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Abstract

Background: Silymarin (SM) has beneficial effects against numerous different types of toxicants. However, the low bioavailability
of SM has limited its therapeutic effects.
Objectives: This study investigated the toxic effect of nanostructured SM (NSM) in poly(lactic-co-glycolic acid) (PLGA) nanoparticles
on nephrotoxicity induced by acetaminophen (APAP) in mice.
Methods: The encapsulation of SM in PLGA was performed by the solvent evaporation method. A total of 48 NMRI mice were used
in this experimental study. The mice were pretreated with SM or NSM (5 mg/kg) for 7 days, and APAP (300 mg/kg) was administrated
on the 6th day. The serum levels of blood urea nitrogen, creatinine, and uric acid were measured. Histological assessment and
messenger ribonucleic acid expression of BAX and BCL-2 genes were also carried out.
Results: The APAP destroyed the structure of the renal tissue and significantly reduced renal weight and glomerulus diameters (P
< 0.01). The APAP also caused a significant increase in the serum levels of biochemical markers (P < 0.001) and expression of the
BAX/BCL-2 ratio in the renal tissue (P < 0.001). The NSM could improve the renal structure and significantly increase renal weight
and glomerulus in the APAP-intoxicated mice. The NSM significantly reduced the level of the biochemical tests and the BAX/BCL-2
ratio in the APAP-treated group (P < 0.01).
Conclusions: The obtained data indicate that PLGA effectively enhances the nephroprotective effects of SM on nephrotoxicity in-
duced by APAP.
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1. Background

Acetaminophen (APAP) is a commonly used analgesic
and antipyretic drug. If APAP is used in high doses, liver
necrosis and nephrotoxicity can occur in laboratory ani-
mals and humans (1). The APAP induces an animal model
of nephrotoxicity to evaluate the efficacy of new therapeu-
tic agents.

Silymarin (SM) is extracted from the Silybummarianum
L. Gaertn (milk thistle) seeds. It is a flavonoid with vari-
ous biological impacts, such as cardioprotective, hepato-
protective, and anticancer (2-5). The SM protects the kid-
ney against toxicants, such as cisplatin, vancomycin, and
methotrexate (6-8). However, low aqueous solubility, poor
permeability, and extensive metabolism of SM limit its

therapeutic usage.

Several protocols, such as incorporating microspheres,
liposomes, nanocarriers, and poly(lactic-co-glycolic acid)
(PLGA) nanoparticles, improved the bioavailability and sol-
ubility of SM. The PLGA is a nontoxic and biodegradable
polymer appropriate for tissue engineering, gene therapy,
and drug delivery (9). The PLGA encapsulation effectively
enhances the hepatoprotective effects of SM (10).

The APAP causes damage to the mitochondrial mem-
brane and releases cytochrome c in response to oxidative
stress, causing apoptosis in target cells. The BCL-2 fam-
ily genes located in the inner mitochondrial membrane
regulate the release of cytochrome c (11). Two groups of
pro-apoptotic and anti-apoptotic genes exist in the BCL-2
family. The release of cytochrome c from the mitochon-
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dria into the cytosol is brought about by the pro-apoptotic
proteins, such as Bax. The anti-apoptotic genes, such as
BCL-2 and BCL-XL, cause the prevention of the release of cy-
tochrome c into the cytosol and inhibition of apoptosis.
Therefore, the ratio of BAX to BCL-2 was used to identify the
inducing apoptosis in various cells (12).

2. Objectives

The present study evaluated the effect of nanostruc-
tured SM (NSM) against APAP-induced nephrotoxicity and
apoptosis.

3. Methods

3.1. Preparation of Nanostructured Silymarin

Loading SM in PLGA was performed by solvent evapo-
ration protocol. In brief, 4% PLGA (w/v) was provided in 1: 4
acetone. Ethyl acetate solution had 0.58% (w/v) SM added
to 4 mL of polyvinyl alcohol (PVA) (1% w/v) diluted in wa-
ter. The prepared nanoemulsion was mixed with 6 mL of
0.5% PVA solution, and the dissolved organic solvents were
deleted by a rotavapor. The supernatants were centrifuged
at 12,000 rpm for 20 minutes, and the produced pellet was
dispersed in deionized water and lyophilized.

3.2. Characterization of Nanostructured Silymarin

The mean particle size and size distribution of NSM
were assessed using a dynamic light scattering device. The
charge of the SM-loaded PLGA (Zeta potential) was deter-
mined by a Zeta-sizer system (Malvern, UK). The morphol-
ogy of NSM was examined by transmission electron mi-
croscopy.

The entrapment efficiency (EE) was calculated using
the following formula:

%EE =
Total SM − SM amount in the supernatant

Total SM
× 100

(1)

For the determination of SM release from PLGA, NSM
was enclosed in a dialysis bag, placed in 100 mL phosphate-
buffered saline, and analyzed spectrophotometrically at
287 nm. The percentage of SM release was calculated by the
following formula:

(2)%SM release =
Amount of SM release

Amount of SM inPLGA
× 100

3.2.1. Animals

A total of 48 male NMRI mice (weight range: 20 - 25
g; age range: 6 - 8 weeks) were used in this experimental
study. The mice were provided by the Experimental Re-
search Center of Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran. The mice were maintained on a 12-
hour-dark and 12-hour-light cycle, with a relative humidity
of 50 ± 5% and 22 ± 3°C. The mice had free access to com-
mercial food (pellet) and water. The current study was ap-
proved by the Ethics Committee of Ahvaz Jundishapur Uni-
versity of Medical Sciences (IR.AJUMS.REC.1393.151).

3.2.2. Experimental Design

The mice were randomly divided into six following
groups:

(1) Control group: Received only normal saline.
(2) SM group: Received 5 mg/kg SM for 7 days by intra-

gastric gavage.
(3) NSM group: Received 5 mg/kg NSM for 7 days by in-

tragastric gavage.
(4) APAP-intoxicated group: Normal saline was given

for 7 days, and 300 mg/kg of APAP was injected on the 6th
day.

(5) SM + APAP group: Received 5 mg/kg of SM for 7 days,
and APAP was injected on the 6th day.

(6) NSM + APAP group: Received 5 mg/kg of NSM for 7
days, and APAP was injected on the 6th day.

One day after APAP administration, the animals were
anesthetized with ketamine/xylazine, and their blood sam-
ples were collected. The mice were then euthanized, and
their kidneys were removed in formalin for histological as-
sessments or maintained at -80°C to determine gene ex-
pression.

3.3. Biochemical Tests

The blood samples were collected in a heparinized
tube and centrifuged. The serums were isolated and stored
at -70°C for biochemical tests. The serum concentrations of
uric acid, creatinine (Cr), and blood urea nitrogen (BUN)
were determined spectrophotometrically using available
kits (Sigma-Aldrich, USA).

3.4. Histology Changes

In this study, 6 hematoxylin-eosin-stained sections per
mouse were evaluated for histological criteria, including
nuclear pyknosis, infiltration of inflammatory cells, brush
border loss, and congestion of red blood cells (RBCs).
The histological criteria were graded into four categories,
namely normal (-), weak (+), moderate (++), or intense
(+++). The glomerular diameter was determined by Motic
Images Plus 2.0, an image analysis software.
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3.5. Real-time Polymerase Chain Reaction
An RNeasy kit was used to isolate the ribonucleic acid

of the kidneys, and a complementary deoxyribonucleic
acid (cDNA) kit was utilized to convert it to cDNA. The cDNA
amplified in polymerase chain reaction (PCR) reaction con-
tained primers (Appendix 1) and SYBR Green. For PCR am-
plification, a 45-cycle program, including 95°C for 10 sec-
onds, 95°C for 15 seconds, 60°C for 20 seconds, and 60°C
for 20 seconds, was used. In this study, theGAPDH gene was
used to normalize target genes. The relative expression of
genes was investigated using the 2-∆∆CT method.

3.6. Data Analysis
The data are presented as mean and standard de-

viation. A one-way analysis of variance followed by a
Tukey’s test was used to calculate differences between
group means. When the P-value was less than 0.05, the re-
sults were deemed statistically significant.

4. Results

4.1. Characterization of Nanostructured Silymarin
The average particle size of SM-loaded PLGA was about

126 nm. In scanning electron microscopy evaluation, NSM
had a uniform, discrete, and spherical shape. The EE of NSM
was 89.18%. The in vitro drug release profile exhibited an
initial burst release until 2 hours and then showed a slow
release of SM. The slow release of NSM was continued for 24
hours (Figure 1). Zeta potential results indicated that NSM
had good stability for encapsulating SM (Table 1).

4.2. OrganWeight
No significant difference was observed in body weight

between the control and experimental groups. Organ
weight in SM or NSM-treated mice was similar to the con-
trols. Renal weights in APAP-intoxicated mice had signifi-
cantly reduced, compared to the controls (P < 0.01). The
pretreatment of SM slightly increased the renal weights,
compared to the APAP-intoxicated animals (P < 0.05). In
NSM + APAP-treated mice, the renal weights were signifi-
cantly higher than in the APAP and SM + APAP groups (Fig-
ure 2).

4.3. Biochemical Tests
In SM and NSM groups, the serum levels of uric acid,

Cr, and BUN did not significantly change compared to the
control animals. The serum concentration of the biomark-
ers significantly elevated in the APAP group (P < 0.001).
The pretreatment of SM could not significantly change the
biomarker levels compared to the APAP-intoxicated ani-
mals. In the NSM + APAP group, the serum level of biomark-
ers was significantly reduced, compared to the APAP + SM-
and APAP-treated animals (Figure 3).

4.4. Histology

All kidney sections had a normal appearance in the
control, SM, and NSM groups. The administration of APAP
considerably increased the infiltration of inflammatory
cells, congestion of RBCs, and proximal cell damage. Nev-
ertheless, the glomerular diameter was significantly re-
duced (P < 0.01). The administration of SM + APAP slightly
changed the proximal tubule damages (P < 0.05), infil-
tration of inflammatory cells, congestion of RBCs, and
glomerular diameter (P < 0.01), compared to the APAP-
intoxicated animals. In the NSM + APAP group, histolog-
ical criteria significantly reduced, compared to the APAP
and SM + APAP groups. The NSM could also increase the
glomerular diameter in the APAP-intoxicated mice (Figure
4).

4.5. Real-time Polymerase Chain Reaction

In the APAP group, the expression of theBAX gene in the
renal tissue was significantly increased, compared to the
control group (P < 0.01). Nonetheless, APAP significantly
reduced the expression of the BCL-2 gene. In the SM + APAP
group, the expression of the BAX gene in the renal tissue
was significantly decreased, compared to the APAP group
(P < 0.05). However, the expression of BCL-2 was signifi-
cantly increased (Figure 5).

In the NSM + APAP group, the expression of the BAX
gene in the renal tissue was significantly decreased, com-
pared to the APAP and SM + APAP groups (P < 0.01). Never-
theless, the expression of BCL-2was significantly increased,
compared to the APAP and SM + APAP groups (Figure 5).

The ratio of BAX/BCL-2 in the APAP-intoxicated rats was
considerably increased, compared to the controls (P <
0.001). In the SM + APAP group, the ratio of BAX/BCL-2
in the renal tissue was significantly increased, compared
to the APAP group (P < 0.01). In the NSM + APAP group,
the BAX/BCL-2 ratio in the renal tissue was significantly re-
duced, compared to the APAP and SM + APAP groups (Figure
5).

5. Discussion

In the present study, SM was successfully encapsulated
in PLGA, and this encapsulation could effectively enhance
SM’s nephroprotective impacts against APAP-induced re-
nal toxicity in mice. The increased nephroprotective im-
pacts of NSM might be due to the increased bioavailabil-
ity of SM by PLGA. In a previous study, a liposomal formula-
tion increased the oral bioavailability of SM (13). The SM na-
noemulsion attenuates tetrachloride-caused liver damage
(14). The NSM, due to its small size, might better penetrate
the renal tissues compared to the free SM. Moreover, NSM
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Table 1. Characteristic of Silymarin Loaded in Poly(Lactic-co-Glycolic Acid) a

Nanoparticles Particle Size (nm) PDI ZP EE (%)

SM-PLGA 82.3 ± 5.8 0.14 ± 0.05 -28.4 89.18 ± 6.4

Blank-PLGA 80.13 ± 6.7 0.12 ± 0.06 -27.3 -

Abbreviations: ZP, Zeta potential; PDI, polydispersity index; EE, encapsulation efficacy; SM, silymarin; PLGA, poly(lactic-co-glycolic acid).
a Values are expressed as mean ± standard deviation.
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Figure 1. Characterization of silymarin (SM) loaded in poly(lactic-co-glycolic acid) (PLGA); A, Zeta potential; B, transmission electron microscopy micrograph of SM-PLGA; C,
percentage of the drug release during 24 hours.

might escape from macrophages, and its clearance might
be prolonged and therefore improve the therapeutic index
of SM.

In the APAP-intoxicated mice, an increase in the serum
levels of BUN, Cr, and uric acid occurred. The serum lev-
els of these markers are sensitive to any kidney disorder.
When the kidney is damaged, these biomarkers, which
are inside the proximal cells of nephrons, release into
the bloodstream. Therefore, the elevated concentration of
these biomarkers indicates proximal cell destruction (15).
In this study, NSM effectively ameliorated the serum levels

of BUN, Cr, and uric acid. Pretreatment with methanolic ex-
tract of SM declined Cr clearance and proteinuria and at-
tenuated proximal tubule injury of rats (16).

In the APAP-intoxicated mice, the increased levels of
biomarkers were accompanied by increasing histological
criteria. As shown in the results, SM significantly atten-
uated histological changes induced by APAP. Kumar et al.
showed that NSM had more anti-inflammatory action in
comparison to the free SM in liver tissue (13). The anti-
inflammatory effects of SM have also been reported by
Gupta et al. (17). Bektur et al. showed that SM had protec-
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tive effects against APAP-induced nephrotoxicity in mice
(18). Dabak and Kocaman showed that SM ameliorated
nephrotoxicity induced by methotrexate in rats. The SM
also attenuated kidney cell injury induced by APAP in vitro
(8).

As mentioned in the results, kidney weights decreased
in the APAP group. It might have been the result of the
proximal tubule and glomerular damage. In the APAP-
intoxicated mice, the decline in renal weight was accompa-
nied by an increase in the BAX/BCL-2 ratio. This finding in-
dicates that apoptosis is involved in APAP-induced nephro-
toxicity, which is in line with the results of previous studies
(1, 8). As mentioned in the results, NSM could significantly
reduce theBAX/BCL-2 ratio indicating the anti-apoptotic ac-
tion of NSM. In line with the results of the current study, the
anti-apoptotic impacts of SM against cisplatin and amino-
glycoside are reported (19). The reduced BAX/BCL-2 ratio in
the NSM + APAP group indicated the anti-apoptotic impact
of NSM on the renal tissue.

5.1. Conclusions

In this study, SM-PLGA nanoparticles (NSM) were devel-
oped to improve the renoprotective effect of SM. The NSM
could effectively increase renal weight and reduce apop-
tosis by decreasing the BAX/BCL-2 ratio in the renal tissue
of mice. Further studies are required to prove the anti-
apoptotic impacts of NSM on nephrotoxic renal tissues.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal web-
site and open PDF/HTML].
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Figure 5. Micrographs of hematoxylin-eosin-stained slides of various groups; control, silymarin (SM), nanostructured silymarin (NSM), acetaminophen (APAP), SM + APAP,
NSM + APAP; I, infiltration of inflammatory cells; C, congestion of red blood cells; P, damaged proximal tubules; magnifications: X100
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