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Abstract

Context: Chicken meat is one of the rich sources of protein and is considered one of the most commonly consumed meats in

the world. Enhancing poultry production and its products is achievable through chicken breeding. Effective breeding projects

for future genetic improvement require an understanding of the genetic potential of a given population.

Evidence Acquisition: Articles were selected based on novel molecular markers related to economic traits of chicken in Animal

quantitative trait loci (QTL) database, Ensemble genome browser, CorrDB, ChickVD, Galbase, and Google Scholar. These

databases contain QTLs, markers, and reference genomes of chicken. Galbase provides research communities with updated

possibilities to conduct thorough functional genomics research on chickens. ChickVD manages high-quality sequence variation

data, variation analysis in relation to chicken genes, cDNAs, genetic markers, and QTLs. CorrDB compiles all available chicken

genetic and phenotypic trait correlation data to aid in the analysis of genetic networks and facilitate systems biology research.

Animal Quantitative Trait Loci Database (Animal QTLdb) gathers and compiles all existing data on trait mapping, including QTL

(phenotype/expression, eQTL), candidate gene, association data (GWAS), and copy number variations (CNV) for livestock animal

genomes. This comprehensive database facilitates the easier identification and comparison of discoveries within and across

species. Ensemble genome browser is a powerful tool for analyzing vertebrate genomes, offering valuable insights into

comparative genomics, evolutionary processes, sequence variations, and transcriptional regulation.

Results: Valuating the relatedness of the studied broilers and layers is important for maintaining and improving the genetic

reserves of the same population. Candidate genes (CGs) are used to determine genes related to economic traits in chickens.

Molecular genetic techniques such as whole-genome re-sequencing (WGRS) can identify single nucleotide polymorphisms

(SNPs), insertion/deletion polymorphisms (indels), structural variations (SV), CNV, and simple sequence repeats (SSRs) and their

chromosomal regions in terms of QTL. Recently, the pan-genome (PG) has become one of the most important tools to study

genome variation and changes in important traits. The use of molecular markers and CGs can aid in evaluating the genetic

relationships between phenotype and genotype of broilers and layers.

Conclusions: This review introduces molecular genetic methods and new approaches to identify novel genes related to

important biological pathways and significant production and reproductive traits.
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1. Context

A significant portion of the global population,

particularly in developing countries, suffers from

protein deficiency. Animal protein plays a crucial role in

human nutrition, offering health benefits, cost

efficiency, and production efficacy. The quality and

quantity of animal protein should ideally meet certain

standards. Global statistics suggest that individuals

should ideally consume 25 - 30 grams of animal protein
per day. However, in Iran, the average daily consumption

is only 22 grams, which is 30% below the recommended
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intake. Chicken meat stands out for its low conversion

rate, minimal investment and space requirements, and

lower production costs compared to other sources of
animal protein. Consequently, the breeding of broiler

chickens has seen significant advancements to meet the
increasing demand for meat worldwide. Currently,

chicken meat production heavily relies on the

introduction of foreign strains. Given the widespread
popularity of chicken meat in the global diet, finding a

suitable substitute is challenging. The primary objective
of genetic projects is to identify sequence variations

associated with key economic traits in chickens (1). This

review explores the efficacy of Candidate Genes (CGs)

and various molecular markers in relation to economic

traits in chickens.

2. Evidence Acquisition

2.1. Use of Candidate Genes

Candidate Genes are among the principal molecular

methods used to identify specific genes linked to

economic traits in chickens. Numerous genes have been

identified with clear associations with production and

reproductive traits. For example, Zhao et al. found that

the Uncoupling Protein (UCP) gene reduces metabolic

efficiency in organisms (2). Similarly, Sharma et al.

observed an association between the UCP gene and

growth traits in commercial chickens (3).

Polymorphisms in the TGF-β3 gene were linked to

growth and body composition traits in broilers and

Leghorn chickens. Additionally, the insulin-like growth

factor 1 (IGF1) gene was identified as important for the

growth of various chicken strains (4). Liver FABP1 acts as

a key regulator of liver fat metabolism and participates

in beta-lipid oxidation. Other researchers have reported

that this gene can be considered an indicator of heat

tolerance (5). The BMPR-IB gene significantly affects egg

production in broiler lines, while the ODC gene plays a

crucial role in biological processes such as

differentiation and apoptosis, leading to accelerated

growth and egg production in chicken lines. Using CGs,

strains can be quickly segregated based on economic

traits during the selection process. However, a drawback

of this method is the lack of prior information on

physiological, biochemical, or functional pathways,

such as hormonal regulation and biochemical

metabolism pathways, which are essential for

understanding complex and quantitative traits. These

pathways are often limited or unavailable.

2.2. Application of Molecular Genetics in Chicken Breeding

In previous years, poultry breeding was primarily

based on phenotypic traits such as egg number, body

weight, and egg weight. Unfortunately, these traits are
influenced by environmental factors, posing challenges

to the enhancement of superior genetic stocks.
However, recent advancements in biochemical

techniques have enabled scientists to directly access the

genetic code, providing a means to select superior
organisms without the influence of environmental

factors. The consensus linkage map was initially
published in 2000 (6), marking a significant milestone

in this field. Subsequently, numerous efforts have been

dedicated to understanding quantitative trait loci (QTL)

in chickens.

Many economic traits in chickens, such as growth

rate and conversion ratio, are polygenic, influenced by

multiple physiological factors. This complexity makes it

challenging to identify a single marker associated with a

gene. These loci are referred to as quantitative traits.

Genetic markers linked to QTLs allow for direct selection

based on genotype (7). Microsatellite markers (SSRs)

have proven to be valuable tools for identifying markers

associated with QTL in various livestock species,

including chickens (8).

Simple sequence repeats (SSRs) exhibit high

polymorphism and can effectively distinguish between
closely related organisms. In chickens, SSRs are utilized

to map reference populations and facilitate quantitative

genetics and precision mapping approaches. For

instance, Gao YuShi et al. (9) demonstrated the

feasibility of SSR fingerprinting in analyzing genetic
relationships among Chinese domestic chicken breeds.

Additionally, the genetic diversity of domestic Turkish

chicken breeds was assessed using 10 SSR markers (4).

Simple sequence repeats are instrumental in designing

genetic diversity research and conservation strategies.

Currently, DNA fingerprinting technology is
extensively employed to assess genetic variation and

relatedness in diverse poultry and plant populations (10-

12). Incorporating DNA-based SSR markers that enable

sex identification into such analyses can provide highly

polymorphic patterns. However, to ensure accessibility,
rapidity, and affordability in genotyping individuals in

chicken line populations, markers with high resolution
are essential (13, 14).

Despite the utility of SSRs, a lack of these markers has

been observed on micro-chromosomes, which are likely

rich in coding sequences. Consequently, other genetic

markers are utilized at the chicken genome level to

investigate genetic relationships and assess diversity.
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2.3. Development of Markers Using Next Generation
Sequencing

The recent advancements in molecular genetics

through next-generation sequencing have created new

avenues for enhancing broiler and layer yields. Next-
generation sequencing offers valuable resources for

developing molecular markers and designing primers
for PCR and fingerprinting reactions. Utilizing markers

across the entire genome is crucial for identifying

potentially harmful homozygosity and preventing the
loss of genetic diversity in chickens. A previous study

employed Whole Genome Sequencing (WGS) on 54
native and commercial strains (15), revealing higher

genetic diversity in native strains (Lari, Khazak, and
Marandi) compared to the commercial Leghorn line.

Another investigation employed WGS on 185 broiler

chickens in China (6) to determine genetic diversity and
population structure, confirming 24 introgressions of

commercial meat breeds (16). Whole Genome
Sequencing proves to be a cost-effective tool for

generating large datasets to accurately estimate

phylogenetic relationships between populations. In this
study, three types of traits were investigated using WGS:

Qualitative, quantitative, and threshold traits (see
Figure 1).

2.4. Structural Variants

Structural Variants (SVs) are significant determinants
of animal phenotypic diversity and play a crucial role in

genetic diversity in livestock. Structural Variants
encompass a wide range of genomic modifications,

categorized into intervals: < 50bp, 50bp to 1Kb, 1 - 10Kb,

10 - 100Kb, > 100Kb, or Unknown (see Figure 2). Most SVs
are associated with body size and weight, plumage

coloration, and pigmentation in chickens (42). These
mutations are grouped into two classes: Unbalanced

modifications, which alter DNA content, and balanced

modifications, such as inversions and inter or intra-
chromosomal translocations, which influence the

orientation and/or location of DNA. Recently, SV markers
have been widely employed to determine genetic

diversity and phenotypic differences in chickens.

2.5. Indels

Indels represent the primary source of molecular-

level changes and are extensively utilized as molecular
markers in the study of economic traits in livestock.

These di-allelic markers are distributed throughout the

chicken genome. Yan et al. (43) identified two indels
associated with economic traits, revealing that these

indels emerged during a rigorous selection process.

Some functionally significant genes were found to be

shared, suggesting that merging them could help
elucidate the relationship between genes and traits.

Chang et al. (44) identified the C2CD3 gene as the
causative gene of the talpid2 mutation in chickens.

Furthermore, their study shed light on the distribution

of indels in the chicken genome and their potential
impact on gene function, deepening our understanding

of chicken genome diversity. Despite the sequencing of
the chicken genome, some micro-chromosomes exhibit

lower quality. Previous reports identified 158.98 MB of

new sequences, including 1 335 protein-coding genes not
found in the GRCg6a reference genome, through

chicken Pan-genome (PG) construction. These genes
play crucial roles in various biological processes, such as

immune pathways. Li et al. (45) conducted PG analysis of
20 assembled chicken genomes and identified 1335 new

genes involved in fatty acid metabolism, steroid

synthesis, and immune response.

2.6. Copy Number Variations

Utilizing whole-genome information is essential for
understanding and maintaining the genetic foundation

of commercial chickens. Several studies have employed

WGS in chickens, sheep, ducks, and quails. Almeida et al.
(46) conducted WGS of 28 broilers, identifying

approximately 9 914 904 SNPs and 793 603 indels.
Similarly, Huang et al. (24) utilized various markers,

including SNPs, SVs, copy number variations, and indels,

to explore chicken genetic diversity. Copy Number
Variations markers are also valuable for investigating

complex diseases and economically important traits.
Genotyping of 554 chickens from Xinghua and White

Recessive Rock breeds revealed 1 875 CNVs, with

approximately 109 of them being novel (47). In a study
on skeletal muscle growth within the same population,

polymorphic CNVs overlapping with the SOX6 gene
were positively correlated with SOX6 gene expression.

Using a complete F2 chicken population (n = 554)

derived from a cross between Xinghua and White
Recessive Rock chickens, researchers identified a total of

1875 CNVs, averaging 3.42 per individual.

2.7. Presence/Absence Variation

Presence/Absence Variations (PAV) are present in one

genome but entirely absent in another.
Presence/Absence Variation polymorphisms may arise

from the insertion or deletion of transposable elements,
simple sequence replication slippage, or unequal

crossover events (48). These polymorphisms are
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Figure 1. Association of identified genes with chicken traits through Whole Genome Sequencing (17-41).

Figure 2. Graphical representation of structural variants (SVs)

widespread among different species and have

significant evolutionary consequences.

2.8. Pan-Genomics

Current genotyping methods, such as WGS, follow

the core strategy of aligning short reads to a reference

genome derived from a single individual. This approach

typically results in compressed haploid representations

of diploid genomes or chimeric haploblocks due to

allele mixing. While these methods have been successful

in identifying SNPs and indels in populations, they can

suffer from reference bias and may underestimate

various types of structural variants (49). The use of
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large-scale long-read re-sequencing has the potential to

mitigate some of these limitations; however, it comes

with high costs and lower accuracy compared to short

reads, particularly in chicken genomics. For example,

while there are over 40 000 short read experiments in

the Sequence Read Archive (SRA), there are fewer than

500 long read experiments in databases. Consequently,

the widespread use of long reads for re-sequencing

surveys in the near future seems unlikely. Previous

studies have attempted to address these challenges by

improving algorithms for SV detection using

inexpensive short read data. However, these methods

often suffer from high false positive and false negative

rates (2, 47). To overcome these limitations, the use of PG

as a reference has been developed (50, 51). Pan-genome

contains sequences common to all individuals, along

with information about the position, alleles, and

frequencies of each variant site within the input

assemblies. The PG of domestic chickens was first

published in 2020. By utilizing PG, a survey of 268 WGS

data in chickens identified 15 205 (76.32%) core genes

and 4 738 variable genes. The IGF2BP1 promoter region

on chromosome 27 was found to be primarily associated

with chicken growth traits. Another study reported the

detection of 159 Mb of new sequences, including 335

protein-coding genes and 3 011 long noncoding RNAs,

using the PG method (45). These insights into the

genetic structure of diverse broilers and layers have

been facilitated by chicken PG, revealing relationships

between phenotypes and genes.

3. Conclusions

In this article, we have discussed molecular genetic

tools for detecting economic traits in chickens. We
provided a summary of CGs and molecular markers

related to economic traits. Based on our findings, pan-

genomics emerges as a novel approach to
understanding the relationships between genetics and

phenotypes in chickens. Furthermore, the pan-
genomics technique has identified new genes related to

important biological pathways and has improved the

quality of the reference genome.
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