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Abstract

Background: The peptide HL-10, derived from the venom of Hemiscorpius lepturus, has several biological functions, notably its

ability to inhibit cancer growth.

Objectives: This research aimed to evaluate the tumor-suppressing properties of the HL-10 peptide in SiHa cancer cells,

investigating its effects in both in vitro and in vivo models.

Methods: The study assessed cytotoxicity using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay,

analyzed gene expression through real-time PCR, and measured caspase activity via ELISA to gain insights into the peptide's

mechanisms of action. For in vivo experiments, BALB/c mice bearing SiHa cervical cancer were used. The ELISA technique was

employed to evaluate the activity levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) enzymes in

serum, as well as the concentrations of intra-tumoral cytokines, including TNF-α, IFN-γ, IL-1β, IL-4, and IL-10.

Results: Our results demonstrated a significant (P < 0.05) dose- and time-dependent decrease in the viability percentage of

SiHa cancer cells. The analysis revealed a marked upregulation in the expression of p53, cyt c, bax, caspase-3, and caspase-9 genes

as the peptide concentration was elevated from 5 to 10 μM. In contrast, there was a significant decrease (P < 0.05) in bcl-2 gene

expression, while caspase-8 gene expression showed no significant change (P > 0.05). The analysis of caspase activity indicated a

significant rise (P < 0.05) in the activities of caspase-9 and caspase-3 in cancer cells exposed to the HL-10 peptide, while the

activity of caspase-8 remained unchanged. The findings from in vivo experiments conducted on cancer mice demonstrated a

substantial reduction in tumor volume over time in cancer mice treated with HL-10 peptide plus carboplatin (5 mg/kg)

compared to cancer mice that were not treated (P < 0.05). In comparison to untreated cancer mice, the tumor

microenvironment of cancer mice treated with HL-10 peptide and carboplatin exhibited a substantial increase in IL-1β, IFN-γ,

and TNF-α levels. The levels of IL-4 and IL-10 in the tumor were significantly reduced (P < 0.05), indicating a substantial decrease

in these cytokines. This reduction suggests potential modulation of the tumor microenvironment in response to the treatment.

Conclusions: In conclusion, this research showed that the HL-10 peptide effectively initiates apoptosis and inhibits the

proliferation of SiHa cervical cancer cells through the activation of the mitochondrial signaling cascade. Additionally, the HL-10

peptide is believed to contribute to cancer immunotherapy by modulating the immune system.
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1. Background

Scorpions, which have existed for over 400 million

years, produce venom rich in bioactive compounds,
including peptides with diverse therapeutic potential

(1). These peptides, categorized into disulfide-bridged
and non-disulfide-bridged types, exhibit activities such

as ion channel modulation and immune regulation (2).

Scorpion venoms have been extensively studied for their
anti-cancer properties, with peptides demonstrating

apoptosis induction, metastasis inhibition, and
immune response modulation (3). For instance,

peptides such as neopaladins from Tityus discrepans
selectively induce apoptosis in SKBR3 breast cancer cells

through mechanisms involving FasL, MAP kinases, and

p53 (3, 4). The immune system plays a crucial role in
tumor suppression, with strategies like immunotherapy

targeting residual cancer cells by enhancing immune

responses (5, 6). Scorpion venom peptides have shown

the ability to modulate immune responses by
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stimulating cytokine and chemokine production,

recruiting neutrophils and macrophages, and

enhancing phagocytosis (7-9). Specific peptides, such as
parabutoporin, activate G-protein signaling pathways,

promoting chemotaxis and inflammation (10). Similarly,
venom from Tityus serrulatus increases cytokine levels in

macrophages, highlighting its immunomodulatory

effects (11, 12).

Among scorpion venom peptides, the HL-7 and HL-10

peptides from Hemiscorpius lepturus have demonstrated

apoptosis-inducing properties, particularly in HeLa

cells, through the intrinsic mitochondrial pathway (13-

15). These peptides upregulate pro-apoptotic genes (e.g.,

bax, Cyt c, p53) while downregulating anti-apoptotic

genes (e.g., bcl-2), thereby initiating programmed cell

death (15). However, the specific effects of HL-10 on SiHa

cervical cancer cells, particularly its influence on

apoptosis and cytokine regulation, remain unexplored.

Cervical cancer is a significant global health issue, with

SiHa cells serving as a model for studying HPV-related

malignancies. Current therapies like chemotherapy

have limitations, including toxicity and resistance,

highlighting the need for novel therapeutic agents (16).

This study investigates the anti-cancer potential of the

HL-10 peptide in SiHa cervical cancer cells, focusing on

its ability to induce apoptosis and modulate immune

responses.

2. Objectives

By assessing gene expression, caspase activity, and

cytokine levels, this research aims to elucidate the

mechanisms underlying HL-10's therapeutic effects.

3. Methods

3.1. Cell Culture Process

In this experiment, the SiHa cervical cancer cell line

was acquired from the Pasteur Institute Cell Bank of

Tehran, Iran. The cells were cultured in RPMI-1640

medium, supplemented with 1% penicillin-streptomycin
and 10% fetal bovine serum (FBS). They were then

incubated at 37°C in a controlled environment with 5%

CO2 and 95% humidity. The culture medium was

changed every 48 hours, and the cells were routinely

passaged to maintain growth until they reached

approximately 70% confluence.

3.2. Preparation of HL-10 Peptide and Carboplatin

The HL-10 peptide was synthesized by Custom

Peptide Factory, China, ensuring a purity of > 95%. The

peptide was dissolved in sterile phosphate-buffered

saline (PBS). The solution was aliquoted into sterile

microcentrifuge tubes and stored at -20°C to prevent

degradation. Prior to use, the stock solution was thawed
at room temperature and diluted to the desired

concentrations using PBS.

Carboplatin (CAS 41575-94-4, Merck) was obtained as a

powder and dissolved in sterile PBS. The solution was

filter-sterilized using a 0.22 μm syringe filter, aliquoted

into sterile tubes, and stored at 4°C. The solution was

protected from light by wrapping the tubes in

aluminum foil. Fresh working dilutions of carboplatin

were prepared in PBS immediately before each

experiment to ensure stability.

3.3. (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium
Bromide Assay

First, the cells were cultured at a density of 5 × 106

cells in a 24-well plate. Approximately two hours after

cultivation, SiHa cells were exposed to the HL-10 peptide

at doses ranging from 0 to 25 μM, and to carboplatin at

concentrations ranging from 0 to 70 μM, for periods of

24 and 48 hours. Following the treatment, each well

received 150 μL of DMSO (dimethyl sulfoxide) to dissolve

the formazan crystals. The plates were then incubated

with 100 μL of (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) reagent for 4

hours. After incubation, the absorbance of the resulting

formazan solution, indicative of viable cells, was

measured at 540 nm using an ELISA reader (BioTek

Epoch 2, Germany). The accompanying software (Gen5

Data Analysis Software) was used to record and analyze

the optical density (OD) values. The percentage of cell

viability was calculated relative to untreated control

cells. Each treatment was performed in triplicate to

ensure reproducibility (15).

3.4. RNA Extraction, cDNA Synthesis, and PCR

A total of 4 × 106 SiHa cells were exposed to the HL-10
peptide at 5 and 10 µM for 48 hours. For cDNA synthesis,

3 µL of total RNA, 1 µL of dT oligo primer, and 10 µL of
deionized distilled water were incubated at 65°C for 5

minutes. Subsequently, 1 µL of reverse transcriptase

enzyme, 2 µL of 10 mM dNTP, and 6 µL of 5X PCR buffer
were added. The mixture was incubated at 25°C for 10

minutes, 50°C for 60 minutes, and 70°C for 10 minutes.
RT-PCR was performed according to Parstous Company’s

protocol. The reaction mixture (29 µL) contained 3 µL of

10X buffer, 0.2 µL of Taq DNA polymerase, 1 µL of cDNA,
0.5 µL of dNTP, 2 µL of primers, 1 µL of magnesium

chloride, and 21.3 µL of water. The thermocycler was set
for 30 cycles: 65°C for 30 seconds, 56°C for 30 seconds,
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and 72°C for 30 seconds. Real-time PCR primers for

target genes and GAPDH were used, with a 20 µL mixture

including SYBR Green and ROX dye, as detailed in Table 1.

Gene expression was assessed using real-time PCR.

Table 1. The Primer Sequences Used in This Study

Genes Primer Sequences: 5′ → 3′

Bax
F-CCTGTGCACCAAGGTGCCGGAACT

R-CCACCCTGGTCTTGGATCCAGCCC

GAPDH
F-AGCCAAAAGGGTCATCATC

R-TAAGCAGTTGGTGGTGCAGG

Caspase 8
F-AAGGGAGGCAAGCACAAGACTG

R-CTCCATCAGTGTATCCTCTCCC

Caspase 3
F-TAAGTTCTGAGTGTGACCGAGA

R-GCTCTGTCTGTAGGGAGGTAGG

Caspase 9
F-CGACATGATCGAGGATATTCAG

R-TGCCTCCCTCGAGTCTCA

Bcl-2
F-GATGTGATGCCTCTGCGAAG

R-CATGCTGATGTCTCTGGAATCT

Cytochrome c
F-AAGGGAGGCAAGCACAAGACTG

R-CTCCATCAGTGTATCCTCTCCC

P53
F-AGTCTAGAGCCACCGTCCA

R-TCTGACGCACACCTATTGCAAGC

3.5. Measuring the Activity of Caspases 9, 8, and 3

To measure the activity of caspases 9, 8, and 3, the

Abcam colorimetric kit (Abcam, Cambridge, UK) was

used. A total of 5 × 106 cells were treated with HL-10

peptide at concentrations of 5 μM and 10 μM for 48

hours. An untreated control group was also included for

comparative analysis. After treatment, the cells were

lysed in 50 μL of cell lysis buffer on ice for 30 minutes.

The lysates were then centrifuged at 1000 rpm for 15

minutes to remove cellular debris. Protein

concentrations in the assay were adjusted to 5 - 200 μg

per 50 μL of buffer. To each well, 50 μL of a DTT/reaction

buffer X2 mixture was added, followed by 5 μL of the

caspase substrate specific to the caspase being studied.

The plates were incubated at 37°C for 1 - 2 hours.

Absorbance was then measured at 405 nm using an

ELISA reader.

3.6. Animal Study

All experiments were conducted on female BALB/c

mice (obtained from the Pasteur Institute, Karaj), aged 4

- 5 weeks and weighing between 12 and 17 grams. All in

vivo procedures were approved by the Ethics Committee
of Zabol University (IR.UOZ.REC.1401.012). The mice were

housed under controlled conditions, including

regulated light, temperature, and humidity, at the

Animal Center of the Zabol University Faculty of

Veterinary Medicine.

3.7. Induction of a Cervical Cancer Model

To induce a tumor model in mice, the SiHa cervical

cancer cell line was used, and 100 µL of cell suspension

in saline (1 × 106 cells) was injected subcutaneously into

the right flank area of each mouse (16). After 10 days, 24
mice were divided into four groups (n = 6): A negative

control (NC) group (healthy mice that did not undergo

surgery and received only normal saline); a sham group

(cancer-bearing mice that received only normal saline);

a positive control (PC) group (cancer-bearing mice that
received carboplatin at a dose of 5 mg/kg); and a

treatment group (HL-10) (cancer-bearing mice that

received the HL-10 peptide at the same dose as the

positive control group). All treatments were

administered intraperitoneally five times, every five
days. Additionally, tumor volume was measured every

five days in two dimensions—length and width—using a

caliper, and the tumor volume was calculated using the

formula (16):

V = length × width2 × 0.5

3.8. Tumor Measurement

For tumor measurements, the size of the tumors was

assessed using a caliper to measure the longest

diameter (length) and the shortest diameter (width).

Tumor volume was calculated using the formula:

Volume = (length × width2)/2

Tumor growth was monitored at regular intervals,

typically every 2 - 3 days, and measurements were

recorded throughout the duration of the study.

Significant changes in tumor volume or appearance

were noted as indicators of treatment efficacy or disease

progression.

3.9. Separation of Serum and Measurement of Aspartate
Aminotransferase and Alanine Aminotransferase Enzyme
Activity

Anesthesia was induced in the mice by

intraperitoneal injection of a mixture of xylazine (10

mg/kg) and ketamine (100 mg/kg). After opening the

chest with the aid of scissors and sterile forceps, blood

was drawn from the heart using an insulin syringe. The

collected blood was transferred to a microtube, and the

sample was centrifuged for 5 minutes at 15,000 rpm. The

activity levels of serum aspartate aminotransferase (AST)

and alanine aminotransferase (ALT) enzymes were

measured using a spectrophotometer (BioTek
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Instruments, Winooski, VT, USA) at a wavelength of 540

nm, with the activity expressed in IU/L units.

3.10. Preparation of Tumor Tissue and Measurement of IL-4,

TNF-α, IL-1β, IL-6, and IFN-γ

The tissue sample, weighing 100 mg, was

homogenized in 1 mL of a solution formulated with

0.05% Tween 20, 0.05% bovine serum albumin (BSA),

0.0017% phenylmethylsulfonyl fluoride (PMSF), 0.005%

benzethonium chloride, 0.0037% ethylenediamine

tetraacetic acid (EDTA), and 2 µL of aprotinin per 100 mL.

This solution was prepared in PBS at a physiological pH.

After centrifuging the homogenate at 10,000 rpm for 10

minutes at 4°C, 50 µL of the resulting supernatant from

each tissue sample was collected. The supernatant was

then used to measure cytokine concentrations,

specifically IL-4, IL-6, TNF-α, IL-1β, and INF-γ. Cytokine

levels were determined using an ELISA kit, following the

manufacturer’s protocol (R&D Systems, Minneapolis,

MN, USA) (16).

3.11. Statistical Analysis

The analysis of the obtained values was performed

using GraphPad Prism software. The differences

between all groups in the study were analyzed using

one-way analysis of variance (one-way ANOVA), followed

by Tukey's post hoc test for multiple comparisons.

Graphs were also generated using the same software. A

significance level of 0.05 was applied to determine

statistical significance.

4. Results

4.1. Cell Viability Percentage and IC50 Calculation

The MTT assay results indicated an inverse

correlation between the concentration of the HL-10

peptide and the viability of SiHa cancer cells.

Specifically, higher peptide concentrations led to a

substantial reduction in cell viability, reflecting an

inverse relationship between the peptide dose and the

percentage of viable cells. This resulted in a significant

decrease in cell viability with increasing concentrations

of the HL-10 peptide (P < 0.05). The IC50 value for the HL-

10 peptide was 13.27 μM at 24 hours and 7.81 μM at 48

hours, which was lower than the IC50 values observed

for carboplatin (Figure 1).

4.2. Expression of Bax, Bcl-2, Cytochrome c, P53, and caspase-
3, -9, and 8 Genes

The expression levels of bax, cytochrome c (cyt c),

p53, and caspases 3 and 9 genes in SiHa cancer cells

increased significantly with higher concentrations of

HL-10 peptide (P < 0.05). In contrast, treatment with the

HL-10 peptide resulted in a significant reduction in bcl-2

gene expression (P < 0.05). However, there was no

significant difference (P > 0.05) in the expression of the

caspase-8 gene between the HL-10 peptide-treated cancer

cells and the untreated controls (Figure 2).

4.3. Tumor Volume Measurement

After injecting SiHa cell suspensions into BALB/c mice

and allowing 10 days for tumor development, two

groups of tumor xenograft model mice were treated:

The PC group and the HL-10 peptide group. Tumor

volume measurements in the sham group

demonstrated a progressive increase over time (Figure

3). Treatment with carboplatin and HL-10 peptide led to

a significant reduction in tumor volume compared to

the sham group (P < 0.05). However, no significant

difference in tumor volume was observed between the

HL-10 and PC groups.

4.4. The Activity of AST and ALT Enzymes

The obtained findings showed that the serum activity

of ALT and AST enzymes in the SiHa tumor xenograft

mice model treated with carboplatin (PC) increased

significantly (P < 0.05) compared to untreated cancer

mice (sham). In contrast, the activity levels of ALT and

AST enzymes in the HL-10 group did not exhibit a

significant increase (P > 0.05) when compared to the

Sham group (Figure 4).

4.5. Inflammatory Cytokines

According to the obtained results, treatment with

carboplatin and the HL-10 peptide in SiHa cancer-

bearing mice led to a substantial increase in the levels of

IFN-γ, TNF-α, and IL-1β. Conversely, the levels of IL-4 and
IL-10 were significantly reduced in cancer mice treated

with carboplatin and HL-10 peptide compared to

untreated cancer mice (P < 0.05). These findings

indicate that carboplatin and HL-10 peptide treatments

significantly suppressed the tumor tissue
concentrations of IL-4 and IL-10 (Figure 5).

5. Discussion

The HL-10 peptide demonstrated a significant

cytotoxic effect against SiHa cancer cells compared to
the standard drug, carboplatin. Notably, the HL-10

peptide exhibited greater cytotoxicity than carboplatin.
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Figure 1. Dose-response curves depicting the effect of varying concentrations of HL-10 peptide (panel A) and carboplatin (panel B) on SiHa cancer cells at 24 and 48 hours.

Figure 2. The expression levels of bax, cyt c, p53, bcl-2, and caspases 3, 8, and 9 genes in SiHa cancer cells exposed to the HL-10 peptide (5 and 10 μM) were compared with those in
untreated control cells. Notably, bcl-2 gene expression decreased. Significant differences in gene expression compared to the untreated control are indicated by **** (P < 0.0001).
In contrast to the untreated sample, the caspase-8 gene expression did not exhibit a significant elevation with peptide treatment (P > 0.05).

The peptides TsAP-1 and TsAP-2, which lack disulfide

bridges and are extracted from the Brazilian scorpion

Tityus serrulatus, have been proven to possess both anti-

cancer and anti-microbial activities. Synthetic analogs

of these peptides exhibit anti-cancer activity against

various cell lines, including H157 (oral cancer), H838

(lung cancer), PC3 (prostate cancer), U251-MG (glioma

cancer), and MCF-7 (breast cancer) (17).

The mechanisms of action of anti-cancer peptides

may include plasma membrane destruction,

mitochondrial membrane destruction (18), apoptosis,

necrosis (19), indirect immunity (20), involvement of
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Figure 3. Ten days after the induction of the cancer model, the mice were subjected to treatments. The experimental groups included sham (cancer mice without treatment),
positive control (PC) (cancer mice treated with carboplatin at 5 mg/kg), and HL-10 (cancer mice treated with HL-10 peptide at 5 mg/kg). The symbol #### denotes a significant
difference between the tumor volume values of the HL-10 and sham groups (P-value = 0.0001).

Figure 4. Carboplatin and HL-10 peptide treatments influenced the levels of inflammatory markers, including IFN-γ, IL-1β, TNF-α, IL-4, and IL-6 in tumor tissues. The
experimental groups were as follows: Sham (mice with cancer tumors without treatment), [positive control (PC): Mice bearing cancerous tissues treated with carboplatin at a
dose of 5 mg/kg], and HL-10 (mice bearing cancer cells treated with 5 mg/kg HL-10 peptide). Independent values (ng/g) are presented as means ± standard deviation from six
experiments, illustrated in dot plots. **** P < 0.0001.

membrane receptors (21, 22), anti-angiogenic effects,

and the inhibition of DNA synthesis (23). Wang et al.

showed that the HNP-1 peptide (human neutrophil

defensins) elicited an immune response against tumors

by inducing and utilizing dendritic cells in breast and

colon cancer models (24). Additionally, it has been

reported that the cell-permeable peptide CR1166,

through protein-protein interaction and inhibition of
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Figure 5. Carboplatin and HL-10 peptide treatments altered the levels of IL-4, IFN-γ, TNF-α, IL-1β, and IL-6 in tumor tissues. The experimental groups included sham (mice with
cancer tumors without treatment), [positive control (PC): Mice with cancer tumors treated with 5 mg/kg carboplatin], and HL-10 (mice with cancer tumors treated with 5 mg/kg
HL-10 peptide). Independent values (ng/g) are presented as means ± standard deviation from six experiments and are depicted in dot plots. **** P < 0.0001.

GIPC, decreases proliferation, increases cytotoxicity, and

induces apoptosis in pancreatic and breast tumors (22).

The paradoxin peptide, extracted from marine fish,

promotes apoptosis via caspase-3 activation.

Additionally, it disturbs the cell cycle at the G2/M phase,

which results in the inhibition of cell proliferation in

SCC-4 cells (23). The melittin peptide, extracted from bee

venom, induces apoptosis through activating several

pathways, including protein kinase Ca2+/calmodulin,

transforming growth factor β-activated kinase, and the

JNK/P38 MAPK pathway (24).

This study focused on evaluating the expression of

several key genes involved in programmed cell death,
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including bcl-2, bax, p53, cyt c, and caspase-3, -9, and -8,

in SiHa cancer cells following treatment with the HL-10

peptide. The expression levels of cyt c, bax, and p53, as

well as caspases 3 and 9, increased significantly with

higher concentrations of the HL-10 peptide. In contrast,

a notable decrease was observed in the expression of the

bcl-2 gene.

Moreover, the caspase-8 gene expression remained

relatively unchanged in cells exposed to the HL-10

peptide. Kong et al. analyzed the impact of the melittin

peptide on the growth rate of SGC-7901 cancer cells

using various methods. Their results demonstrated a

dose- and time-dependent reduction in cancer cell

growth and survival. Additionally, morphological

changes in SGC-7901 cells treated with melittin

indicated the induction of apoptosis. The activity of

caspase-3 in cancer cells treated with melittin was

significantly higher than in the control, but the activity

of caspase-3 in the non-tumor cell line L-O2 was not

affected. The results demonstrated that melittin induces

apoptosis in SGC-7901 cancer cells via mitochondrial

pathways, aligning with the findings of Kong et al. (25).

Furthermore, Tu et al. reported that melittin can induce

apoptosis in melanoma cells through the calcium

signaling pathway (26). It was also shown that the

melittin peptide induces death receptors and inhibits

the JAK2/STAT3 pathway in ovarian cancer cells (27).

In the present study, caspase-8 gene expression was

not affected, while the growth of SiHa cancer cells was

inhibited by the HL-10 peptide. Therefore, the HL-10

peptide stimulated apoptosis through the

mitochondrial intrinsic pathway and did not affect the

FAS/FASL extrinsic pathway.

After 10 days of injecting SiHa cells into BALB/c mice,

two groups of cancer mice (PC and HL-10) were treated.

Treatment of cancer mice with carboplatin and HL-10

peptide caused a significant decline in tumor volume in

comparison to the group of cancer mice without

treatment (P < 0.05). The gonearrestide peptide has

been identified as an anti-cancer peptide extracted from

scorpion venom. This peptide exhibited no toxicity

towards red blood cells and effectively reduced solid

tumor volume by arresting the cell cycle in the G1 phase.

It also increased the expression of cell cycle regulators,

including P27 and P21, in a concentration-dependent

manner (28).

Aspartate aminotransferase and ALT enzyme

concentrations were measured in serum to evaluate the

peptide's influence on liver function in the current

research. Our findings indicated a marked elevation in

serum ALT and AST levels in the carboplatin group. In

contrast, the levels of these enzymes in the HL-10 group

of the tumor xenograft model did not exhibit a

substantial elevation in comparison to untreated cancer

mice. Therefore, our data indicate that treatment with

the HL-10 peptide did not result in a significant

difference in serum levels of AST and ALT enzymes

compared to the control group. Liver toxicity was

comparable to that observed in the PC group in the

xenograft mice model with SiHa cells, suggesting that

HL-10 peptide treatment did not induce additional liver

injury.

Rather than directly targeting cancer cells,

immunotherapy works by enhancing the host's

immune response, thereby facilitating the elimination

of malignant cells. This approach is critical in cancer

treatment, as it has the potential to prevent tumor

progression and metastasis (29). Our results

demonstrated that the administration of carboplatin

and HL-10 peptide led to the upregulation of IL-1β, TNF-α,

and IFN-γ. Studies have demonstrated that TNF-α and IL-

1β, while playing crucial roles in the inflammatory

process through the recruitment of neutrophils, also

have the capacity to induce anti-tumor responses.

Research has shown that engineered tumor cells

capable of producing TNF-α can inhibit tumor growth in

three different mouse models (30).

The present study aligns with research on the

modulatory effects of Montivipera bornmuelleri venom

on the immune system. In that study, intraperitoneal

injection of multiple doses of the venom resulted in

measurable changes in the levels of various cytokines,

including TNF-α, IFN-γ, IL-1β, IL-10, IL-4, and IL-17,

indicating its impact on immune modulation in vivo

(31). In another study, exposure to Tityus serrulatus
venom resulted in increased levels of IL-6, IL-8, TNF-α, IL-

10, and IL-1β in the supernatant of macrophages isolated

from mice. This suggests that key toxins in the venom

play a significant role in modulating the immune

response, particularly within macrophages (11). Several

studies have demonstrated the involvement of scorpion

venom and its peptide components in the regulation of

the immune system (12, 32, 33). Parabutoporin and

Opistoporin, two NDBPs present in scorpion venom,

have been shown to possess immune-modulating, anti-

microbial, and anti-fungal properties, according to the

literature. Research has indicated that these peptides

can decrease granulocyte superoxide generation,

trigger exocytosis, and improve chemotaxis at

micromolar levels (33). The findings in this study

indicate that HL-10 peptide treatment modulates the

immune system by shifting it from a pro-inflammatory

Th1/Th17 response towards a more anti-inflammatory

Th2/Treg response.
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The results obtained from the MTT assay

demonstrated that the administration of the HL-10

peptide increased toxicity and decreased cell viability in

a dose-dependent fashion. Similar growth inhibitory

effects were observed with the HL-7 peptide in MCF-7 and

A549 cancer cells, while showing no significant anti-

proliferative effect on human peripheral blood

mononuclear cells (PBMCs) (15, 28).
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