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Abstract

Background: Recent studies have demonstrated that adipose mesenchymal stem cells (AMSCs)-derived secretome (AMSC-Se) has
anticancer impacts.
Objectives: This study investigated the cytotoxic impacts of AMSC-Se on a colon carcinoma cell (HT-29) line.
Methods: The colon cancer cells were exposed to 50 or 100µg/mL ASMC-Se for 24 hours. MTT test had used to examine the impacts of
ASMC-Se on the survival rates of the cells. Caspase activity, mRNA, and protein expression of Bax and Bcl-2 had evaluated to determine
apoptosis.
Results: ASMC-Se could diminish the survival of the cells concentration-dependently. The mRNA and protein expression of
Bax was concentration-dependently elevated, while Bcl-2 expression decreased in the ASMC-Se group compared to the control
concentration-dependently (P < 0.05). The caspase-3 and caspase-9 activities were concentration-dependently enhanced (P < 0.05),
while the caspase-8 activity did not change with the AMSC-Se.
Conclusions: These findings indicate that AMSC-Se effectively prevents cell growth and induces apoptosis by stimulating the
intrinsic apoptotic pathway in these cells.
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1. Background

Colon cancer is a common type of cancer worldwide.
Despite standard treatments, its mortality is high due
to drug resistance (1). Therefore, exploring the new
anticancer drugs and the involved mechanisms may help
to manage this cancer. Mesenchymal stem cells (MSCs) are
non-hematopoietic and adherent cells that differentiate
into different cell types (2). Furthermore, MSCs secrete
soluble factors with various paracrine functions that affect
cellular processes such as angiogenesis, apoptosis, and
immune response into the microenvironments (3, 4).
Adipose tissue, placenta, umbilical cord, and bone marrow
are the main sources of MSCs (5).

Adipose tissue is a rich source of stem cells with
fewer complications for patients. Furthermore, a small
volume of fat tissue is required to isolate MSCs compared
to the other origins (6). Adipose-derived mesenchymal

stem cells (ASMCs) release a complex of cytokines and
growth factors into the extracellular microenvironment.
The combination of these factors is named secretome. The
secretome plays a dual role in regulatory mechanisms
and can either inhibit or promote the proliferation of
malignant cells (7, 8). Several studies have explored the
effect of MSCs on various malignant cells or tissues (9,
10). However, their obtained results are controversial. The
controversial results may be due to various MSC sources
or cancer types (11). Mesenchymal stem cells prevent the
growth of some malignancies, including colon cancer,
hepatoma, and melanoma (12-14).

2. Objectives

In the current work, the cytotoxic and apoptotic
impacts of adipose mesenchymal stem cells
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(AMSCs)-adipose mesenchymal stem cells-derived
secretome (AMSC-Se) against a colon cancer cell line
were explored.

3. Methods

3.1. Adipose Mesenchymal Stem Cell Characterization

The human AMSCs were from Royan Company, Tehran,
Iran. The cells have been characterized (in passage 3) using
flow cytometry to determine specific markers. Adipogenic
and osteogenic potentials were evaluated by oil-red and
Alizarin-Red staining (Figure 1).

3.2. Secretome Preparation

Briefly, the AMSCs were harvested in complete media.
At 80% confluency, the cells were washed and incubated
in a serum-free DMEM overnight. The conditioned media
were centrifuged at 4,000 g for 10 min. Then, the
conditioned media were re-centrifuged at 4,000 g with an
Amicon Ultra-15 centrifugal filter (Sigma) for two hours
(15). The protein contents were determined by a BCA kit
(Invitrogen, USA) and stored at -80°C.

3.3. Cell Culture

The HT-29 cells (RRID: CVCL_0320) were cultured in
McCoy’s 5a media with two mM glutamine and FBS (10%)
and incubated in the cell culture incubator. At 80%
confluency, the media had discarded, and the cells were
treated with 0 (control), 50, and 100µg/mL of AMSC-Se. The
optimum concentration and exposure time of AMSC-Se
were obtained from the MTT results (Table 1).

Table 1. The Impact of Different Concentrations of AMSC-Se on the Viability of Cancer
Cells a , b

Treatment (µg/mL) 12 Hours 24 Hours 48 Hours

25 99.9 ± 1.2 98.4 ± 2.5 97.8 ± 3.9

50 96.7 ± 3.8 73.1 ± 5.3 b 69.7 ± 5.3 b

100 95.9 ± 4.4 48.7 ± 4.3 ** 28.2 ± 4.1 **

a Data are presented as mean ± SD (n = 5).
b Shows comparison with 12 hours.

3.4. Cell Viability

The 106 cells were harvested in 96-well dishes for one
day. The cells exposed to AMSC-Se and 0.5 mg/mL of MTT
solution were added to the wells and kept for three hours
in an incubator. The supernatants were removed, 100 µL
DMSO was added, and the absorbance was read at 570 nm
using a BioRad microplate reader. The percentage of cell
viability was calculated relative to the control cells.

3.5. Real-time PCR

The RNA was extracted from the cells (107 cells)
using an RNeasy kit (Qiagen, Valencia, USA). The quality
of extracted RNA was determined by measuring the
UV absorption of the samples. A cDNA synthesis kit
(Qiagen) was used to synthesize cDNA. The cDNAs were
amplified in the PCR reaction solution containing SYBR
green master mix and primers. The primer sequences
were: Bcl-2: Forward 5′-GGATGCCTTTGTGGAACTGT-3′,
Reverse 5′-TCACTTGTGGCCCAGATAGG-3′; Bax:
Forward 5′-GCTGGACATTGGACTTCCTC-3′, Reverse
5′-ACCACTGTGACCTGCTCCA-3′ and GAPDH:
Forward 5′-GCAAGAGCACAAGAGGAAGA-3′, Reverse
5′-ACTGTGAGGAGGGGAGATTC-3′.

A 45-cycle program was considered for PCR
amplification: initial denaturation (95°C, 10 seconds),
denaturation (95°C, 15 seconds), annealing (55°C, 20
seconds), and extension (60°C, 20 seconds).

3.6. Measuring Protein Level of Bax and Bcl-2

The cultured cells were mixed with RIPA lysis buffer
plus protease inhibitor. BCA assay kit (Sigma, USA) was
used to obtain protein from the cells. The protein level of
the Bax and Bcl-2 were measured using ELISA kits (R&D).

3.7. Caspase Activity Assay

The caspase activities were measured by Caspase Assay
Kits (Thermo Fisher, USA). The 106 cells were exposed to
50 or 100 µg/mL AMSC-Se for one day. Then, cell lysates
were provided and centrifuged at 17,000 rpm for 15 min.
The amount of protein was determined by a BCA assay Kit.
The cell lysates were exposed to caspase substrate for four
hours. The absorbance was read at 405 nm by a Bio-Rad
microplate reader.

3.8. Statistical Analysis

Data were analyzed with one-way ANOVA followed by
Tukey’s post hoc test for multiple pairwise comparisons.
The P-values < 0.05 were considered significant.

4. Results

4.1. Adipose Mesenchymal Stem Cells-Derived Secretome
Exposure Inhibited the Cell Growth

Adipose mesenchymal stem cells-derived
secretome decreased the survival of the cells
concentration-dependently. The survival rate (Figure
2) decreased in the 50 µg/mL AMSC-Se-exposed cells
compared to the control (P < 0.05). The survival rate of the
100 µg/mL AMSC-Se-exposed cells was reduced compared
to the untreated and 50 µg/mL-treated cells (P < 0.05).
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Figure 1. Characterization of AMSCs by flow cytometry (A). AMSCs were found to be positive for MSC-specific markers (CD90, D73, and CD44), and negative for hematopoietic
stem cell surface markers (CD144). Adipogenic and osteogenic differentiation potential of AMSCs (B and C). Oil red O (B) and Alizarin red staining (C) positive cells, showing
adipogenic and osteogenic differentiation of the AMSCs.
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Figure 2. Morphology and viability of the cancer cells (mean ± SD; n = 6). * and # show comparison with the untreated and 50 µg/mL AMSC-Se groups, respectively.

4.2. mRNA and Protein Expression of Apoptosis-Related
Proteins

Adipose mesenchymal stem cells-derived secretome
changed the mRNA and protein expression of Bcl-2 and
Bax in the HT-29 cells concentration-dependently. Adipose
mesenchymal stem cells-derived secretome at the 50
µg/mL concentration enhanced the mRNA and protein
level of Bax (P < 0.05), while the Bcl-2 expression was
diminished compared to the control (P < 0.05). Adipose
mesenchymal stem cells-derived secretome at 100 µg/mL
elevated the mRNA and protein level of Bax and decreased
Bcl-2 expression compared to the untreated and 50 µg/mL
AMSC-Se-exposed cells (Figure 3).

4.3. Caspase-3 and Caspase-9 Are Involved in the
AMSCs-Se-Induced Apoptosis

The caspase-3 and caspase-9 activities enhanced in the
50 µg/mL AMSC-Se group in comparison to the control
(P < 0.01). The activities of caspase-3 and caspase-9 were
also significantly enhanced in 100 µg/mL AMSCs-Se (P <
0.001) and 50 µg/mL (P < 0.05) treatments compared to
the control. The caspase-8 activity did not change by the
AMSCs-Se (Figure 4).

5. Discussion

In this work, the effect of AMSC-Se on HT-29 cell growth
has been explored. The results indicated that AMSC-Se
significantly diminished proliferation and enhanced
apoptosis of HT-29 cells. In line with these results, Zhu et al.
revealed that the factors secreted by AMSCs could suppress
the survival and proliferation of the K562 leukemia cells
(16). Also, Ryu et al. reported that AMSCs conditioned
medium prevents breast cancer cell growth (17). Adipose
mesenchymal stem cells suppressed the growth of SKBR3
(a breast malignant cell line) cells in direct co-cultures (18).
In another investigation, AMSC-Se reduced bladder cancer
cell viability and decreased its resistance to ciprofloxacin
(7).

In contrast, some reports have demonstrated that
secretome from AMSCs promotes the proliferation of
breast cancer cells (19, 20). Conditioned medium from
AMSCs significantly enhanced hepatocellular carcinoma
invasion (21). In another study, AMSC-Se promoted the
growth of prostate cancer cells (22). These controversial
results may be due to the variability of MSC sources or
cancer cell types.

Flow cytometry method was used in this study to
explore the relationship of anti-proliferating impact
of AMSC-Se with apoptosis. The AMSC-Se-treated cells
exhibited more apoptosis than the untreated cancerous
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Figure 3. Protein expression (upper panel) and gene expression (lower panel) (mean ± SD, n = 3). Image J software was applied for quantification of the protein expression,
and the cells were normalized to GAPDH band intensity.

cells. Previous studies showed that conditioned medium
from AMSCs induces apoptosis in the cancerous cells
(23, 24). In this regard, AMSCs increased apoptosis along
with proliferation inhibition in hepatocellular carcinoma
cell lines (25). Direct co-culture of SKBR3 cancer cells
with AMSCs increased chemosensitivity and enhanced
apoptosis in response to 5-fluorouracil and doxorubicin
(18). Adipose mesenchymal stem cells-derived secretome
also prevented melanoma proliferation by inducing
apoptosis in vitro (24). As shown in flow cytometry results,
the necrosis percentage did not change by the AMSC-Se,
which revealed a critical role of apoptosis in reducing the
survival of the malignant cells of the AMSC-Se.

Protein and mRNA levels of Bcl-2 and Bax, and caspases
activity were assessed in the current work to confirm the
involvement of apoptosis in AMSC-Se-reduced growth of
the cancer cells. Adipose mesenchymal stem cells-derived
secretome enhanced the Bax level, while the Bcl-2 level

was reduced within the HT-29 cells. These genes are the
main regulators of the intrinsic apoptotic pathway. The
enhanced Bax/Bcl-2 ratio expression activates caspase-3
and caspase-9 via cytochrome-c release and eventually
induces apoptosis (25). Our results demonstrated the
treatment AMSC-Se considerably enhanced the activity
of caspase-3 and caspase-9. The activated caspase-9
can activate effector caspases and initiate the intrinsic
apoptotic pathway.

Conditioned media from human AMSCs could elevate
the activities of caspase-3 and caspase-9 and lead to
apoptosis in the human U251 glioma cells (26). Therefore,
these results suggest that AMSC-Se stimulates the intrinsic
pathway of apoptotic to enhance cancer cell death. The
secretome of the MSCs has biological components, such
as cytokines, growth factors, angiogenic factors, micro
RNAs, anticancer molecules, and exosomes (27-34). A
number of studies evaluated the effects of the secreted
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Figure 4. AMSC-Se effects on the caspases activity in different groups (mean ± SD, n = 6). *: P < 0.01, **: P < 0.001.

molecules from the MSCs. Bone marrow MSCs-derived
cytokine-induced neutrophil chemoattractant-1 and
tissue inhibitor of metalloproteinases-1 could prevent the
proliferation of the myeloid leukemia cells by suppressing
the caspase-3 pathway (35). TRAIL can initiate the caspase-8
cascade and promote the extrinsic apoptotic pathway (36).

5.1. Conclusions

The present study has revealed the cytotoxic impacts
of AMSC-Se on the HT-29 cells. These findings clearly
indicated that the inhibitory effect of AMSC-Se against
HT-29 cell growth is modulated by the stimulating
intrinsic apoptotic signaling pathway.
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