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Abstract

Alzheimer’s disease (AD) stands as the most prevalent neurodegenerative disorder, marked by neuronal loss, synaptic dysfunction,
atrophy in various brain regions, cognitive decline, dementia, the production of β-amyloid (Aβ) peptide, and the presence of
neurofibrillary tangles. Melatonin, also known as N-acetyl 5-methoxy tryptamine, is a hormone regulated by circadian rhythms and
plays a crucial role in certain neurodegenerative conditions, including AD. In individuals with AD, alterations have been observed in
the pineal gland hormone melatonin (MLT), the activity of enzymes associated with MLT synthesis, and the density of MT1 receptors
in the suprachiasmatic nucleus (SCN) of the hypothalamus. The growing body of literature indicates a rising interest in utilizing
MLT for AD intervention. Melatonin has shown several potential benefits in AD, such as mitigating mitochondrial dysfunction,
reducing Aβ toxicity, scavenging free radicals, and even ameliorating circadian dysregulation, which includes addressing issues
like sundowning and sleep disturbances. Recent studies suggest that MLT might serve as a potential biomarker for assessing the
severity and progression of AD. This paper aimed to provide an overview of recent research on three key aspects: (1) MLT physiology,
(2) the role of MLT in the learning and memory processes, and (3) an exploration of studies investigating the role of MLT in AD.
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1. Context

Alzheimer’s disease (AD) is a neurodegenerative
condition associated with aging, affecting more than
25 million people worldwide. It is characterized by
cognitive changes, memory deficits, and behavioral
alterations, making it a leading cause of dementia among
the elderly. AD can be categorized based on the age of
onset into sporadic cases (which constitute the majority
of AD instances) and familial cases (comprising 5 to 10%
of patients) with an autosomal dominant inheritance
pattern (1).

The pathophysiology of AD is marked by synaptic
injury, neuronal loss, astrogliosis, the presence of
senile plaques containing amyloid-β (Aβ) peptides,
hyperphosphorylation of tau protein, and the

development of neurofibrillary tangles (2). Recent
studies (3, 4) have demonstrated that therapies targeting
Aβ have not been successful in treating AD, challenging
the prevailing amyloid-tau theories regarding disease
causation. In reality, Aβ and tau (misfolded proteins)
accumulate within neurons as a consequence of the
disease, and they may be released into extracellular spaces
following neuronal death (5).

The observed decline in melatonin levels in bodily
fluids and reduced expression of MT1 and MT2 receptors
in AD-afflicted brains suggest a significant connection
between the melatonin system and the disease (6, 7).

The versatile hormone melatonin possesses various
beneficial properties, including anti-inflammatory,
cytoprotective, and antioxidant effects, in addition to
its role in regulating the circadian rhythm. Melatonin
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production is subject to circadian regulation, with
research conducted in mouse and rat models revealing
that peak plasma melatonin levels typically occur around
midnight (8). The aging process leads to a decline in
melatonin synthesis, a factor that may play a crucial role
in the development of AD (9).

During AD, several alterations have been observed in
the hormone melatonin (MLT) produced by the pineal
gland, as well as in the activity of enzymes involved in
MLT synthesis and the density of MT1 receptors in the
suprachiasmatic nucleus (SCN) (10). When comparing
AD patients to healthy individuals, it becomes evident
that melatonin levels are lower in the former group.
Melatonin’s ability to scavenge free radicals and its
anti-amyloidogenic effects make it a promising candidate
for slowing the progression of AD. Additionally, melatonin
prevents the secretion of soluble amyloid precursor
protein (APP) by promoting APP maturation in various
cell types. Both in vitro and in vivo studies have shown
that melatonin treatment reduces the production and
deposition of Aβ (11).

In a study conducted by Lee et al., it was discovered that
melatonin has the ability to reverse memory impairment
induced by stress in rats. This reversal occurs through
the action of cAMP-response element-binding (CREB)
protein in the hippocampus and the inhibition of
proinflammatory cytokines in the brain, including tumor
necrosis factor-α (TNF-α) and interleukin-6 (IL-6) (12).
These findings highlight melatonin’s anti-inflammatory
properties. Additionally, several other animal studies
have shown that melatonin (MLT) could effectively
mitigate learning and memory deficits in cases of vascular
dementia (13).

The hyperphosphorylation of tau protein in AD has
been extensively documented. Research has demonstrated
that melatonin, by modulating the activity of enzymes
involved in tau phosphorylation, specifically glycogen
synthase kinase 3β (GSK3β) and cyclin-dependent kinase
5 (Cdk5), can reduce the extent of hyperphosphorylation
(14).

Tau protein acetylation also plays a role in AD
progression, leading to its abnormal aggregation.
Acetylation at specific residues disrupts tau’s normal
sorting and promotes aggregation by interfering with
ubiquitin-mediated clearance. Melatonin has been shown
to increase the expression of the sirtuin 1 gene (SIRT1),
which is a deacetylase (15). In transgenic mouse models
of AD, SIRT1 has been found to reduce the amyloidogenic
processing of βAPP (16).

Hence, it appears that melatonin (MLT) may
exert a protective effect against AD by inducing the
overexpression of SIRT1. A substantial and growing body

of literature has focused on the potential of MLT as an
intervention for AD. Recent studies have indicated that
MLT could potentially serve as a marker for assessing the
severity and progression of AD. This paper aims to review
recent research in three main areas: (1) MLT physiology, (2)
the role of MLT in learning and memory processes, and (3)
discussions on studies investigating the role of MLT in AD.

2. Melatonin and Its Potential Targets

MLT functions by binding to MT1 and MT2 receptors
located in the plasma membrane. These receptors are
part of the G-protein coupled receptors (GPCR) subfamily
and are expressed in various brain regions and peripheral
tissues (17). In humans, MT1 receptors are found in the
frontal, temporal, parietal, and occipital cortex, thalamus,
hippocampus, and supra-optic nucleus (SCN). MT2
receptors are expressed in the cerebellum, hippocampus,
and SCN. MLT receptors play a role in modulating diverse
physiological functions, including circadian rhythms,
sleep, and learning and memory processes. The MT1 and
MT2 receptors are primarily coupled to Gi/o proteins,
leading to reduced cAMP levels and the inhibition of
protein kinase A (PKA). Additionally, MLT can regulate ion
channels, such as large-conductance Ca2+-activated K+
channels, through pathways involving Gq/PLC/Ca2+ or
Gi/cAMP/PKA (Figure 1) (18).

The MT3 receptor corresponds to a cytosolic enzyme
called quinone reductase 2 (QR2), which is primarily
found in peripheral organs, such as the liver, kidney,
heart, and lungs (18, 19). MLT possesses a lipophilic
property, allowing it to permeate cell membranes directly
through simple diffusion (20). MLT’s entry into cells has
several effects: It scavenges reactive oxygen species (ROS)
and reduces inducible nitric oxide synthase (m-iNOS)
expression, thus promoting oxidative phosphorylation
and ATP production within mitochondria. Additionally,
MLT binding to the nuclear retinoid Z receptor (ROR/RZR)
protein family stimulates A and B lymphocytes, reduces
the production of pro-inflammatory molecules, and
induces the overexpression of antioxidant enzymes (21).
Research suggests that MLT’s role in memory formation
involves its influence on hippocampal neurons (22). In
AD, there is a reduction in the expression of MT1 and
MT2 receptors (19). Moreover, GPR50, an orphan receptor
related to MLT, primarily modulates the function of MT1
receptors (15). For instance, the heterodimerization of
GPR50 with MT1 receptors inhibits the MLT receptor
pathway (Figure 2) (16).

MLT also has the capacity to bind to intracellular
proteins, including calmodulin and orphan nuclear
receptors, in order to initiate its effects on target cells (23).
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Figure 1. Melatonin signaling pathways.

Moreover, MLT inhibits lipid peroxidation and shields cells
from damage caused by oxidative stress (24). Previous
studies have established a close relationship between
oxidative stress and the onset and progression of AD,
potentially through the augmentation of Aβ peptides and
the intracellular accumulation of hyperphosphorylated
τ protein in neurofibrillary tangles (25). MLT exhibits a
neuroprotective quality, believed to be associated with its
antioxidative characteristics (Figure 2). In essence, MLT
not only scavenges free radicals but also promotes the
expression of antioxidant enzymes, including superoxide
dismutase (SOD), catalase (CAT), heme oxygenase-1 (HO-1),
glutathione peroxidase (GPx), glutathione reductase
(GRd), and γ-glutamyl-cysteine synthase (γ-GCS) (26).

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a
regulatory protein and transcription factor that controls
oxidative stress and the transcription of antioxidant
enzymes. It has been suggested that MLT, by inducing
NRF2, can exert its cytoprotective and antioxidant effects.
Neurodegenerative diseases like AD are linked to reduced
NRF2 levels in the brain (27). Substantial evidence

underscores the role of the Nrf2 signaling pathway in
mediating MLT’s therapeutic and biological effects (28).

3. The Role of Melatonin inMemory and Learning

A recent study demonstrated that MLT was effective in
ameliorating spatial learning and memory deficits caused
by exposure to isoflurane. These beneficial effects were
associated with a reduction in neuroinflammation and
neuroapoptosis (29). Another investigation indicated
that MLT injections could mitigate neurological
abnormalities in mice, potentially by modulating the
N-methyl-D-aspartate (NMDA) receptor (30). Additionally,
a recent study suggested that MLT might provide
protection against hippocampal damage and memory
deficits in cerebral hypoperfusion rats by downregulating
calcium-activated potassium channels (31). In an
experiment, the time spent in a specific quadrant and
the time required to locate a platform were significantly
reduced following the administration of exogenous MLT.
It has been noted that MLT plays a role in regulating the
reproduction and differentiation of neural stem cells
(32), a function that supports the survival of new neurons
(33). Furthermore, MLT serves as an internal regulator of
neurogenesis in AD patients (34).

Neurogenesis plays a crucial role in memory
formation, cellular plasticity, and cognitive health.
However, the aging process leads to neurogenesis
dysfunction, increasing the vulnerability of neurons to AD
(14, 35). Cholinesterase inhibitors promote the survival of
newly generated neurons and boost neurogenesis in adult
mice (36). In this context, MLT exhibits anti-amnesic effects
by reducing acetylcholinesterase (AChE) activity (37). AD is
closely associated with neurogenesis impairment (38). The
decline in neural progenitor cell proliferation and MLT
secretion during aging and AD suggests that MLT regulates
neurogenesis in the adult brain (39). This regulatory role
of MLT in neurogenesis is supported by both in vitro and
in vivo studies. MLT enhances the survival, proliferation,
and differentiation of neural stem cells (NSCs) (32, 40,
41). It also promotes dendrite growth through MLT
receptor-mediated signaling pathways involving CaMKII
and CREB (38, 42).

Furthermore, MLT’s impact on cognitive dysfunction
observed in AD is mediated through microRNA (miRNA)
signaling pathways. MiRNAs are small, single-stranded,
non-coding RNA molecules that repress gene expression by
binding to mRNA targets with complementarity. Studies
have shown that MLT exerts beneficial effects on memory
deficits in AD patients through the miR-124 pathway (43).
Additionally, in rats with memory impairment induced
by systemic administration of scopolamine (mimicking
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Figure 2. Melatonin and its potential targets.

AD-like cognitive deficits), MLT treatment induces changes
in the miR-124 pathway, improving spatial memory and
mitigating long-term potentiation (LTP) impairment
(43). Considering MLT’s influence on various molecular
signaling pathways in AD, it merits consideration as a
therapeutic approach in AD treatment.

4. Therapeutic Potential of Melatonin in AD

Decreased fluctuations in blood MLT levels, which
become more pronounced from middle age onwards,
can lead to a decline in various aspects of nervous system
function (44). MLT has been confirmed to possess
anti-inflammatory, antioxidant, anti-fibrillogenic,
anti-hyperphosphorylation, and anti-amyloidogenic
properties (38), suggesting that it may play a protective
role in neurological diseases (39). While several
meta-analyses have examined the effectiveness of MLT
in cognitive improvement (40, 45), numerous studies
have reported inconsistent results regarding MLT’s
efficacy in treating AD (41, 42).

The potential link between MLT and AD development
became apparent when it was discovered that reduced
plasma MLT levels are associated with AD. AD patients
have lower MLT levels in their cerebrospinal fluid (CSF)
compared to individuals in the same age group (29).
Some studies have sought to explain MLT’s effectiveness
by its impact on sleep disturbances in AD patients
(40). For instance, exogenous MLT treatment improves
symptoms of REM sleep behavior disorder (RBD) in AD
patients. RBD is a parasomnia characterized by abnormal

behavior or excessive motor activity during sleep (46).
Overall, MLT supplementation, especially in long-term
treatment, positively affects sleep quality and alleviates
sleep disturbances reported by AD patients (47). Given
that short duration and poor-quality sleep are risk factors
for AD (40), MLT supplementation may potentially slow
AD progression by enhancing both sleep duration and
quality (48).

Furthermore, MLT has a favorable impact on emotional
function, making it a valuable asset in delaying AD onset
if mild cognitive impairment (MCI) is detected early
and preventive measures are taken (8). Research has
also demonstrated that MLT is effective in improving
emotional and cognitive functions in both AD and MCI
patients (49). It may play a significant role in AD
pathogenesis by implementing preventive measures that
slow down MCI progression (43), ultimately aiding in the
improvement of memory and cognitive problems in these
patients (50).

The effectiveness of MLT in animal models of AD
has been extensively investigated. In behavioral studies
using AD mouse models, MLT has been shown to enhance
performance in tasks such as novel object recognition
and passive avoidance (51). Additionally, research has
demonstrated improvements in long-term recognition
task performance in young, middle-aged, and elderly
MLT-deficient mice (52). Labban et al. examined the
potential prophylactic effects of MLT against spatial
memory deficits in a sporadic mouse model of AD induced
by D-galactose and aluminum chloride (52). In a study
conducted by Corpas et al., chronic administration of MLT
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was found to enhance learning and memory abilities in
mice, increase exploratory behavior, and reduce anxiety
associated with AD in 12-month-old mice (53).

Other studies have revealed that long-term oral
administration of MLT promotes synaptic growth in
the hippocampus and preserves the neuronal and glial
structure in a sporadic rat model of AD (54). Furthermore,
animal experiments have shown that MLT can prevent
the formation and accumulation of Aβ plaques and
neurofibrillary tangles (55). Findings from studies in
transgenic animals suggest that it is crucial to administer
MLT in the early stages of AD to regulate Aβ metabolism
and primarily prevent Aβ formation (56). Some research
has indicated that MLT may reduce the expression
of beta-site APP cleaving enzyme 1 (BACE1), the major
beta-secretase involved in the generation of Aβ peptides,
as well as p-tau and Aβ1-42 in AD mice (51). Additionally,
documented evidence shows that MLT reduces tau
hyper-phosphorylation and inhibits apoptosis in various
AD model studies (29).

5. Mechanisms ofMLT Improving Effects on AD

The levels of MLT increase, reaching their peak around
puberty, and gradually decline with age in the elderly (57,
58). This decline has been associated with age-related
neurodegenerative diseases, including AD. Indeed, the
progression of AD-related neuropathology, coupled with
a reduction in MLT levels in cerebrospinal fluid (CSF),
makes brain cells more susceptible to oxidative damage.
MLT possesses strong free radical scavenging (59) and
anti-amyloidogenic (60) properties. In postmortem, AD
brains, an increase in the production of free radicals, lipid
peroxidation, oxidative damage to proteins and DNA, as
well as a decrease in ATP production and cell viability, have
been observed compared to age-matched healthy controls
(61, 62).

Interestingly, it has been reported that similar to
the day-night MLT rhythm, Aβ production also follows
a circadian pattern, with lower levels during sleep
compared to wakefulness (63). Aβ production leads to
the oxidation of proteins, DNA, and lipids due to the
production of free radicals. MLT, by targeting the Nrf2,
down-regulates prooxidant enzymes and up-regulates
antioxidant enzymes, thereby reducing oxidative damage
to the brain (64). The balance between Aβ production
and clearance plays a crucial role in AD progression.
MLT, through receptor-dependent mechanisms and
the deactivation of the JNK/Sp1 pathway, inhibits JNK
phosphorylation, consequently reducing Sp1-DNA binding
activity. Sp1 activates the transcription of BACE1 and APP,
which promotes amyloidogenesis. Therefore, the effect

of MLT shifts the balance towards increased Aβ clearance
(65).

Cholinergic dysfunction is a significant contributor to
the initiation and progression of AD (66). The impaired
learning and memory observed in AD patients are
associated with the loss of cholinergic neurotransmission
and a decrease in ACh levels (Hampel et al., 2018) (67).
Impaired spatial learning and memory in a mouse model
of scopolamine-induced amnesia improved with MLT
treatments, as they restored the hippocampal and septum
cholinergic system. This was evident through the elevation
of levels of choline acetyltransferase, high-affinity choline
transporter, vesicular acetylcholine transporter, and
muscarinic acetylcholine receptor M1 (M1R) under
MLT treatments (68). MLT reversed the impairment in
recognition memory and passive avoidance performance
in a D-galactose/AlCl3 AD mouse model, as indicated by the
increase in prefrontal cortex AChE levels and BDNF/CREB1
expression (69). Moreover, MLT administration prevented
the elevation of AChE activity in a rat model of AD (70). A
study on the scopolamine model of cognitive impairment
found a correlation between memory loss and elevated
AChE activity. They discovered that MLT-treated animals
had lower levels of AChE activity and malondialdehyde
(71).

Neurovascular dysfunction is another pathological
issue in AD patients (72, 73). Impaired Aβ clearance
leads to Aβ deposits around cerebral vessels, disrupting
blood-brain-barrier (BBB) permeability and vascular
function (73). In this pathological condition, glucose
transporters downregulate brain microvessels, resulting
in neuronal metabolic dysfunction that correlates with
tau hyperphosphorylation (74) and Aβ aggregation
(75). Additionally, it has been shown that vascular
endothelial growth factor (VEGF), a growth factor for
vascular endothelial cells, and VEGF receptors upregulate
AD disease in response to Aβ (76, 77), indicating that VEGF
is involved in Aβ-induced vascular changes. MLT can
ameliorate Aβ-induced vascular alterations by regulating
VEGF signaling (78).

6. Conclusions

Clinical studies have revealed alterations in MLT
secretion in AD, and MLT treatment appears to be effective
in managing both the psychological and pathological
symptoms of AD. MLT improves sleep duration and
quality, memory, and cognitive issues. It also prevents
the formation of Aβ plaques and neurofibrillary tangles,
reduces tau hyperphosphorylation, minimizes oxidative
damage, and inhibits apoptotic pathways in animal
models of AD. Furthermore, MLT has been shown to
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modulate neurogenesis, a process significantly implicated
in AD. Overall, MLT appears to be of critical importance in
the treatment of AD, given its multifactorial nature, and
it can be considered as one of the drug therapies for AD
treatment.
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