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Abstract

Background: The ventral striatum is an integrated drug reward and addiction center.
Objectives: We aimed to examine changes in pro-inflammatory cytokines and subsequent changes in the expression of biologically-
relevant genes to addiction and neuroinflammation in the ventral striatum in response to frequent morphine exposure.
Methods: Sixteen male Wistar rats were divided into two experimental groups, a control, and a morphine-treated group, receiving
eight days of twice-daily injections of either saline or morphine sulfate (10 mg/kg).
Results: The results revealed that frequent morphine treatment increased both gene and protein levels of pro-inflammatory cy-
tokines, including tumor necrosis factor α, interleukin 1-β, and interleukin 6 in the ventral striatum. Frequent morphine treat-
ment also induced significant upregulations in the mRNA levels of mu-opioid receptor, dopamine D1 receptor (Drd1), Fos, nuclear
factor- kappa B, and pre-miRNAs expression including, mir-124, mir-133b, mir-339, mir-365, and Let-7c1 in the ventral striatum. On the
contrary, frequent morphine injection significantly downregulated mRNA levels of toll-like receptor 4, cannabinoid CB1 and CB2
receptors, Drd2, Il1r, Il6r, tnfr, protein kinase Cγ, calcium/calmodulin-dependent protein kinase IIα, nitric oxide synthase, cAMP-
response element-binding protein as well as p38 and Jnk3 MAP kinases in the ventral striatum. However, no group differences were
detected in the expression of Erk1 and mir-219 in the ventral striatum.
Conclusions: It can be concluded that dysregulations in pro-inflammatory cytokines and, subsequently, in the downstream sig-
naling pathways impair physiological functions of the ventral striatum following chronic morphine exposure, affecting reward
pathways and the expression of morphine tolerance and dependence.
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1. Background

Opioids have desirable effects in controlling severe
acute and chronic pain; however, their prolonged treat-
ment is accompanied by undesirable side effects such as
tolerance, dependence, and addiction (1). The ventral stria-
tum is the main part of the mesolimbic reward pathway
in which neuroadaptation underlies adverse outcomes of
the abused drugs. An increase in dopamine levels in the
ventral striatum is mainly implicated in the rewarding
and addictive properties of the long-term use of morphine
(2). Local neurons in the ventral striatum receive different
afferents and express different receptors. Therefore, not
only the direct effect of morphine on mu-opioid receptors
and its indirect effect via affecting the release of dopamine

but also different local regulatory mechanisms in the ven-
tral striatum are involved in subsequent neuroadaptations
that are influenced by frequent use of morphine (3).

Further, different studies have reported activating in-
nate immune cells by opioids via binding to toll-like recep-
tor type 4 (TLR4) in the central nervous system, promot-
ing opioid tolerance, dependence, and addiction (4, 5). It
has been revealed that morphine, via binding to TLR4, ac-
tivates the expression of nuclear factor-kappa B (NF-κB),
resulting in neuroinflammation through increases in pro-
inflammatory cytokines, including tumor necrosis factor
(TNF)-α, interleukin-1β (IL-1β), and IL-6 (5, 6). Based on
these findings, some investigators have proposed that an-
tagonists of TLR4 could be used as a new opioid adjuvant
strategy to improve opioid analgesic effectiveness and also
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to oppose opioid-induced tolerance (7, 8).
Functional interactions between opioid and cannabi-

noid systems in rewarding and analgesic effects have also
been demonstrated in several biochemical, molecular, and
pharmacological studies (9, 10). Cannabinoid receptor
type 1 (CB1R) and MORs have been found in the same presy-
naptic nerve terminals with shared signaling pathways
through a common receptor-mediated G-protein pathway
(11, 12). Some evidence also shows that opioids increase the
release of endocannabinoids (13). Accumulating evidence
shows that not only opioids but also cannabinoids affect
immune signaling by influencing TLR-mediated signaling
pathways (14, 15). Accumulating data also reveals the in-
volvement of specific microRNAs (miRNAs) in regulating
gene expression mediated by the chronic use of morphine
(16, 17).

2. Objectives

We aimed to examine the mRNA levels of some of
the cell membrane receptors, including MOR, dopamine
D1 receptor (DRD1), DRD2, CB1R, CB2R, and TLR4, pro-
inflammatory cytokines and their respective receptors, as
well as some downstream signaling molecules in the ven-
tral striatum following frequent use of morphine. We also
examined the expression of some biologically-relevant
miRNAs to morphine tolerance and addiction in the ven-
tral striatum to explore their association with possible al-
terations in the expression of the examined genes follow-
ing chronic morphine treatment.

3. Methods

3.1. Subjects

Sixteen four-month-old male Wistar rats weighing 280
± 20 g were used. Sample size estimation was based on a
power analysis method conducted using G*Power-free soft-
ware (18). Rats were kept under the standard conditions,
including constant temperature (22 ± 2°C), 12 h light/dark
cycle (light on at 7:00 and off at 19:00), and 50 - 60% hu-
midity. The animals were kept in four per cage and could
access enough standard pellet food and water. The study
protocol followed the international guidelines for the care
and use of laboratory animals (19), which the local ethics
committee also approved at the University of Kurdistan
(IR.UOK.REC.1398.021).

3.2. Drugs and Experimental Design

Morphine sulfate was a crystal powder produced by
Temad (Daroopakhsh Co., Tehran, Iran), dissolved in phys-
iologic saline. Animals were randomly allocated into two

experimental groups (n = 8 each) using appropriate soft-
ware (20). One group of the animals as a control group re-
ceived subcutaneous (s.c.) injections of physiologic saline
(1 mL/kg), and the other group received chronic injections
of morphine (10 mg/kg, s.c.) twice daily for eight successive
days. The injections were performed by an experimenter
who was blind to the experimental design.

3.3. Dissection of the Ventral Striatum

On day 8, two hours following the daily injection
of either saline or morphine, each rat was deeply anes-
thetized with a mixture of ketamine and xylazine (100 and
10 mg/kg, respectively), decapitated using a decapitator
(Tajhiz Gostar Omid Iranian, Tehran, Iran), the whole brain
was quickly removed from the skull, and the ventral part
of the striatum in both hemispheres was finally dissected
on an ice-chilled sterile surface (21, 22). The dissected tis-
sues were immediately submerged in liquid nitrogen for
fast freezing to save their RNA contents from degradation
by cell RNases.

3.4. Gene Expression Study

Total RNAs were extracted from the tissue samples
using a commercial kit (High Pure miRNA isolation kit,
Roche, Germany). The quality and concentration of the
extracted RNAs were examined with agarose gel elec-
trophoresis and a spectrophotometry method (Eppendorf
BioPhotometer 6131, Germany), respectively. The presence
of the intact bands corresponding to the 28 s and 18s ribo-
somal RNA on 1% agarose gel electrophoresis and the opti-
mal purity ratios (A260/280 and A260/230) between 1.9 - 2.2
were criteria for including samples in further evaluations.
Equal amounts of the total extracted RNA from the biolog-
ical repeats were reverse-transcribed to complementary
DNA (cDNA) using a two-step cDNA synthesis kit (Thermo
Fisher Scientific, USA). Real-time PCR was performed using
a LightCycler 96 system (Roche, Germany). Each biological
repeat in each experimental group (n = 8) was examined in
triplicate technical repeats. TwentyµL of each PCR reaction
included a mix of 10µL qPCR master mix (2X), 8µL cDNA (4
ng/µL), and 2µL mix of forward and reverse primers (5µM).
Sequences of the primers used for PCR amplification are
shown in Table 1. A 40-cycle, two-step thermal cycling pro-
gram was set for real-time amplification based on the pro-
tocol suggested by the master mix supplier (Yekta Tajhiz
Azma Co., Tehran, Iran). According to our previous reports,
glyceraldehyde 3-phosphate dehydrogenase (Gapdh) was
selected as the best housekeeping gene. The Livak (2-∆∆CT)
method was used for calculating the gene expression data
(23).
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3.5. Enzyme-Linked Immunosorbent Assay

Triplicate technical repeats were examined for eight bi-
ological samples in each experimental group. Ten mg of
each tissue sample was homogenized in 100µL phosphate-
buffered saline (PBS) containing protease inhibitor cock-
tail (Sigma-Aldrich, USA) using a FAPAN 300UPS ultrasonic
homogenizer (Fanavari Iranian Pajohesh Nassir, Iran). Af-
ter centrifugation at 13000 g for 40 minutes, supernatants
were transferred to new tubes and stored at -70°C. Enzyme-
linked immunosorbent assay (ELISA) kits for proinflam-
matory cytokines, including interleukin 1-β (IL1-β), tumor
necrosis factor-α (TNF-α), and IL6, were used. The manufac-
turer’s manuals were followed for performing ELISA (Du-
oSet ELISA kits, R&D Systems, USA). First, a standard curve
was plotted for each protein. The concentration of each
protein in the examined sample was then measured ac-
cording to the optical density obtained for each sample by
using a microplate reader (BioTek Synergy HTX Microplate
Reader, Agilent BioTek, USA).

3.6. Statistical Analysis

First, data were evaluated for normality and equal
variance parameters using the Shapiro-Wilk and Brown-
Forsythe tests, respectively. Then, between-group compar-
isons were performed using a two-tailed independent t-
test. A probability less than 0.05 (P < 0.05) was set as a sig-
nificant level throughout the statistical analyses. Graph-
Pad Prism version 9.0 was used for analyzing and plotting
data (GraphPad Software, San Diego, California, USA). The
corresponding author’s data supporting this study’s find-
ings are available upon reasonable request.

4. Results

4.1. Frequent Morphine Injection Increased Pro-inflammatory
Cytokines at Both Gene and Protein Levels But Downregulated
Gene Expression of Their Respective Receptors in the Ventral
Striatum

Multiple lines of evidence indicate that morphine in-
duces neuroinflammation, involving in central mecha-
nisms of tolerance and dependence on the drug. We ex-
amined the expression of pro-inflammatory cytokines, in-
cluding TNFα, IL1-β, and IL6 at both gene and protein lev-
els, and gene expression of their respective receptors, in-
cluding Tnfr, Il1r, and Il6r in the ventral striatum following
chronic morphine injections. The qPCR results revealed
significant upregulations in mRNA levels of Tnfα [t (14) =
5.7, P < 0.001], Il1 [t (14) = 8.5, P < 0.001], and Il6. Interest-
ingly, there were also significant increases in protein lev-
els of TNFα [t (14) = 12.2, P < 0.001], IL1-β [t (14) = 10.8, P <

0.001], and IL6 [t (14) = 9.7, P < 0.001] in the ventral stria-
tum as revealed by the ELISA results. On the contrary, signif-
icant downregulations in mRNA levels of Tnfr [t (14) = 12.6,
P < 0.001], Il1r [t (14) = 9.2, P < 0.001], and Il6r [t (14) = 7.3,
P < 0.001] were detected in the ventral striatum following
chronic morphine treatment (Figure 1).

4.2. Repeated Morphine Treatment Increased Gene Expression
of Oprm1 and Drd1 But Decreased the Tlr4, Cb1r, and Cb2r Expres-
sion in the Ventral Striatum

Mu-opioid receptors are the main site of the action of
morphine on neurons. In addition, it has also been shown
that morphine binds to immune receptors such as TLR4
and activates inflammatory responses. In the second ex-
periment of the present study, mRNA levels of Oprm1, Drd1
and Drd2, Tlr4, Cb1r, and Cbr2 were evaluated in the ven-
tral striatum following chronic morphine treatment. The
results of this experiment revealed significant increases in
gene expressions of Oprm1 [t (14) = 9, P < 0.001] and Drd1 [t
(14) = 2.6, P < 0.05] but the expression of Drd2 [t (14) = 14.08,
P < 0.001], Tlr4 [t (14) = 5.08, P < 0.001], Cb1r [t (14) = 13.8,
P < 0.001], and Cb2r [t (14) = 10.7, P < 0.001] significantly
decreased in the ventral striatum in rats following chronic
morphine injection compared to the group treated with
saline (Figure 2).

4.3. Repeated Morphine Injection Decreased mRNA Levels of
Protein Kinase Cγ, Calcium/Calmodulin-Dependent Kinase IIα,
and Nitric Oxide Synthase, as Well as p38α and Jnk3 MAP Ki-
nases in the Ventral Striatum

Different kinases modulate the cellular adaptations
connected with opioid tolerance and dependence (24). We
examined mRNA levels of Prkcγ, Camk2a, and Nos, and
three members of MAP kinases, including, Erk1, p38, and
Jnk3, in the ventral striatum after chronic administration
of morphine. The results showed significant decreases
in the gene expression of Prkcγ [t (14) = 6.9, P < 0.001],
Camk2a [t (14) = 16.1, P < 0.001], Nos [t (14) = 10.9, P < 0.001],
p38 [t (14) = 7.6, P < 0.001], and Jnk3 [t (14) = 7.3, P < 0.001]
in the ventral striatum in rats receiving chronic morphine
compared to the control group. However, there was no
group difference between the experimental groups in the
Erk1 expression [t (14) = 1.04, P = 0.315] (Figure 3).

4.4. Chronic Morphine Injection Decreased Creb But Increased
Nfkb and Fos mRNA Levels in the Ventral Striatum

Transcription factors mediate the chronic impacts of
morphine on gene expression (1, 25). The results of the
present experiment revealed that chronic morphine injec-
tion significantly decreased the Creb gene expression [t
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Figure 1. Effect of frequent morphine injection on the expression of pro-inflammatory cytokines, including TNFα IL1-β, and IL6 at both gene and protein levels, as well as
mRNA levels of Tnfr, Il1r, and Il6r in the ventral striatum. The obtained data for each experimental group is reported as the mean ± SD (n = 8). The distribution of the individual
data in each group is also seen on each bar. ***: P < 0.001.

(14) = 4.64, P < 0.001] but significantly increased the ex- pression of Nfkb [t (14) = 6.9, P < 0.001] and Fos [t (14) = 11.2,
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Figure 2. Effect of chronic morphine injection on gene expression of Oprm1, Drd1, Drd2, Tlr4, Cb1r, and Cb2r in the ventral striatum. The mRNA level in each experimental
group is reported as the mean ± SD (n = 8). The distribution of the individual data is also seen on each bar. *: P < 0.05 and ***: P < 0.001.

P < 0.001] in the ventral striatum compared to the control
group treated with saline (Figure 4).

4.5. Expression of Biologically-Relevant miRNAs to Morphine
Addiction is Upregulated in the Ventral Striatum After Chronic
Morphine Treatment

Six miRNAs, including Let-7c1, miR-133b, miR-219, miR-
124, miR-339, and miR-365, had been reported by different
investigators to be affected in different brain reward areas
related to addiction (17, 26). The results of the current study

revealed that chronic morphine treatment significantly in-
creased expression of let7c1 [t (14) = 10.4, P < 0.001], mir-
133b [t (14) = 10.2, P < 0.001], mir-124 [t (14) = 10.4, P < 0.001],
mir-339 [t (14) = 10.4, P < 0.001], and mir-365 [t (14) = 10.7,
P < 0.01] in the ventral striatum. However, no significant
group difference was detected for mir-219 expression [t (14)
= 1.8, P = 0.095] in the ventral striatum after frequent mor-
phine treatment (Figure 5).
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Figure 3. Effect of chronic morphine injection on the expression of Prkcγ , Camk2a, Nos, Erk1, p38, and Jnk3 MAP kinases in the ventral striatum. The mRNA level in each
experimental group is reported as the mean ± SD (n = 8). The distribution of the individual data is also seen on each bar. ns, non-significant and ***: P < 0.001.

5. Discussion

Accumulating evidence shows that long-term use of
opiates reorganizes the cellular and molecular machinery,
especially in the brain regions associated with reward (27,
28). It has been postulated that alterations in gene expres-
sion following prolonged use of morphine initiate struc-
tural and functional remodeling in the neural pathways,
leading to tolerance to the rewarding and analgesic effects

of the drug and dependence (29, 30). We have shown in
our previous reports that frequent administration of mor-
phine for eight successive days induces tolerance to the
analgesic effect of morphine and drug dependence in rats
(31, 32).

The present results demonstrated that frequent expo-
sure to morphine notably increased the expression of pro-
inflammatory cytokines in the ventral striatum. It has also
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Figure 4. Effect of frequent morphine injection on the expression of Creb, Nfkb, and Fos in the ventral striatum. The mRNA level in each experimental group is reported as
the mean ± SD (n = 8). The distribution of the individual data is also seen on each bar. ***: P < 0.001.

been shown that opioid binding to TLR4 leads to the ac-
tivation of NF-κB, increasing pro-inflammatory cytokines,
including TNFα, IL-1β, and IL-6 (15). NF-κB regulates opi-
oids and pro-inflammatory cytokines gene expression in
neuronal and immune cells, affecting opioid-induced bi-
ological responses (33). Therefore, significant increases in
the Nfkb mRNA level in the present experiment may finally
mediate upregulations in pro-inflammatory cytokines fol-
lowing frequent morphine exposure in the ventral stria-
tum. Further, FOS is a subunit of the activator protein-1 (AP-
1) that drives transcription from different genes, includ-
ing inflammatory cytokines (34, 35). Alteration in Fos ex-
pression in striatal neurons caused long-term changes in
gene expression, mediating changes in brain circuits (36).
There is a reciprocal interaction between IL-1β, TNFα, and c-
Fos/AP-1 influencing activity and gene expression resulting
in joint destruction in rheumatoid arthritis (37). NF-κB and
AP-1 also have reciprocal modulating effects on each other,
affecting the transcription of inflammatory cytokines and
other genes (38). Taken together, chronic morphine treat-
ment via affecting inflammatory cytokines and transcrip-
tion factors orchestrate transcriptional machinery, lead-
ing to changes in striatal circuits. In addition, the signif-
icant downregulations of Il1r, Il6r, and Tnfr may reveal a
homeostatic adaptation to the significant increases in pro-
inflammatory cytokines and subsequent overactivation of
the respective receptors. Our results support the idea of us-

ing cytokine-sequestration peptides as a potential adjunct
to opioid therapy, as proposed by some investigators (39).

It has been shown that long-term administration of
morphine induces desensitization and/or endocytosis of
MORs to attenuate input signaling to the cell (40). How-
ever, the increased Oprm1 mRNA due to frequent mor-
phine exposure in the present study may indicate a com-
pensatory mechanism in response to the possible de-
creases in MORs in the ventral striatum (41). Further, ac-
cumulating evidence also shows that morphine, via bind-
ing to TLR4, increases pro-inflammatory cytokines, which
partly mediate opioid tolerance and dependence (6, 42).
Edison and Murphy reported that the pharmacological an-
tagonism of TLR4 in the periaqueductal gray matter di-
minished morphine-induced analgesic tolerance and in-
creased the antinociceptive properties of the drug (4).
Therefore, a decreased level of Tlr4 mRNA may reflect a
homeostatic response to the frequent use of the opioid and
its binding to TLR4 in the ventral striatum.

Medium-sized spiny neurons (MSNs) in the ventral
striatum express DRD1 and DRD2, which are activated by
phasic and tonic increases in dopamine levels, respectively
(43). There is some evidence that simultaneous activation
of DRD1 and DRD2 in the ventral striatum following an in-
crease in dopamine level leads to maximal reward and re-
inforcement (44). The tonic dopamine release in the ven-
tral striatum acts mainly on MSNs via DRD2 (3). A possible
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Figure 5. Effect of chronic morphine injections on the expression of let7c1, mir-124, mir-133b, mir-219, mir-339, and mir-365 in the striatum. The pre-miRNA level in each
experimental group is reported as the mean ± SD (n = 8). The distribution of the individual data is also seen on each bar. ns, non-significant and ***: P < 0.001.

explanation for the present results is that repeated expo-
sure to morphine increases dopamine release more slowly
with a tonic pattern in the ventral striatum, causing sus-
tained activation of DRD2 and decreasing the Drd2 gene ex-
pression. On the contrary, activation of DRD1 in the ventral
striatum needs a phasic increase in dopamine level follow-

ing a burst firing of dopaminergic afferents (3). Therefore,
an increase in Drd1 mRNA level after chronic morphine
exposure may reveal a reduction in the phasic release of
dopamine after frequent morphine injections.

Cannabinoid CB1 receptors are co-expressed with
MORs in the ventral striatum (45). Both cannabinoid
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receptors, including CB1R and CB2R, are significantly
involved in drug reward and addiction (46, 47). Deleting
the Cb1r gene in mice has revealed a major influence on
MORs accessibility on the dopamine innervation of the
ventral striatum (48). Alterations in Cb1r and Cb2r gene
expression in the ventral striatum following frequent
morphine injection further support the involvement
of cannabinoid receptors in morphine actions and im-
prove this idea that morphine either through MORs and
the downstream intracellular signaling cascade or via
increases in pro-inflammatory cytokines in the ventral
striatum affects gene expression of the cannabinoid recep-
tors. Taken together, based on mRNA levels of Oprm1, Tlr4,
Drd2, Cb1r, and Cb2r genes detected in the present study
and considering the above-cited reports, we propose that
increases in pro-inflammatory cytokines in the ventral
striatum due to frequent morphine treatment finally tend
to alter the molecular machinery and the responsiveness
of the reward pathways to long-term opioid treatment.

Different protein kinases are involved in neuroadap-
tive changes in intracellular signaling pathways following
chronic morphine treatment. In particular, both protein
kinase C (PKC) and calcium/calmodulin-dependent pro-
tein kinase II (CaMKII) are involved in the induction of tol-
erance after chronic morphine treatment (24). Prolonged
exposure to morphine via overactivation of adenylate cy-
clase and a CREB pathway increases the expression of PKCγ
and N-Methyl-D-Aspartate (NMDA) receptors in the spinal
cord (49, 50). Long-term use of morphine impairs cogni-
tive functions (51, 52), and it has been shown that nitric ox-
ide (NO) has a key role in mediating the adverse effects of
morphine on cognitive functions (53). Chronic morphine
treatment decreased iNos expression in the hippocampus,
leading to decreased cognitive performance (54). There-
fore, decreases in the expression of Prkcγ, Camk2a, and
Nos in the ventral striatum may finally impair cognitive
functions following chronic morphine treatment. Further,
the CREB family of transcription factors has a key role in
memory formation, and their inhibition causes memory
impairment (55). Therefore, we propose that downregula-
tions of Creb and upstream signaling molecules in the ven-
tral striatum in response to chronic morphine exposure
have a role in memory impairment induced by opioids.

The results of the present experiments revealed that
chronic morphine exposure, increased the expression of
Let-7c1, mir-124, mir-133b, mir-339, and mir-365 but not mir-
219 in the ventral striatum. Morphine significantly upreg-
ulated let-7 miRNA expression in a mouse model of opi-
oid tolerance, which was antagonized by decreasing Let-7
miRNA levels by an inhibitor (56). Based on target predic-
tion for Let-7c1 mature miRNAs in the TargetScan database,
we found that Let-7c1 could target Il6r, Tlr4, Creb, and Jnk3

transcripts, suggesting a possible role for Let-7c1 in me-
diating the decreases in those genes in the ventral stria-
tum. In addition, mature miRNAs derived from mir-124
have the potentials to target Creb, p38α, and Jnk3 tran-
scripts, and the increased level of mir-124 may account for
the decreases in these genes in the ventral striatum. Mor-
phine treatment increased miR-339-3p and decreased MOR
expression in the hippocampus in mice (57). However,
the increased level of mir-339 in the ventral striatum did
not decrease Oprm1 gene expression, suggesting complex
mechanisms for controlling Oprm1 gene expression in dif-
ferent brain regions. Wang et al. reported that overexpres-
sion of miR-365 through decreasing β-arrestin2 protein in
the spinal cord prevents morphine tolerance (26). Further,
Wu et al. reported that miR-365 decreased morphine anal-
gesic tolerance by targetingβ-arrestin2 and inhibiting the
activation of the ERK/CREB signaling pathway (58). How-
ever, mir-365 significantly increased in the ventral stria-
tum in rats receiving frequent morphine injections. Based
on the target prediction evaluations, mir-365 may be in-
volved in the downregulation of Drd2, Tlr4, Il1r, Il6r, and
Tnfr gene transcripts. To the best of our knowledge, the
present results for the first-time show increases in the ex-
amined miRNAs and their possible association with down-
regulations in the above-mentioned genes in the ventral
striatum after chronic morphine exposure in rats. How-
ever, a limitation of the current study was lacking protein
levels for some of the examined genes to thoroughly in-
vestigate their functional role in neuroadaptive changes
in the ventral striatum after long-term use of morphine.
Therefore, further studies are needed to investigate the
functional consequences of the alterations at the mRNA
levels in the ventral striatum in response to chronic mor-
phine exposure.

5.1. Conclusions

The current results revealed that chronic morphine ex-
posure caused significant increases in pro-inflammatory
cytokines at gene and protein levels in the ventral stria-
tum. Notable increases in the expression of Oprm1, Drd1,
Fos, and Nfkb at the mRNA level, as well as expression of
specific miRNAs in the ventral striatum, were detected fol-
lowing chronic morphine treatment. Significant down-
regulations were also detected in Tlr4, Il1r, Il6r, Tnfr, dif-
ferent kinases, and Creb in the ventral striatum follow-
ing frequent morphine treatment, suggesting that the dys-
regulations in pro-inflammatory cytokines and the down-
stream signaling pathways impair physiological functions
of the ventral striatum following chronic morphine expo-
sure. Changes at mRNA levels of the examined genes af-
ter chronic morphine injections reveal highly specialized
roles with possible functional meaning in the induction of
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neuroinflammation as well as establishing new setpoints
in the ventral striatum, affecting the behavioral expres-
sions related to morphine tolerance, dependence, and ad-
diction. Further, miRNAs, especially Let-7-C1, mir-124, and
mir-365, play key roles in mediating chronic morphine ef-
fects on post-transcriptional levels of the cytokine recep-
tors and downstream signaling pathways, which needs
further consideration.
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Table 1. Primers Used for Real-time PCR

Gene Sequences (5′-3′) Amplicon Size (bp)

Gapdh 77

F AGTGCCAGCCTCGTCTCATA
R GTAACCAGGCGTCCGATAC

Oprm1 66

F CGATTCCAGAAACCACATTTCA
R TGTTCGTGTAACCCAAAGCAAT

Drd1 58

F TCTCCTGGGCAATACCCTTGT
R GGACCTCAGGTGTCGAAACC

Drd2 68
F GTCCTGGTACGATGACGATCTG
R CCTTCCCTTCTGACCCATTG

Cb1r 78

F CCCATTTCAAGCAAGGAGCAC
R TAGGCCAGACTCAAGGTGACT

Cb2r 70

F CCTTTCCTACTCACTCTGGACA
R CTACGCCTCTCCTCACTCAG

Tlr4 96

F CCCTGCCACCATTTACAGTTCG
R GAGTCCCAGCCAGATGCAAGAG

Tnfα 140
F TGATCGGTCCCAACAAGGA
R TGCTTGGTGGTTTGCTACGA

Tnfr 115

F TACGGATCCCTCAACCCTGTG
R CCACAGCATACAGCATCGCAG

Il1β 74

F CAGGATGAGGACCCAAGCAC
R TCATCCCACGAGTCACAGAGG

Il1r 95

F ACAGGGACTCCTGCTCTGAT
R TCCCTCTCCGTAGGTCTTGG

Il6 72

F CCTACCCCAACTTCCAATGCT
R GGTCTTGGTCCTTAGCCACT

Il6r 95

F CCATCAGGGTCCCATAACAGC
R TTGCTGTTGTCATTAGGGCAC

Prkcγ 121

F GTATGAGAGAGTGCGGATGG
R AGTCAGAGATATGCAGGCGTC

Camk2α 148
F GAAGCACCCCAATATCGTC
R GATACAGTGGCTGGCATCAG

Nos 140
F GAGAGAAAGTACCCGGAACCC
R GAGACGCTGTTGAATCGGAC

Erk1 82
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F CCAAACAAGCGCATCACAGT
R CCACTGGTTCATCTGTCGGA

p38α 104

F TGACGAAATGACCGGCTAC
R AGCCCACGGACCAAATATC

Jnk3 132

F GCTACAAGGAGAACGTGGAC
R ACGGAGTTCCTAGCTGCTCTA

Creb 127

F CTGAGGAGCTTGTACCACCG
R AATCTGTGGCTGGGCTTGAA

NF-kB 94

F TTACGGGAGATGTGAAGATG
R ATGATGGCTAAGTGTAGGAC

Fos 74

F GGAGCCGGTCAAGAACATTA
R ATGATGCCGGAAACAAGAAG

Let-7-c1 86

F GTGCATCCGGGTTGAGGTAG
R GCTCCAAGGAAAGCTAGAAGGT

mir-124 78

F CTCTGCTCTCCGTGTTCACA
R GCTCCGCTCTTGGCATTCA

mir-133 73

F CTGCTCTGGCTGGTCAAACG
R CTGCTGTAGCTGGTTGAAGGG

mir-219 70

F CGGCTCCTGATTGTCCAAACG
R CGGGACGTCCAGACGCAA

mir-339 70

F CACCGTCCCTGTCCTCCA
R TGGACTCTGGCTCTGTCGT

mir-365 72

F ACAGCAAGAAAAATGAGGGAC
R GGATTTTTAGGGGCATTATGAC
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