneration in REPs (29).

4. Exosomes in Promoting Differentiation of Exocrine
Cells into the Pancreatic Lineage

Diabetes is one of the most serious health issues world-
wide (30), and the only available treatment is pancreas
transplantation or islet. Still, transplantable tissues are
highly scarce (31, 32). This has led researchers to find new
sources of cell differentiation. Along with small molecule-
based and genetic approaches, exosomes can induce cellu-
lar differentiation using their cargo, such as miRNA (33-35).
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Figure 1. Exosomes biogenesis and release

Mandal et al. (36) introduced a protocol based on chem-
icals to differentiate mouse embryonic fibroblasts (MEFs)
intoβ-like cells. They also used mouse insulinoma (MIN6)-
derived exosomes with and without specific molecules to
facilitate differentiation in β-like cells. The differentiation
outcomes worked and expressed pancreatic genes (such as
Nkx6.1 and Pdx1) and insulin 1 and 2. The authors showed
that the combination of exosomes with small molecule
was the most efficient in differentiating MEFs. The re-
sults also showed that exocrine cells could easily be dif-
ferentiated into β-like cells using exosomes and exosome-
identified miRNAs. It is possible for diabetic patients to
use a new way of differentiation using exosome-identified
miRNAs. It appears that exosomes can be differentiated
from induced pluripotent stem cells (iPSCs) into insulin-
producing cells (IPCs). By selectively packaging specific
miRNA into exosomes and transferring them to recipient

cells, it is possible to regulate post-transcriptional gene ex-
pression that influences the differentiation of stem cells
(37). Islet cell-specific genes are targeted by miRNAs indi-
rectly or directly, leading to degradation or translation re-
pression of specific mRNAs. Therefore, it can regulate islet
cell differentiation and maturation (38-41). A key element
in the function of miRNA is argonaute-2 (Ago2), which also
plays a role in the packaging of miRNAs into exosomes (42-
44). There are reports that the role of exosomal miRNA de-
pends on Ago2 obtained from the donor cells rather than
the recipient cells (45, 46).

Guo et al. examined the role of exosomes obtained
from a murine pancreatic β-cell line and tried to deter-
mine signature exosomal miRNAs on iPSCs differentia-
tion. They reported that iPCSs cultured using an exosome-
containing medium had a higher expression of MAFA, in-
sulin 2, Neuroud21, insulin 1, NGN3, and Nkx6.1 compared
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to the control iPSCs. About 52.7% of the differentiated
cells demonstrated the expression of insulin at the middle
stage. Through transplanting 21-day-induced IPCs into type
I diabetes (T1D) mice, glucose tolerance was improved ef-
ficiently, and hyperglycemia was controlled partially (47).
The potential for treatment decreased significantly in T1D
mice injected with iPCSs cultured with siAgo2 exosomes.
The findings showed that exosome differentiation induced
by iPSCs in function cells essentially depended on the spe-
cific miRNAs encased in exosomes. By finding candidate
miRNAs, we can have a deeper understanding of the molec-
ular interactions in the differentiation of stem cells and
achieve a deeper insight into new regulator mechanisms
that control the differentiation of iPCSs into IPCs (47).

5. Exosomes and the Differentiation of Stem Cells into
Neurons

A reliable source to restore damage to neural tissues
is to convert somatic cells directly into neural progeni-
tor cells (NPCs). NPCs induction from human dermal fi-
broblasts (HDFs) is used along with integrating exogenous
proneuronal transcription factors without or with chemi-
cal elements or with a mixture of chemical elements (48-
51). To activate exosome release, stress conditions are used,
including hypoxia, heat shock, mechanical stress, and ox-
idative stress (52-55). While converting directly appears to
be favorable for cellular repair, using xenobiotics still cre-
ates challenges for clinical uses (such as lack of efficiency)
mainly because of the selective permeability of cell mem-
branes in the process of transmembrane transportation of
exogenous material. In addition, the risk of viral vectors
of chemicals is notable (56). To solve such challenges, exo-
somes, as a natural safely transfer cocktails of endogenous
material, can be a solution for reprogramming cells effi-
ciently into NPCs. A study reported developing a method
to induce NPCs from HDFs using the reprosome-mediated
direct conversion of HDFs into NPCs (rNPCs) through treat-
ing HDFs using pro-neural reprosomes discharged by HDFs
and stimulated using ultrasound and cultured in a neu-
ral media. The authors used autologous exosomes with
a cocktail of reprogramming factors (reprosomes) to ex-
tract NPCs from fibroblasts (57). The obtained fibroblasts
underwent ultrasound and were then cultured in neural
stem cell medium for 24 hours to trigger the release of re-
prosomes made of reprogramming agents associated with
neural lineage-specific factors and chromatin remodeling.

Following reprosome treatment, fibroblasts were ef-
ficiently changed into NPCs (rNPCs) by triggering chro-
matin remodeling. The process only took 5 days to form
1500 spheroids demonstrating an NPC-like phenotype.
NPCs showed proliferation and self-renewal features for

weeks and were efficiently differentiated into astrocytes,
neurons, and oligodendrocytes in vivo and in vitro (Figure
2). Cellular reprogramming using reprosome as a media-
tor is an efficient, safe, and simple way to generate autolo-
gous stem cells for medical uses (58).

6. Exosomes Secreted by Cells and Promote Osteogen-
esis

An efficient method to regenerate significant bone de-
fects is distraction osteogenesis (DO). Still, the period of
treatment is too long, mostly for aged patients (59).

In this study, in vitro findings showed that MSC-Exos
could improve osteogenic differentiation (Figure 3) and
proliferation of older BMSCs. Rats showed a notable accel-
eration of bone regeneration after being treated with MSC-
Exos. The rats were examined using micro-computed to-
mography (CT), X-ray, and histological analysis. These find-
ings indicate that MSC-Exos improved DO-mediated bone
regeneration in older rats using a higher proliferation of
osteogenic capacity in BMCSs. Exosomes demonstrate a re-
markable therapeutic ability in bone tissue engineering.
Recent research has shown that human adipose-derived
stem cells (hADSCs), in the bone regeneration phase, not
only take part in osteogenesis through direct differentia-
tion but also through discharging a variety of cytokines
and EVs that affect the process. As standard EVs, exosomes
seem like a good strategy for bone regeneration therapy
(60, 61). Compared to direct autologous transplantation
of cells, treatment based on exosomes has benefits such as
accurate targeting, stability, low immunogenicity, quickly
crossing biological barriers, and low immune reaction (62,
63). The use of hADSCs-Exos for regenerative medicine and
tissue engineering is a rich field of research, which is stated
by a large number of studies supporting the efficiency of
hADSCs-Exos on tissue repair and wound healing in many
physiological systems (64). A study indicated that exo-
somes from controlled media of BMSCs enhanced regener-
ation of bone in the early stage and improved angiogene-
sis. This facilitates osteogenesis progression (65).

According to Zhu et al. (66), hADSCs-Exos are prone
to be internalized by hADSCs at the parent cells-but not
cells of other resources. They argued that this could be due
to the homology of the recipient cells. Some lines of evi-
dence suggest that exosomes binding to recipient cells in-
clude diverse endocytic pathways such as micropinocyto-
sis, phagocytosis, and endosomal or plasma membrane fu-
sion (67). According to Takeuchi et al., MSC-Exos contain
miRNAs that can improve the secretion of VEGF from the re-
cipient cells. This enhances the regeneration of bone (65).
In addition, Chen et al. showed that exosomes obtained
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Figure 2. Neural differentiation (57)

Figure 3. Exosome and osteogenesis (61)
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from miR-375-overexpressing hADSCs improved the regen-
eration of bone (68).

In short, hADSCs-Exo can be an excellent choice to com-
pensate for the drawbacks of traditional hADSCs therapy in
bone repair. It is possible to use strategies to load new bone
tissue engineering scaffolds with exosomes shortly.

7. Conclusions

The authors believe that the data reported here can
highlight a starting point for others to explore the uses of
cell-type exosomes from cultural cells under specific con-
ditions and describe the responses in the target stem cells.
As reported by other studies, purified exosomes can be gen-
erated in large quantities, lyophilized, and made available
commercially to be used with autologous stem cells and
other clinical materials such as collagen sponges for regen-
eration purposes. There is a need for more studies to high-
light the differences between primary and subsequent sig-
naling mechanisms triggered by exosomes. This can help
us realize the tools in operation. There are several studies
on cell-derived extracellular matrix containing biomateri-
als. It is possible to use exosomes for reconstructing a per-
fect extracellular environment for reliable and safe differ-
entiation of stem cells.
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