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Abstract

Background: Cisplatin (CPN) is widely used for the management of various malignant tumors.

Objectives: This study investigated the effects of Thymoquinone (TQN) on the expression of the p62 gene in CPN-induced

testicular damage in mice.

Methods: Histomorphometry, testis injury scores, expression of p62, and protein levels of LC3-II were assessed.

Results: Cisplatin induced histological changes, increased p62 expression (P < 0.01), and reduced LC3-II levels (P < 0.001).

Thymoquinone pretreatment decreased p62 expression while increasing LC3-II protein levels. Thymoquinone significantly

reversed the testicular injury scores and improved histomorphometric parameters.

Conclusions: The results indicate that TQN enhances autophagy and improves testicular tissue in CPN-intoxicated mice.
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1. Background

Cisplatin (CPN) is widely used for the management of
various malignant tumors. However, CPN impairs the

male reproductive system and can cause infertility in
men undergoing chemotherapy (1-3). Cisplatin leads to

impaired steroidogenesis, germ cell apoptosis, and

changes in testicular histology (1, 4, 5). Previous studies
have shown that CPN disrupts autophagy in the testes

(6, 7).

Autophagy-related genes are highly expressed in

spermatozoa, suggesting that autophagy regulates
sperm quality. LC3, a biomarker of autophagy, is

activated during sperm capacitation and the acrosome
reaction (8-10).

P62 is an autophagy receptor that suppresses
autophagy. This multifunctional protein integrates

death and survival signals, modulating apoptosis and

autophagy to maintain cellular homeostasis (11).

Black seed (Nigella sativa) is widely used in

traditional medicine in Iran. Thymoquinone (TQN),
derived from Nigella sativa, has shown numerous

pharmacological and biological effects (12-15).

Thymoquinone has been found to enhance

spermatogenesis and improve testicular damage caused
by ischemia-reperfusion injury (16) and testicular

torsion (17). Moreover, TQN protects against testicular
damage induced by bleomycin (18), cyclophosphamide,

and methotrexate through anti-inflammatory, anti-

apoptotic, and antioxidant mechanisms (18-20).

2. Objectives

Given the important role of autophagy in

spermatogenesis and spermiogenesis, this study aimed
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to investigate the effects of TQN and CPN on autophagy
in mouse testicular tissue by evaluating the expression

of p62 and LC3-II.

3. Methods

3.1. Animals

Thirty-two NMRI mice (6 - 8 weeks old, 25 - 30 g) were
kept under standard conditions (12-hour dark/light

cycles, 20 - 25°C). The animals were divided into the

following groups:

- Control: Intraperitoneal (i.p.) injection of normal
saline for 35 days.

- CPN: i.p. injection of CPN (7 mg/kg) on days 30 - 35
(21).

- TQN10: i.p. injection of TQN (10 mg/kg) for 35 days
(22).

- TQN + CPN: i.p. injection of TQN for 35 days and CPN

on days 30 - 35.

At the end of the experiment, the right testicles were

preserved in Bouin's fixative for histomorphometric
assessment, and the left testicles were stored at -70°C for

evaluating autophagy.

3.2. Histology

After tissue processing, the slides were prepared and

stained with Hematoxylin and Eosin. Two researchers,
blinded to group allocation, independently analyzed

the slides. Seminiferous tubule diameters and germinal

epithelium height were calculated using Motic software.
One hundred tubules per animal were evaluated.

Testicular injury was scored using the Cosentino

grading system (23), which grades testicular damage

from I to IV:

- Grade I: Normal testis tissue.

- Grade II: Closely packed seminiferous tubules with

non-cohesive germinal cells.

- Grade III: Sloughing and shrinking of the

seminiferous epithelium.

- Grade IV: Closely packed seminiferous tubules with
coagulated necrosis.

2.3. Real-time PCR

The RNA from the testicles was isolated using a
RNeasy Mini kit (Qiagen) and converted to cDNA. A PCR

reaction (25 μL) containing cDNA, primers (Table 1),
DEPC water, and SYBR Green (Qiagen) was prepared. The

relative expression of p62 was normalized to GAPDH

using REST software.

2.4. Protein Levels of LC3-II

The levels of LC3-II were measured in the culture

supernatants using a commercially available ELISA kit
(Abcam, USA) according to the manufacturer's

instructions. Both primary and secondary antibodies

were added to the tissue lysates. The protein levels were
quantified using an ELISA reader (BioTek, USA) by
measuring the absorbance at 450 nm.

2.5. Statistical Analysis

A one-way analysis of variance (ANOVA) was

performed using SPSS (version 21.0), followed by a post
hoc test (LSD or Kruskal-Wallis). A P-value of < 0.05 was

considered statistically significant.

4. Results

4.1. Histology

The mean Cosentino score in the CPN-treated mice

was significantly reduced compared to the control
group. Thymoquinone treatment was able to reverse the

mean Cosentino score (Table 2).

There were no significant changes in the

morphometric parameters in the TQN10 group.
However, in the CPN group, morphometric parameters

were significantly decreased compared to the control (P
< 0.01). In the TQN + CPN group, morphometric

parameters were significantly higher than those in the

CPN group (P < 0.05) (Figure 1).

4.2. Autophagy Assessments

There were no significant changes in p62 gene
expression or LC3-II protein levels in the TQN10 group. In

the CPN group, p62 expression was significantly
upregulated, while LC3-II protein levels were
downregulated (P < 0.01). In the TQN + CPN group, LC3-II

levels were markedly increased compared to the CPN-
treated mice, and p62 expression was significantly
reduced compared to the CPN group (Figures 2 and 3).

5. Discussion

In this study, CPN induced impaired testicular tissue,
increased expression of the p62 gene, and reduced

expression of the LC3-II protein. The administration of
TQN significantly reversed these effects.
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Table 1. Primer Sequences

Genes Forward Reverse

p62 GCTCAGGAGGAGACGATGAC AGAAACCCATGGACAGCATC

GAPDH GCTGGACATTGGACTTCCTC ACCACTGTGACCTGCTCCA

Table 2. Histological Assessment and Mean Cosentino Score of Right Testicles a

Groups Grade I Grade II Grade III Grade IV Mean ± SD

Control (n = 8) 8 - - - 1.0 ± 0.0

CPN (n = 8) - - 5 3 3. 8 ± 0.4**

CPN+TQN (n = 8) 1 3 2 2 1.6 ± 0.2*#

TQN10 (n = 8) 8 - - - 1.0 ± 0.0

Abbreviations: CPN, cisplatin; TQN, thymoquinone.

a * and # indicate a comparison to the control and CPN.

Figure 1. Morphmetric parameters (mean ± SD; n = 8). * and # indicate a comparison to the control and cisplatin (CPN).

The decrease in germinal epithelium height and

seminiferous tubule diameter indicates the toxic impact
of CPN. The increased Cosentino score further confirms

the testicular toxicity caused by CPN.

The decline in morphometric parameters and the

rise in the Cosentino score may suggest an apoptotic
effect of CPN. A previous study showed that CPN reduced

sperm quality, decreased the diameter of seminiferous

tubules, and induced apoptosis in rats (24). In our
earlier research, CPN increased Bax (a pro-apoptotic

factor) in the mouse testis (25). The observed
improvement in histological changes suggests that TQN

protects against CPN-induced testicular damage. In

another study, TQN ameliorated histological changes in

testicular tissue following ischemia (17).

The improvement in histomorphometric parameters

and reduction in the Cosentino score in this study may
indicate the anti-apoptotic effects of TQN. Anti-apoptotic

effects of TQN on damaged testes have been reported
previously (26-28). Thymoquinone was shown to reduce

apoptosis in the testicles of doxorubicin-intoxicated

animals (29). In another study, TQN significantly
decreased apoptosis in varicocele-induced rats (26).

In this study, the increased fold change of the p62

gene and the reduced protein level of LC3-II suggest that

CPN suppresses autophagy. Therefore, CPN may impair
spermatogenesis by inhibiting autophagy.
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Figure 2. Expression of p62 gene (mean ± SD; n = 4). * and # indicate a comparison to the control and cisplatin (CPN).

Figure 3. Protein level of LC3-II (mean ± SD; n = 4). * and # indicate a comparison to the control and cisplatin (CPN).

In our study, TQN pretreatment elevated LC3-II

protein levels while decreasing the expression of p62 in

the CPN group. These findings suggest that TQN
promotes autophagy in CPN-induced testicular damage.

Liao et al. showed that CPN activated autophagy in renal

damaged tissue through a marked increase in p62 (30).

Interestingly, we found that CPN-induced testicular

damage was associated with autophagy inhibition. In
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contrast, TQN decreased p62 expression, increased LC3-II

protein levels, and improved testicular histology.

Liu et al. demonstrated that TQN reduces

doxorubicin-induced apoptosis in H9c2 cardiomyocytes
by inducing autophagy (31). In another study, TQN

induced autophagy in renal cancer cells (32).

Additionally, TQN attenuates lipid accumulation by
activating autophagy in nonalcoholic fatty liver disease

(33).

5.1. Conclusions

Our results demonstrated that TQN activated

autophagy by suppressing p62 expression. These data
suggest that TQN could be a promising adjunct therapy
against CPN-induced testicular toxicity in future
anticancer clinical practice.
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