
Jentashapir J Cell Mol Biol. 2023 December; 14(4):e141092.

Published online 2023 December 16.

https://doi.org/10.5812/jjcmb-141092.

Research Article

Synergistic Effect of Lovastatin and Selegiline on the Differentiation of

Bone Marrow Stromal Cells Into Neuron-Like Cells

Alireza Abdanipour 1, *, Behnam Karami 1, Mohammad Javad Fridoni 1, Momeneh Mohamadi 1 and
Farzaneh Fakheri 2

1Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
2Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

*Corresponding author: Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran. Email: abdani.anatomy@yahoo.com

Received 2023 September 20; Revised 2023 November 11; Accepted 2023 November 13.

Abstract

Background: The effect of selegiline as an oxidase inhibitor on cell differentiation into neuron-like cells has been demonstrated
by altering gene expression. Based on the results of studies on the role of statins in neurotrophin regulation, in this study, we
examined the effect of lovastatin (HMG-CoA reductase inhibitor) on the differentiation of bone marrow mesenchymal cells (BMSCs)
into neuron-like cells. Selegiline is an irreversible inhibitor of monoamine oxidase (MAO) type B. Since dopamine in the human brain
is metabolized primarily by MAO-B, selegiline increases dopamine levels in the central nervous system. In addition to inhibiting
MAO-B, selegiline also inhibits the uptake of dopamine and norepinephrine into presynaptic nerves and increases dopamine
turnover.
Methods: Bone marrow mesenchymal cells were collected from 28-day-old rats and cultured under standard conditions on the
medium. The experimental groups in this study were as follows: BMSCs (control); BMSCs induced with 20µM selegiline for 24 hours
(experiment 1); BMSCs induced with 6 µM lovastatin for 24 hours (experiment 2); BMSCs were induced with 20 µM selegiline for 24
hours and 6 µM lovastatin for the next 24 hours (experiment 3). Real-time RT-PCR was performed to determine the mRNA levels of
the nestin and NF-68 genes.
Results: Real-time RT-PCR results showed that nestin and NF-68 mRNA levels were significantly increased in the co-treatment group
(experiment 3) compared to the other experimental groups (P < 0.05).
Conclusions: Based on the increased expression of nestin and NF-68 genes, the presence of lovastatin has a synergistic effect on
neuronal differentiation and optimization of stem cell therapeutic approaches.
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1. Background

Neurodegenerative diseases are characterized by the
progressive dysfunction of synapses, neurons, glial cells,
and their networks (1). Neurodegenerative diseases are
promising targets for stem cell-based therapies since the
progressive loss of both neurons and glial cells inevitably
leads to irreversible damage to the central and peripheral
nervous system (2). Optimization protocols to increase the
efficacy of stem cell therapy have been tested in animal
models with promising results. It seems that the use
of safe and potent inducers of stem cell differentiation
into neuronal progenitor cells is useful in cell therapy of
systemic destructive diseases. One of the most accessible
and effective sources of stem cells for treating neurological

disorders is neural stem cells; however, they are difficult
to obtain from adults (3). It has been shown that injected
BMSCs can differentiate into neurons in vivo to improve
neurological behavior (4, 5). Because BMSCs can rapidly
proliferate and differentiate into neuron-like cells under
certain conditions, their potential application for the
treatment of nerve injury and degeneration is of ongoing
interest (6).

Studies have shown that selegiline, as an irreversible
inhibitor of monoamine oxidase, is effective in
differentiating stem cells into neuron-like cells by
changing the expression of certain genes and proteins
in the cell (7). Selegiline, a monoamine oxidase (MAO)
inhibitor, was developed by Zoltan, the Hungarian
pharmaceutical company Chinoin. In 1989, the US Food
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and Drug Administration (FDA) approved selegiline for
the treatment of Parkinson’s disease. Later, in 2006, the
FDA also approved the transdermal form of the drug (8).
Selegiline has been shown to increase the expression
of nerve growth factor and glial-derived neurotrophic
factor in the nigrostriatal and mesolimbic dopamine
signaling pathways (9, 10). In addition, selegiline may have
neuroprotective effects and may slow the progression of
Parkinson’s disease by promoting the production of
neurotrophins such as brain-derived neurotrophic
factor, nerve growth factor, and glial cell neurotrophic
factor. These neurotrophins play an important role in
protecting neurons from the inflammatory process. The
induction and activation of multiple stress antioxidants
and anti-apoptotic factors by selegiline may contribute
to the maintenance of healthy brain tissue (11). As a
neuroprotective drug, it can induce bone marrow stromal
cells and differentiate them into neuron-like and glial
cells in vitro (12). In addition, statins, such as lovastatin,
are potent cholesterol-lowering agents used clinically
in cardiovascular events associated with atherosclerosis
(13). In addition, its safety has been confirmed in vivo
and in vitro. Statins have pleiotropic effects, including
antioxidant, immunomodulatory, and neuroprotective
properties (14-16). Interestingly, previous data have shown
that statins can alter the expression of neurotrophic
factors in various animal models of neurological disorders
(17).

2. Objectives

Considering that stem cells are used for the
regeneration and treatment of various diseases, this study
aims to determine the synergistic effect of lovastatin
and selegiline on the differentiation of bone marrow
mesenchymal into neural progenitor cells.

3. Methods

3.1. Isolation and Expansion of Bone Marrow Mesenchymal
Cells

The ethics board of Zanjan University of Medical
Sciences approved all experimental protocols
(IR.ZUMS.REC.1400.243). Bone marrow mesenchymal
cells were harvested from 28-day-old rats under deep
anesthesia and cultured in 25 cm2-adherent flasks
in Dulbecco’s modified Eagle’s low-glucose medium
(DMEM; Sigma-Aldrich) with 10% fetal bovine serum (FBS;
Gibco), 100 U/mL penicillin and 100 mg/mL streptomycin
(Sigma-Aldrich). The isolated cells were incubated at 37°C
in 5% CO2 for 2 days. Adherent cells were harvested and

subcultured, and the culture medium was changed every
2 days until the cells were 70 - 80% confluent. Cells were
harvested with trypsin-EDTA (0.25%; Sigma-Aldrich) and
passaged 3 times (P3).

3.2. Experimental Groups

Cells were assigned to different experimental
groups as follows: Control (BMSCs without induction),
experiment-1 (BMSCs induced with 20 µM selegiline for 24
hours), experiment-2 (BMSCs induced with 6µM lovastatin
for 24 hours according to our previous study (18)), and
experiment-3 (BMSCs induced with 20µM selegiline for 24
hours and 6 µM lovastatin for the next 24 hours).

3.3. Real-time Polymerase Chain Reaction

Total RNA was extracted using a pure link RNA mini
kit (Invitrogen) according to the company’s instructions.
1000 ng of purified RNA extracted from cultured cells
was used to synthesize 20 µL of cDNA according to
the RevertAid™ Reverse Transcriptase kit (Fermentas,
Germany). Nestin and NF-68 mRNA levels were determined
using cDNA. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was used as an internal control for normalization.
RT-qPCR was performed with the primers shown in Table
1. The primers were designed using Gene Runner software
(3.05) and prepared by the distributor (Gene Fanavaran
Co., Iran). The PCR solution contained forward and reverse
primers (200 nM each), cDNA (0.5 µL), SYBR® Green I
(6.5 µL; Fermentas; Thermo Fisher Scientific, Inc.), and
nuclease-free water to a final volume of 12.5 µL. The PCR
reaction was repeated for 40 cycles, each cycle consisting
of 15 seconds at 95°C followed by 1 minute at 60°C. The
relative expression of each gene was calculated using the
∆∆Ct method with Pffal efficiency correction (19).

3.4. Statistical Analysis

Statistical analysis was performed using SPSS version 15
software. All data are presented in triplicate independent
experiments with mean, standard error of the mean.
One-way ANOVA and Tukey’s post hoc test were used for
data comparison between groups. Data with a p-value less
than 0.05 were considered significant.

4. Results

4.1. Primary Cell Culture and Neuronal Differentiation

The primary culture of isolated BMSCs showed that
the cells attached to the bottom of the culture plate were
characterized by rapid proliferation (Figure 1A - D). In the
first hours of culture, the cells floated. Their rounded
nuclei were visible (Figure 1A). After 24 h, the floating cells
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Table 1. Represents Genes Used in Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) of nestin and NF-68 Genes a

Gene Accession # Sense 5→ 3 Antisense 5→ 3 bp Tm

nestin NM 001308239 CAAATCTGGGAACTGGTAGAG CCTAGAGCCTTCAGTGTTTC 149 59.97

Nf-68 NM 031783 ATATGCAGAATGCCGAAGAG CTTCGATCTCCAGGGTCTTA 147 60

GAPDH NM 017008 GCCTCCAAGGAGTAAGAAAC GTCTGGGATGGAATTGTGAG 141 60

a In addition, the housekeeping gene GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was used as an internal control. The table also lists the gene’s NCBI accession
number, sense and antisense primers for each gene, fragment size (bp), and melting temperature (Tm). Primers were designed using Gene Runner 3.05 software (Gene
Fanavaran Co., Iran).

attached themselves to the plate to form fibroblast-like
colonies (Figure 1B). The first step occurred after 7 days
when the cells reached 80% confluence (Figure 1C). After
three passages were completed within 18 days, the cells
were used for differentiation experiments (Figure 1D).
Then, BMSCs were cultured in 20 µM selegiline for 24
hours. The resulting cells were positive for the nestin and
NF-68 genes (Figure 2). The results showed the presence of
selegiline cell bodies and a large number of neurites with
a neuronal phenotype. The results are shown in Figure
2A - D. In experimental group 2 (BMSCs induced with 6
µM lovastatin for 24 h), changes in the appearance and
number of cells with a neural phenotype were less than
in other experimental groups (Figure 2C). In experimental
group 3, cells had longer neurites and larger soma than in
other experimental groups (Figure 2D).

4.2. Gene Expression

Changes in nestin expression and NF-68 mRNA levels in
the experimental groups were examined using real-time
quantitative RT-PCR. Figure 3A shows the results relative
to the control (BMSCs without induction). In the group
treated with 20 µM selegiline for 24 h and 6 µM lovastatin
for the following 24 h (experiment 3), nestin (5.22 ± 0.43)
and NF-68 (30.14 ± 4, 26) compared to Experiment 1 (3.24
± 0.24, respectively 0.67 and 9.32 ± 2.54) and the group
of Experiment 2 (respectively 2.18 ± 0.33 and 3.98 ± 0.79 ).
Figure 3B shows the results relative to Experiment 1 (BMSCs
treated with 20 µM selegiline for 24 h). In experimental
group 3, the levels of nestin (3.01 ± 0.24) and NF-68 (5.04
± 0.23) mRNA were higher compared to experimental
group 2 (1.26 ± 0.19 and 0, respectively, 6 ± 0.01) increased
significantly.

5. Discussion

The results of this study showed that biphasic
induction of bone marrow stem cells by selegiline and
lovastatin significantly increased nestin and NF-68 gene
expression. A differentiated neuronal phenotype also
occurs in the presence of selegiline. Mesenchymal stem

cells are an attractive source of regenerative therapies
due to their ability to perform immunomodulatory,
anti-inflammatory, and non-tumorogenic functions (20).
Recently, cell and molecular studies revealed interesting
properties of selegiline, opening new possibilities for
neuroprotective mechanisms and a disease-modifying
effect of MAO-B inhibitors (21). Neurofilaments (NFs) are
major components of the axonal cytoskeleton and are
composed of three subunits: NF light chain (NFL), medium
chain, and heavy chain. When axons are injured, NFs are
released into the extracellular space and ultimately into
the CSF and blood. Elevated levels of them can be used
as a biomarker of nerve damage (22). Bone marrow
mesenchymal cells are an attractive source of cell therapy,
and their healing properties have been confirmed in
animal models of neurological diseases such as stroke,
Parkinson’s disease, and spinal cord injury (23, 24).
Methods that stimulate the differentiation of BMSCs into
functional neurons need to be developed. Bone marrow
mesenchymal cells can be easily obtained and expanded
in culture and promote modest functional recovery
after transplantation into animal models with injured
or degenerative CNS (25). The use of pharmacological
agents that are less toxic but more effective in the cell
culture environment is a very important point in the
differentiation of stem cells into neural progenitor cells.
According to studies on the effects of statins on the
protection and repair of damage to the nervous system,
the use of statins in a culture medium together with
the active substance selegiline suggests a potentially
improved mechanism.

According to in vitro and in vivo studies, selegiline
prevents MAO-B and improves the synthesis of
neurotrophic factors (26, 27). It is also an anti-Parkinson’s
drug with antioxidant and antiapoptotic properties
(28). However, its cytoprotective mechanism is still
not fully understood (29). The results obtained from
this study indicate a potential strategy for optimizing
the use of stem cells in the treatment of nervous
system injuries, including spinal cord injuries. As an
irreversible MAO-B inhibitor, selegiline has antiapoptotic
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Figure 1. Representative photomicrographs of BMSCs. A, Cell attachments of freshly extracted BMSCs at 24 h; B, primary seeding of BMSCs at day 3; C, passage 1 after seeding
at day 7; D, Passage 3 after seeding on day 18. Red arrows show spindle-like cells (Magnification,× 200).

and neuroprotective effects (30). It also induces stem
cells into neuronal and glial lineages by altering gene
expression (7). Reports have shown that when used as a
cell inducer, selegiline increases cell survival compared
to other inducers, such as dimethyl sulfoxide. It also
induces cells with morphological changes and expresses
nestin genes as markers of neural progenitor cells (31). The
results of this study showed that selegiline-induced BMSCs
induced nestin and NF-68 gene expression. Other studies
have also shown that selegiline, as a neuroprotective
drug, can induce neuron-like cells that express NF-68,
synapsin-1, and nerve growth factors (32). During the
last few years, the Neurofilament-light chain (NF-L)

has been shown to be a valuable biomarker for several
neurodegenerative diseases (33). The neurofilament light
chain is a neurofilament subunit highly expressed in axons
and dendrites, where it contributes to structural stability
in neurons. Neuroaxonal damage due to inflammatory,
neurodegenerative, traumatic, or vascular injury results
in the release of large amounts of NfL (33).

In addition, Mardani et al. showed that treatment
of adipose stem cells with selegiline can induce these
cells in neural progenitor cells expressing nestin and
NF-68 (34). Nestin develops as neuronal progenitors in
neuroepithelial cells and immature astrocytes of the
central nervous system. In the adult brain, nestin is
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Figure 2. Phase contrast images of BMSCs (A) and neuronal differentiation using 20 µM selegiline for 24 h (B); 6 µM lovastatin for 24 hours (C); 20 µM selegiline for 24 hours
and 6 µM lovastatin for the next 24 hours (D) (Magnification:× 200).

expressed in neurons and progenitor cells and can be
expressed in reactive astrocytes under pathophysiological
conditions. In this study, these markers were used to
identify neuron-like cells (35). Statins are drugs approved
by the Food and Drug Administration (FDA) to lower
cholesterol and are widely used in clinical practice.
Recently, statins have been recognized to have a variety
of effects, including anti-inflammatory, antioxidant,
and neuroprotective (36). In vivo experiments have
shown that statin treatment after brain injury increases
synaptogenesis and neurogenesis without changing
blood cholesterol levels. Statins are also thought to

induce neuroprotection by releasing neurotrophic
factors and inducing gene expression (37, 38). Previous
studies have reported that statins (atorvastatin) reduce
inflammation and neuronal apoptosis after spinal cord
injury and significantly improve motor recovery in rats
(39, 40). It has also been reported that treatment of rat
hippocampal neural stem cells with lovastatin results
in increased NGF expression (41). In this study, we used
selegiline as a pre-inducer and lovastatin as an inducer
to differentiate BMSCs into neuronal cells expressing the
NF-68gene. Experimental data from numerous animal and
cell culture studies have shown that selegiline protects
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Figure 3. Real-time quantitative RT-PCR results, A, relative to the control group (BMSCs without induction) and B, relative to experimental group 1 (BMSCs induced with 20
µM selegiline for 24 h). All data were normalized to GAPDH mRNA amplification. Bars represent mean ± SEM; * (Compared to other experimental groups) P-values less than
0.05 were considered significant.

against various neurotoxins, reduces oxidative stress, and
has neurotrophic and anti-apoptotic effects. All of these
properties may contribute to its neuroprotective activity
(42)

Both drugs are safe and used in medical clinics for
therapeutic purposes. In this study, considering the
role of neurofilament light (NFL) in the maturation and
structural support of neurons, the increased expression
of this gene may indicate the role of the synergistic effect
of selegiline and lovastatin in the induction of neuronal
stem cells. NFL has emerged as an important filamentous
protein in neurodegenerative diseases. NFL is a structural
protein that forms neurofilaments, fills the axonal
cytoplasm, and regulates synaptic transmission and
organelle transport (43). Reported that developing mouse
motor neurons express high levels of NFL (44). Studies
have shown that this type of filament plays an important
role in postsynaptic termination and influences nerve
transmission, contributing to normal synaptic function
and neuropsychiatric disorders (22). Therefore, the results
of this study may make the use of lovastatin promising
in clinical trials for the treatment of neurodegenerative
diseases.

5.1. Conclusions

Based on the increased expression of nestin and NF-68
genes, the presence of lovastatin has a synergistic effect
on neuronal differentiation and optimization of stem cell
therapy approaches.
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