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Review Article
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Abstract

Electrospinning is one of the methods that can be used to create nanofibers, and it is also one of the most versatile processes
for synthesizing nanofibers. Depending on how closely their morphologies mirror the extracellular matrix of the body, some
products may be ideal for use in tissue engineering applications. With the use of this technique, researchers were able to investigate
the possibility of directly producing fibers from a cell solution that included a diverse range of cells. When it comes to bioink,
natural biomaterials are significantly superior to synthetic polymers. The purpose of tissue engineering is to produce new organs
and tissues that can be used in the therapeutic regeneration of individuals who have been injured. The building blocks of a
tissue engineering structure are biomaterial scaffolds that have been functionally oriented, with cell cultures growing on top of
them. Electrospun fibers differentiate themselves from other scaffolds used in tissue engineering because of their simplicity in
manufacturing and their structural resemblance to the extracellular matrix.
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1. Context

Electrospinning is a spinning technique that uses
electrostatic forces to produce ECM-mimicking fibrous
scaffolds from biocompatible polymers. It demonstrates
some limitations, such as the usage of toxic solvents, poor
cell infiltration, and inhomogeneous cell distribution.
To overcome these limitations, a novel method called
cell-electrospinning (CE) was introduced. As known, CE
is an electrospinning-based technique that generates
fibers with living cells embedded within, first introduced
by Jayasinghe et al. in 2006 as cited in Hong et al.
(1). Electrospinning is the method of spinning fibers
using electrostatic forces (2). It is one of the most
versatile forms of nanofiber synthesis processes (3). In
1934, Anton Formhals patented his first innovation, a
method and equipment for manufacturing artificial
filaments with electric charges. In the early 1930s,
electrospinning was developed as a feasible fiber-spinning
process. This method yields submicron fibers with a high
surface-to-volume ratio, tunable porosity, and the capacity
to modify nanofiber composition (4). The application
of electricity directly causes drying in electrospinning,
resulting in less energy loss. Other drying technologies,
such as hot melt extrusion (HME) and spray drying, are

less environmentally friendly. Another advantage of
ES is that its products have morphologies that are very
similar to the extracellular matrix of the body, making
them potentially ideal for tissue engineering applications
(5). Engineering and biological expertise are used in the
fascinating field of tissue engineering (TE) to generate
or repair tissue and organs. Cells, biomaterials, and
biomolecules are its three primary means of operation.
A quick and adaptable method called electrospinning
creates scaffolds made of nano- and micro-fibers. These
scaffolds have important uses in regenerative medicine
because they provide a suitable environment for cellular
growth (6). This review article describes the use of CE
in regenerative medicine based on current research, the
introduction of biomaterials, and the many types of cells
that are used in this procedure.

2. Cell Electrospinning

Due to its benefits, electrospinning has generated
much attention in biomedical applications. This approach
has several drawbacks, including the use of hazardous
solvents, inadequate cell penetration, and uneven cell
dispersion. To get over these restrictions, the CE approach
was developed (1, 7). This approach has been investigated
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for directly manufacturing fibers and scaffolds from a cell
suspension, including a broad variety of cells, such as
immortalized, primary, stem cells (including iPS cells), and
complete organisms. This method is the most advanced
technique for creating cell-laden fibers and scaffolds (8).

Electrospinning as a viable method for spinning fibers
with a tiny diameter goes back to 1934. Formhals
devised a method and equipment for spinning synthetic
fibers using electric charges (9). Charles L. Norton
created a method for producing fibers from viscous
solution in 1936. In 1952, Vonnegut and Newbauer
created a technique for producing homogeneous droplets
with a diameter of 0.1 mm by disintegrating liquids
electrically. Baumgarten created the electrospinning of
acrylic resin in dimethyl formamide (DMF) solvent to
create acrylic fibers in 1971. Hayati hypothesized in
1987 that semi-conductive and insulating liquids form
more stable jets than highly conductive liquids. Cell
Electrospinning was firstly introduced by Jayasinghe et al.
in 2006 as cited in Hong et al., to show the viability of
creating physiologically active scaffolds using a modified
ES technique (1).

Cell Electrospinning is based on the application of a
high voltage through a DC source to a conducting coaxial
needle system positioned above a grounded collecting
grill or revolving mandrel. The matrix for the cells is
composed of a biopolymer with low conductivity and high
viscosity, and its qualities sustain the process, resulting in
the development of a continuous cell-bearing fiber that,
over time, creates a living scaffold or membrane (Figure 1)
(10).

In 2004, Smith et al. as cited in Haider et al. first
asserted the use of electrospinning in medicine. To shield
or treat potential wounds, they electrospun fibers straight
onto the skin’s surface to create a mask. In addition,
electrospinning fibers have been explored as medication
transporters, with encouraging results. Electrospinning
nanofibers have also been proven in studies to have a
role in enzyme immobilization, wound dressing, and
antibacterial effects (12).

Using cell electrospun nanofiber, a number of
researchers have tried to regenerate diverse tissues,
including skin, blood vessels, tendons/ligaments, and
neurons. Nanofibers surrounded by adequate growth
factors, cells, or bioactive substances have a significant
potential for application in tissue regeneration because
they provide cells with the required physical and chemical
qualities (13).

A biomedical technique called tissue engineering
attempts to produce new organs and tissues for the
medical reconstruction of damaged areas. The device
is a sophisticated biosystem made of biomaterials that

serve as scaffolds and have cell cultures growing on their
surface. The ease of preparation and the extent to which
they structurally, chemically, and mechanically resemble
the extracellular matrix (ECM) are two important benefits
of electrospun fibers (14). Frequently, scaffolds used in
tissue engineering are ”bioabsorbable,” which means that
when the fibers progressively break down, they serve as
a template that is gathered over time by host cells (5).
Scaffolds are crucial in regenerative medicine because they
provide cells the support they need to carry out their
typical duties. The phenotypic and genotype of cells alter
in the absence of an appropriate scaffold. The CE method
achieves the necessary objective of tissue engineering
by immediately constructing an integrated cell-scaffold
structure (15).

The molecular weight of the polymer is one of several
variables that might impact electrospinning. These
include the applied electrical voltage, the operating
distance between the spinner and the collector, the
motion of the grounded target, and ambient variables
(temperature, humidity, and airspeed) (13).

The wide range of electrospinning polymers and
solvents makes it difficult to establish the ”gold standard”
settings that are suitable for every operation. Changes
in circumstances may lead to the creation of several
fibers with various basic characteristics for any given
polymer-solvent system. The intensity of the electric field
during spinning is a crucial element in the production of
nanoscale fibers. By directly changing the polymer flow
rate, field strength has a direct impact on the diameter and
shape of fibers (14).

Strong electric fields cause highly conductive
solutions to become very unstable, resulting in fibers
that deviate significantly from the standard diameter.
Low conductivity solutions are frequently used to
generate fibers with less uniform diameter distributions.
Utilizing extremely volatile solvents fills the surrounding
environment with vapor, creating a porous surface (14).

In order to create electrospun nanofibers with desired
physicochemical features, several nanofiber synthesis
procedures may sequentially alter the polymer viscosity,
applied voltage, operating distance, or flow rate while
retaining other parameters (13). The viscosity of the bioink,
the applied electric field, the pace at which the bioink is
fed, the distance from the nozzle tip to the collector,
and environmental conditions are some of the factors
affecting CE (16). When employing CE to create cell-loaded
fibers, the viscosity and surface tension of the printing
solution or bioink are crucial. Kim et al. as cited in Hong
et al. found in an experiment that there was a substantial
decrease in cell viability when the collagen content of
bioink was more than 7% by weight (1).
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Figure 1. Schematic diagram of cell electrospinning processes for production of cell-laden matrices. The scheme shows the formation of an electrospun membrane with cells
encapsulated in fibers from a polymer solution in the syringe (11).

The electric field is one of the most crucial variables in
ES-based approaches, as already noted. Since CE involves
the creation of cell-embedded fibers, the electric field
strength in CE is also significant and must be taken into
account to ensure that both fiber production and cell
viability are not diminished. Strong electric fields have
been shown to result in low cell viability (1). In research by
Yeo and Kim, the electric field range of 0.05 - 0.075 kV/mm
produced the best cell viability (90%). However, when

the electric field intensity grew, cell viability drastically
decreased (17). Weak electric fields, on the other hand,
may result in improper fiber production. Despite good
cell survival (90%) in another investigation utilizing a
modest electric field, the microfibers generated were not
well-formed (18). The gap between the nozzle’s tip and
the collector affects the electric field. The flow rate of the
solution is another factor that affects the CE procedure.
Both fibrogenesis and cell viability depend heavily on flow
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rate. Since it is directly connected to shear stress, the
material should be taken into consideration (1).

Temperature and humidity are only two variables that
may have an impact on the CE process. The rheological
characteristics of the bioink, such as viscosity and
elasticity, may be impacted by temperature. The materials
are sometimes thermally cross-linked using temperature,
as well. According to studies, lower viscoelasticity
and surface tension together have an impact on fiber
shape (19). To avoid harm to the cells throughout
the CE procedure, the temperature must be properly
adjusted. Humidity is a significant factor affecting fiber
development. Because high humidity causes the initial jet
to elongate further, it causes beaded fibers. Beads occur
between portions of thin strands during electrospinning
at high humidity (1).

Cell electrospun fibers are nanomaterials and
nanofibers that replicate the ECM structure and have
a broad variety of therapeutic uses in the area of
regenerative medicine. The capacity to create high
cellular density, infiltration, and more even cell dispersion
are further benefits of CE that may aid in the formation of
functional connections between cells (20).

Despite being an acknowledged leader in
biotechnology, CE has drawbacks and limits. Because
the CE technique employs hydrogels to encapsulate cells
in the fibers, the final structure could not have a high
mechanical strength. Due to the whipping phenomenon
that takes place during the manufacture of fibers, it is
challenging to accomplish fiber deposition at the

precise site (1).

3. Biomaterials for Cell Electrospinning

Due to their great processability, several synthetic
polymers, including polymethyl methacrylate,
polycaprolactone (PCL), and polylactic acid, were
transformed into fibrous architectures by ES. Alginate,
collagen, and cellulose are just a few natural polymers
that are employed in the ES process. These polymers have
limits in electrospunability because of weak molecular
chain entanglement or the repulsive attraction between
ions while being biocompatible and hydrophilic (21, 22).

Natural biomaterials offer significant benefits over
synthetic polymers for bioink. Bioactive signals from
natural polymers improve cellular activity. A variety
of natural polymers or mixtures of them have been
used as alternatives for synthetic materials. These
comprise collagen and gelatin, as well as alginate with
poly (ethylene oxide) (PEO) and lecithin composition for
bone regeneration (1).

4. Different Cells Used in Cell Electrospinning

CE has been employed with different biomaterials and
techniques to create cell-laden fibers for the regeneration
of diverse tissues in order to offer optimal micro- or
nano-environments. This section will provide a quick
overview of some of the researchers’ efforts to use CE to
recreate various tissues.

5. Bone Cells

Allogeneic bone regeneration therapy has gained
much interest in recent years owing to the drawbacks and
risks of autologous bone grafting and the significance of
bone tissue regeneration in bone abnormalities such as
infections, osteonecrosis, and cartilage disorders. Indeed,
the surface-to-volume ratio and ECM-like environment
needed to create bone-regenerating scaffolds cannot
be achieved with 3D printing (1). Yeo and Kim used 3D
printing technology with CE for the first time in 2015 to
finish a high-strength 3D mechanical structure and an
ECM-like structure for bone repair (18). In 2021, Das et
al. created a bone tissue engineering construct using CE
technology and a biopolymer of polyglutamic acid. Their
technique of cell culturing produced healthy, functioning
cells (23).

6. StemCells

To regenerate tissue using stem cells, ECM-like
microenvironments must be created. Using ASCs and
CE, Chen et al. produced a bioactive membrane. In this
work, ASCs in a cell culture plate were used to measure the
cellular activity of ASCs on electrospun fibers (1, 20, 24).

7. Muscle Cells

Nobody can deny the significant function of human
muscles, whether they are smooth, skeletal, or cardiac.
In 2014, Ehlar and Jayasinghe employed CE to restore old
or injured heart tissue using three-dimensional cardiac
patches and collagen-rich myocytes. After CE, the cell
viability was somewhere about 80% (25).

For both the CE and cell printing processes, the
same bioink—alginate/PEOE embedded with C2C12 cells
(mouse myoblast cell line)—was employed. When cell
morphology was examined on day 7, it was found that
the electrospinning technique’s cells were more aligned
and elongated than those on the printed structure.
The scaffold markedly increased the production of
sarcomeric-actinin and myosin heavy chains. This
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Table 1. Application of Electrospinning and Cell Electrospinning

Application Technique

Direct alive scaffold preparation Cell electrospinning

Drug and bioactivemolecules enriched scaffoldwith elevatedmass transport property Cell electrospinning

Electrospun nanofibers forwound healing andwound dressing Electrospinning

Cell-free nanofiber for tissue engineering Electrospinning

demonstrates controllability in micro- or nanotopological
cues as well as compatibility with various muscle cells (1,
17).

8. Application of Cell Electrospinning in Regenerative
Medicine

By delivering support structures, cells, and chemical
and mechanical signals for regeneration to the necessary
location, tissue engineering strives to build new tissues
and organs for the therapeutic regeneration of damaged
persons (26, 27). A tissue engineering structure is a
complex biosystem composed of a biomaterial scaffold
that has been strategically oriented and supports the
growth of cell cultures (28, 29). Electrospun fibers stand
out among other scaffolds used in tissue engineering for
two key reasons. First, they are simple to manufacture,
and second, they more closely resemble the extracellular
matrix in terms of structure (14). The designed structure
should facilitate oxygen and nutrient circulation, as
well as the removal of metabolic waste, during tissue
regeneration in addition to imitating the extracellular
matrix (30, 31).

There are a number of techniques for tissue
engineering that may be divided into two categories:
Jet-based and non-jet-based. Inkjet printing (IJP),
laser-guided cell writing (LCD), and bio-electrosprays
are examples of jet-based techniques enabling the
direct engineering of live organs (bio-electrospinning).
Cryo-electrolysis, electrophysiology, and stem cell
treatment are examples of non-jet-based methods for
direct engineering of living organs (32).

Living cells may now be incorporated into fibrous
scaffolds without a separate cell seeding procedure,
thanks to the development of CE technology, which
creates fibrous scaffolds using electrostatic force. The
cells are evenly dispersed, survive well, and spread
across the fibrous scaffolds in this process. Multiple
three-dimensional shapes are created using CE (33).

The creation of artificial tissue, which can meet the
expanding need for tissue replacement, rejuvenation, and
repair, includes electrospinning as a key stage. Numerous
studies have shown electrospinning’s capacity to directly

create tissues, which is crucial for both clinical and
regenerative medicine. The creation of a 3D multicellular
culture using this technique opens up the possibility of
using biotechnology to directly produce artificial tissue
that has already been developed and planned (34).

CE cardiac patches were used by Ehlar et al. in 2014 for
heart tissue engineering. It offered a potentially effective
method for regenerating, replacing, and repairing cardiac
tissues. The original cardiac myocytes used in these
research projects were directly processed utilizing CE to
create live heart fibers and scaffolds (25).

In order to stimulate cell development, Chen et al.
created a membrane structure that may resemble the
natural microenvironment. This accomplishment held up
the potential of using CE to replace soft tissues as part
of regenerative therapy. This membrane created a new
intercellular matrix, boosted the capacity of cells to attach
to the membrane, and helped cells preserve phenotypic
morphology in addition to giving cells room to develop
(20).

In a study, myoblast cells with CE application were
compared in vitro, focusing on various cell activities such
as cell survival, morphology, and differentiation. High
cell viability was achieved with both procedures, but CE
significantly enhanced cell elongation, alignment, and
differentiation as a result of the aligned fibers. As a result,
it was demonstrated that the CE procedure holds great
promise for regenerating muscle tissue (17).

A bone tissue engineering structure was created
in 2021 by Das et al. utilizing the polyglutamic acid
biopolymer and CE technology. Results indicated that the
cells in this experiment maintained their functionality
and had a high vitality, as well as the capacity to multiply
and differentiate. This technique may be used to
correct large-area deficiencies in patients who have
special arthroplasty, pseudoarthrosis, or tumor removal
procedures (23).

9. Conclusions

In this article, we became familiar with the CE method
as a new technology. Its benefits and drawbacks were
also brought to our attention, and some of its uses in
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different types of tissue engineering during the last several
years were examined. However, some obstacles need to
be addressed before CE can be used on a large scale or in
different forms of tissue engineering. These obstacles are
likely to be overcome in the near future.
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