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Abstract

Extracellular vesicles (EVs) are small particles ranging from 30 - 1000 nm released by different cells to mediate cell-cell
communication. The content of these particles mirrors the cellular properties of their producing cells. The extracellular
vesicles, including exosomes and microvesicles, could exert the same therapeutic effects as stem cell therapy. However, these
stem cell-derived particles (cell-free derivatives) do not have concerns associated with stem cell-based therapies. Among various
mesenchymal stem/stromal cells, Menstrual Blood Stem Cells (MenSCs) are known for their high proliferative activity, ease of
harvesting, lack of moral dilemma, and high differentiation potential. Extracellular vesicles derived from MenSCs have widely
been employed in various preclinical studies for regenerative purposes. This paper aims to provide an overview of the therapeutic
utility of MenSCs-derived EVs in regenerative medicine. We also reviewed the current knowledge on the cellular profile, biogenesis,
separation, and action mechanism of MenSCs-derived EVs in organ regeneration.
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1. Context

Over the years, cell-based therapies have gained great

attention in tissue repair and regeneration (1). Stem cells

derived from several sources have been widely studied in

regenerative medicine because of their protective role in

tissue repair and modulation of the immune system (2).

Besides extensive experimental evidence, several clinical

trials have shown promising results for stem cell therapy

in tissue healing (3). However, previous research shows

that, for example, embryonic stem cells and induced

pluripotent stem cells (iPSCs) could be associated with

teratoma formation (4). Hence, such concerns should

be tackled before the large-scale use of stem cells in

therapeutic settings (5, 6).

It has been shown that stem cells derived from bone

marrow or umbilical cord blood (UCB) can provide much

more safety and be used for patient treatment with strong

confidence (7, 8). Also, numerous studies are undergoing

to evaluate their long-term safety in different contexts.

Researchers have also attempted to isolate stem cells

from amniotic fluid, placental tissues, dental pulp, and

menstrual blood (9, 10). It has been evidenced that

Mesenchymal Stem Cells (MSCs) separated from these

tissues represent low levels of major histocompatibility

molecules, giving them the ability to evade immune

destruction and the potential for treating autoimmune

diseases and regenerative purposes (11, 12). A body of

evidence has reported mesenchymal stem cell changes

from various sources for treating specific defects. In this

regard, research has focused on finding new sources with

higher potential.

Previous studies have shown that menstrual

blood-derived stem cells can be used therapeutically (13).

Ease of harvest, high immune system, and proliferation

activity are possible therapeutic bases for their application

(14, 15). However, as mentioned earlier, because of concerns

about their safety, stem cell-based therapies are moving

Copyright © 2023, Jentashapir Journal of Cellular and Molecular Biology. This is an open-access article distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in
noncommercial usages, provided the original work is properly cited.

https://doi.org/10.5812/jjcmb-136652
https://crossmark.crossref.org/dialog/?doi=10.5812/jjcmb-136652&domain=pdf


Savary R et al.

towards the use of non-cellular approaches. The secretion

of lungs and other vital organs and the long-term survival

of administered cells are other risks associated with

conventional cell therapy methods (16). At the same time,

stem cells have been shown to perform their therapeutic

activities largely through paracrine secretion (17).

Stem cell secretion profile analysis highlighted

extracellular vesicles as the main secretory material

(18). These vesicles can be separated from the culture

medium of cultured cells without losing their therapeutic

potential, and they can be cryopreserved for an

extended period of time (19). Therefore, it seems that

extracellular vesicles may play a decisive role in the

future of regenerative treatment strategies. The main

purpose of the current study is to review the therapeutic

use of extracellular vesicles isolated from menstrual

blood-derived stem cells in regenerative medicine. We also

attempt to provide the mechanistic insights underlying

the therapeutic potential of these EVs

2. Endometrial Cell Profile and Regenerative Medicine

Applications

Prominent regenerative activity in the endometrium

has sparked interest in resident stem cells. The monthly

menstrual cycle is associated with cell proliferation

and angiogenesis to create the conditions for receiving

a fertilized egg. Only 5 - 7 mm of the endometrium

thickness is involved in the menstrual cycle. Due to this

rapid angiogenesis, various cell types, growth factors,

and tissue regeneration processes must work in an

orchestrated manner to successfully regenerate the fallen

endometrium (20). The upper layer of the endometrium

is called the functional layer, which is consisted of glands

and loose connective tissue. Below this layer is the basalis

layer, which contains vasculature and stem cells (21).

During menstruation, the functional layer is destroyed;

then, the productive cells are transferred from the basal

chamber, which will finally regenerate the eliminated

parts (22). In addition to mesenchymal stem cells in the

endometrium, epithelial and endothelial progenitor cells

have been harvested from the endometrial biopsies (23).

There is a population of epithelial progenitor cells

in the glands of the basal layer. The cumulative body

supports the presence of epithelial colony-forming

units of endometrial biopsy, which can form gland-like

structures at appropriate signs (24). Stage specific

embryonic antigen-1 (SSEA-1) is expressed in epithelial

progenitor cells and reflects their high telomerase activity

and proliferation rate. It is worth noting that epithelial

progenitor cells cannot be removed from menstrual blood

for the following reasons (20, 25). First, they may not be

shed in the menstrual blood. Second, they may be secured

by many fibroblasts in situ. In fact, these cells are also

separated from the endometrium of postmenopausal

women, which means that epithelial progenitor cells can

be the origin of endometrial stem cells after menopause

(26, 27).

Menstrual stem cells (MenSCs) have gained

therapeutic appeal over the past decades due to the

non-invasive nature of their harvest. They have absolute

strength markers with embryonic stem cells such as

Oct-4, SSEA-4, and c-kit (28-30). Matrix metalloproteinase

activity is significantly higher in stem cells separated from

menstrual blood than in other mesenchymal stem cells,

indicating their high regenerative potential (31, 32). It has

also been shown that these cells can differentiate into

various cell types such as heart, cartilage, liver cell-like,

and fat cells (33). (Suggested: This renewal capacity is

an advantage in tissue engineering and regenerative

medicine.) This fact is positive for tissue engineering and

regenerative medicine. Our previous studies indicated

that MenSCs implanted in cellulose amniotic membranes

could enhance wound repair. The higher regenerative

potential of MenSCs-seeded membrane was attributed

to extracellular matrix protein production and secretion

activities (34). We also used a polycaprolactone/gelatin

nanofibers neural conduction channel to implant MenSCs

in a rat sciatic nerve defect model. Functional analysis

studies have shown that MenSCs can significantly increase

peripheral nerve repair (33).

3. General Characteristics of Extracellular Vesicles

Intercellular communication is one of the most

important mechanisms of body homeostasis (16). Over

the past decades, a new cell-to-cell contact method has

been discovered. The cells produce large amounts of

extracellular vesicles (EVs) and secrete them into the body

fluid. This mechanism appears to be highly preserved

during evolution (35). Also, EVs can alter the behavior

of receptor cells in a variety of ways, including the

stimulation by the production of ligands and receptors

on their surface, the transfer of genetic molecules such

as messenger RNA, DNA, and micro-RNA, and the transfer

of lipid and protein (36, 37). Therefore, different roles can
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be assumed for EVs. Previous studies have shown that EVs

have a role in immune monitoring, stem cell maintenance,

and cancer cell metastasis. On the other hand, EVs have

emerged as a new generation of therapeutics since their

secreted EVs can recapitulate most effects of stem cells (38,

39).

4. Extracellular Vesicle Biogenesis

All cell types seem to produce and secrete EVs in a

controlled manner (40). All EVs separated from stem and

cancer cells have found therapeutic and diagnostic appeal

(41). Also, EVs are taken from various body fluids. Although

EVs are produced through several pathways, they fall into

three broad categories: Exosomes, micro-vesicles, and

apoptotic bodies (42, 43). Exosomes are heterogeneous

vesicles 30 - 120 nanometers in size that are taken from

the endosome and released by multivesicular bodies’

attachment to the plasma membrane (2, 44). Although

the exact mechanism of exosome production is unclear,

several possible pathways have been hypothesized. This

system involves the cooperation of the endosomal sorting

complex required for transport and its accompanying

proteins for sorting and enriching the protein and

RNA load in the exosomes, hence determining the

exact content of the produced vesicles (45, 46). The

micro-vesicles are released through the germination of

cytoplasmic protrusions and range in size from 200 to

1000 nanometers. Micro-vesicle secretion involves the

rearrangement of cytoskeletal proteins in the influx of

calcium ions (47). Once exosomes and micro-vesicles are

released, they are not recognizable, so the exact naming

of these vesicles is clear. The therapeutic performance of

stem cell-derived exosomes and micro-vesicles have been

reported in various studies. However, no studies have yet

compared their therapeutic activities (18, 48, 49). The third

type of extracellular vesicle is apoptotic bodies, which

are larger vesicles of 1000 to 5000 nanometers released

when the plasma membrane ruptures during apoptosis.

However, because of their specific cargo, exosomes, and

micro-vesicles are the main fractions of extracellular

vesicles that have largely been considered in regenerative

medicine (50, 51). Figure 1 shows the schematic of the EV

biogenesis counts from menstrual blood.

5. Separation and Characterization of Micro/Nano

Vesicles

Currently, nanotechnology is becoming a

major topic in translation medicine. We can use

micro/nanotechnology to separate and detect exosomes

and microvesicles. The appropriate methods used to

obtain information from inaccessible organism locations

are particularly important and characterize a clinical

biomarker for providing information on the complexity

of several diseases. Cell secretory vesicles contain valuable

molecular information from the parental cell, indicating

the essential role of intercellular communication.

The proper separation method depends on the

physicochemical properties, including sample type, size,

density, surface charge, light interaction, and available

equipment and resources. As known, EVs are complex and

heterogeneous because they are secreted from culture

media that have their unique compositions. Developing

multiple methods for separating EVs with greater

specificity and sensitivity is critical. The current methods

for separating and enriching EVs and concentrating them

include differential ultracentrifugation (52-54), density

gradient ultracentrifugation (55, 56), polymer-based

precipitation (53, 57), immunoaffinity-based separation

(55, 58-61), size-exclusion chromatography (SEC) (62, 63),

nanowire-on-micropillar separation (64), and acoustic

sorting (65).

6. Physical and Molecular Characterization of

Micro/Nano Vesicles

Characterization of samples, such as heterogeneity

in size, concentration, or molecular properties, can be

done through conventional nanoparticle characterization

methods or micro/nanotechnology to separate and detect

exosomes and microvesicles. Physical characterization

commonly involves transmission electron microscopy

(TEM) (66-70), atomic force microscopy (AFM) (71), dynamic

light scattering (DLS) (72, 73), nanoparticle tracking

analysis (NTA) (74-76), tunable resistive pulse sensing

(TRPS) (77, 78), nano-on-chip holographic imaging (79),

diagnostic magnetic resonance for exosome detection

(80), plasmonic exosome detection (81), flow cytometry

(73), Enzyme-linked immune-sorbent assays (ELISA), and

Western blot (WB) (82). Molecular characterization is

usually done using nucleic acid and protein analysis

methods. For example, the best preferable method for

Jentashapir J Cell Mol Biol. 2023; 14(2):e136652. 3



Savary R et al.

Figure 1. Schematic diagram of menstrual-blood stem cells from EV biogenesis
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RNA is reverse transcription PCR (RT-PCR). Through this

method, RNA transcript or miRNA sequencing can be

identified to determine transcription (83, 84).

7. Extracellular Vesicles Mechanisms of Action

As known, EVs contain a variety of biologically active

agents such as lipids, proteins, and nucleic acids, so it is

a treatment package that can also be used for diagnosis

(85, 86). The condition of the producing cell directly

affects the EV content. For example, cells incubated in

hypoxia have been shown to enrich angiogenesis-related

microRNAs strongly (87). It is hoped that the exosomes of

metastatic cancer cells can be removed before metastasis

occurs; therefore, immediate surgery or chemotherapy

may be needed to save patients’ lives (88). Previous

studies have proved the specific interactions between EVs

and their receptor cells. Mallegol et al. demonstrated

that EVs produced by intestinal epithelial cells can bind

exclusively to dendritic cells. Indeed, recent evidence

showed that several adhesion molecules expressed on the

EVs are responsible for their interactions with different

cellular hosts (89).

By turning off antigen information, exosomes

can play a role in the functioning of the immune

system. For example, Buschow et al. reported that

dendritic cell-derived exosomes contain the main

set of histocompatibility complex 2 and can elicit a

T lymphocyte response (90). In addition, dendritic

cell-derived exosomes have been shown to increase the

immune response in B lymphocytes (91). Therefore, the

stimulatory and inhibitory effects of exosomes have been

documented. However, the exact action mechanism of

these effects remains to be determined. This potential

of exosomes can be used in cancer therapy strategies.

Since cancer immunotherapy aims to find an effective and

safe way to expose immune cells to cancer antigens, the

antigens presented in exosomes can be used effectively

for this purpose (92). Clinical trials have been conducted

on exosome-based vaccines for cancer therapy, and the

preliminary results have shown high immunity to the

vaccines produced (93, 94). It has also been shown

that the placenta can induce maternal-fetal tolerance

through exosomes (95). In addition to these functions in

the immune system, the anti-apoptotic, proangiogenic,

regenerative, and protective effects of exosomes and

micro-vesicles separated from mesenchymal stem cells

have been well-established in previous studies (96).

8. Protective Effects of Menstrual Blood Stem Cells

Separated EVs on Different Tissues

Fulminant hepatic failure is a severe medical condition

in which the liver fails to function properly. Problems

associated with it, such as coagulopathy, jaundice, and

systemic edema, can lead to significant mortality in

clinical settings. The gold standard of treatment is liver

transplantation, although it is associated with organ

shortage, risk of disease transmission, and immune

rejection (97). Stem cell-based therapy has opened up

new avenues for regenerative medicine to regenerate the

liver. In this regard, stem cells and their EVs have been

potentially tested for treating liver defects (98).

Chen et al. used the exosomes from human menstrual

blood to treat fulminant hepatic failure. They separated

the exosomes from cultured MENCs, characterized them

by transmission electron microscopy and Western blot

analysis, and analyzed their cytokine content by antibody

assay. In vitro studies were conducted on D-GalN/LPS

treated with AML12 cells, and in vivo studies were

performed on a mice model of fulminant hepatic failure.

The exosomes were administered 24 hours before the

induction of hepatic failure. The presence of mononuclear

cells and the level of apoptotic-activated protein caspase-3

were measured in the treated mice. The cytokine assay

showed that the separated vesicles expressed various

proteins such as angiopoietin-2, Axl, angiogenin, IGFBP-6,

osteoprotegerin, IL-6, and IL-8. Exosomes derived from

MenSCs could significantly increase liver function,

improve survival rate, and reduce hepatocytes apoptosis.

In addition, MenSCs-derived exosomes could reduce

the number of mononuclear cells and the level of the

apoptotic active protein caspase-3 in the damaged liver.

They concluded that EVs separated from MenSCs could be

used to treat fulminant hepatic failure in clinics (99).

Wound healing is a complex process that involves

several interconnected phases. Disruption of any of

these phases can lead to chronic non-healing wounds

(100). Several stem cells have been used on skin wounds

(101). Recently, some research has shed light on how

stem cells are used in wound healing. Also, EVs have

been shown to have the main role in the protective

effects of mesenchymal stem cells in wound healing

(102). Dalirfardouei et al. reported the healing effects

of MenSCs-derived exosomes on diabetic wounds. The

exosomes were separated from the MenSCs conditioned

medium and characterized by scanning electron
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microscopy and western blot using ultra-centrifugation.

A full-thickness excisional wound was made in the back

of diabetic mice. Animals were divided into three groups:

Mice treated with exosome, mice treated with MenSCs,

and wounds treated with phosphate-buffered saline.

They showed that exosomes induced M1-M2 macrophage

polarization and increased vascularization, evident by

the rearrangement of vascular endothelial growth factor

A. They also found that re-epithelialization was probably

higher in exosome-treated wounds than in other groups

through the NF-κB signaling pathway. They also reported

less scarring formation in the exosome group. Their

results proved using exosomes separated from MenSCs in

regenerative and aesthetic medicine (103).

Parkinson’s disease, characterized by the death

of brain cells, constitutes many neurodegenerative

diseases (104). Studies over the past decades have

shown that mesenchymal stem cell administration

can reduce the symptoms of Parkinson’s disease in

animal models (105). Li et al. investigated the protective

effects of human MenSCs conditioned medium on

1-methyl-4-phenylpyridinium-induced cytotoxicity

in neuroblastoma SH-SY5Y cells, an in vitro model of

Parkinson’s disease. After 24 and 48 hours of incubation

with MenSCs, conditioned cell viability, apoptosis, cell

proliferation, and mitochondrial membrane potential

were investigated. The protein content of the conditioned

medium was also analyzed. The results indicated

that 1-methyl-4-phenylpyridinium treatment caused

inflammatory response, mitochondrial damage, elevated

levels of reactive oxygen species, and apoptosis in the

SH-SY5Y cell line. Also, the conditioned medium could

reduce apoptosis, increase cell viability, and decrease

the production of reactive oxygen species. Due to the

neuroprotective effects, various neurotrophic factors were

observed in the conditioned medium of MenSCs (106).

Old age reduces the chance of in vitro fertilization

success by increasing the production of reactive oxygen

species that damage the residing follicles (107). However,

EVs separated from mesenchymal stem cells have been

shown to exhibit antioxidant activity. Therefore, they can

increase in vitro fertilization yield at older ages. Marinaro

et al. studied the effects of MenSCs-derived EVs on in

vitro fertilization models. Stem cells were harvested

from menstrual blood, and their surface markers and

potential for multiracial differentiation were investigated.

Oocytes were separated from 21 B6D2 mice and exposed to

sperm from young men aged 8-12 weeks old. The formed

zygotes were incubated with different concentrations of

EVs, including 0, 10, 20, 40, or 80 µg/mL in KSOM medium.

The number of blastocysts was counted, and 25 blastocysts

per group were exploited for qPCR. Blastocyst yield was

highest in the 20µg/mL group. This value was significantly

higher for all treated groups than for the control group.

The zygotes incubated with 20 - 80 µg/mL of

EVs reduced glutathione peroxidase expression, and

treatments of 10 - 40 µg/mL decreased superoxide

dismutase expression compared to control. However, Bax

mRNA expression remained unchanged. They concluded

that the radical scavenging activity of EVs from MenSCs

could be a potential way of fertilization in the older

population (108). Figure 2 shows a schematic diagram of

the applications of EVs caused by menstrual blood stem

cells in treating different diseases.

9. Conclusions

With advances in nanotechnology, micro/nanovesicles

derived from different cellular sources will be added

to therapeutic regimens. On the other hand, with a

deep understanding of the composition and biology of

the extracellular vesicles in normal physiology and the

pathobiology of different diseases, we can devise novel

treatment modalities based on these nanoparticles. This

paper highlights the promising potential of EVs separated

from menstrual blood in regenerative medicine. Also,

it summarizes the established measures needed to study

these EVs. In conclusion, there is still much work to be

done for the large-scale use of these MenSCs-EVs. However,

it is obvious that using EVs derived from stem cell sources,

potentially those derived from MenSCs, will play a decisive

role in the future of regenerative medicine.
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Figure 2. Schematic diagram of the applications of EVs caused by menstrual blood stem cells in treating different diseases
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