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Abstract

The global surge in diabetes presents a significant healthcare challenge. Viral infections complicate diabetes by influencing

systemic metabolism and disrupting glycemic control in type 2 diabetes (T2D). High glucose levels impair macrophage activity,

raising the risk of chronic infections. Viral-induced type-I immune responses initiate insulin resistance, which affects muscle,

liver, and pancreatic functions. Diabetogenic viruses impair pancreatic cells or affect gut microbiota. Viral survival tactics

disrupt antigen presentation and use viral miRNAs to target diabetes-related gene expression. The hidden association between

latent viruses, particularly herpesviruses like Human Cytomegalovirus (HCMV), and diabetes is explored, emphasizing CMV's

role in type 1 diabetes (T1D) pathogenesis. Inflammatory pathways triggered by viral infections play a critical role in islet-specific

autoimmunity and the development of T1D. The HCMV’s pervasive reach, from local areas to the entire body, involves infected

monocytes infiltrating organs, persisting in the bone marrow, and enabling virus spread during reactivation events. When a

viral infection occurs, the immune system mounts a type 1 response characterized by the activation of CD4+ T-cells and the

production of pro-inflammatory cytokines, such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). These

cytokines can lead to the recruitment of immune cells to pancreatic islets, resulting in inflammation and damage to insulin-

producing beta cells. Furthermore, the chronic inflammation caused by sustained cytokine release can impair insulin signaling

pathways. Specifically, pro-inflammatory cytokines interfere with insulin receptor substrate (IRS) proteins, leading to decreased

insulin sensitivity in peripheral tissues such as muscle and adipose tissue. This cascade of events ultimately contributes to the

development of insulin resistance, setting the stage for T2D. This investigation highlights the complex relationship between

viral infections and diabetes. Research indicates that viral infections can increase the risk of developing T2D.
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1. Introduction

In the past few decades, diabetes has become the

most prevalent and critical metabolic disorder. Its
global epidemic has resulted in a significant healthcare

burden worldwide. The concern has escalated with the

rise in the number of people suffering from diabetes.

According to predictions, by 2035, more than 590

million people will be affected by this condition (1).
Diabetes has been classified into three main types: Type

1, type 2, and gestational diabetes (diabetes that occurs

during pregnancy). Regardless of type, all forms of

diabetes result in a prolonged increase in blood sugar

levels (2).

It was believed that type 1 diabetes (T1D) occurs due
to an autoimmune reaction mediated by T-cells, which

attack the insulin-producing β-cells located in the

pancreas (3). On the other hand, type 2 diabetes (T2D) is

more common among diabetic patients and differs

from T1D in its non-autoimmune-mediated mechanism

(4). Type 2 diabetes results from a combination of

insulin resistance and insufficient pancreatic β-cells to
compensate for this insensitivity (5).

One of the strategies of the immune system against

viral infection is transient changes in systemic

metabolism, which are deficient in individuals with T2D

and interfere with the antiviral immune response. The

malfunction of systemic metabolism resulting from a
viral infection may disrupt glycemic control in T2D (6).

Exposure to high glucose levels leads to the impaired

phagocytic activity of macrophages and dramatically

increases the risk of chronic infection in patients with

T2D (7). Viral infection activates the type-I immune
response, producing cytokines such as TNF, interferon-

gamma (IFN-γ), and IL-6 (6). These cytokines induce

transient insulin resistance in muscle and liver. The
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pancreas compensates for insulin resistance through

increased secretion of insulin, which directly promotes

the antiviral immune response. In obesity, cytokines can
induce insulin resistance. Additionally, several viruses

infect the pancreas, negatively impacting insulin
production. This may also contribute to the loss of

pancreatic β-cell function (6). The association between

viral infection and diabetes may reflect an increased risk
of pathogenic mechanisms for chronic viruses such as

HBV and HIV, leading to insulin resistance linked to
chronic inflammation. Some research also indicates

that T2D patients are more susceptible to viral

infections, as diabetes affects healing. Moreover,

hyperglycemia frequently impairs coagulation, fibrin

action, body fat, and endothelial function (8).

According to scientific studies, the hypothesis based

on the role of viral infections in the occurrence of T1D in

genetically predisposed individuals is acceptable. The

direct effect of viral infections on immune cells and

pancreatic beta cells has been studied, and pathogenic

mechanisms have also been suggested.

2. Diabetogenic Viruses

According to research, it has been determined that

Coxsackie B, Rubella, Mumps, Epstein-Barr, Varicella-

zoster, and Cytomegalovirus (CMV) play a role in the

occurrence of T1D (9). Human cytomegalovirus (HCMV)

is a member of the Herpes family. Viruses in this family

include Epstein-Barr (causing glandular fever) (10),

Varicella zoster (causing chickenpox) (11), and Herpes

simplex (causing herpes) (12).

The way these viruses spread can be through

coughing and contact with blood, urine, feces, or
mucous membranes such as those in the mouth and

genitals.

3. Viral Mechanisms Trigger or Contribute to
Development of Diabetes

Investigation of viral mechanisms shows that some

viruses can trigger diabetes by disrupting glucose

metabolism through direct damage to pancreatic beta

cells. Viruses can damage pancreatic beta-cells through

a process known as cytolysis. When a virus infects a beta-

cell, it can trigger the cell to undergo apoptosis
(programmed cell death) or lysis (cell rupture) due to

the viral replication cycle. This leads to the destruction

of the cell and the impairment of insulin production.

Additionally, the immune response to the viral infection

can further contribute to beta-cell damage, as
inflammatory cytokines and immune cells may attack

and destroy these cells in an attempt to eliminate the

virus (13).

Viruses can influence interactions between host cells

and gut microbiota through several mechanisms,

including: (1) Interaction of gut epithelial cells with

microbiota due to gut tissue tropism and replication

within the mucosal lining, contributing to gut dysbiosis

(14); (2) increasing or decreasing the abundance and

diversity of certain gut microbiota as a result of the

host's immune responses, possibly due to the

conjunction of viral infection (15); (3) producing

antimicrobial peptides or other host factors that shape

the microbial community. Viruses, as well as bacteria,

archaea, and eukarya, are involved in the gut

microbiome and maintain balanced symbiotic or

antagonistic relationships through the production of

antimicrobials (16); (4) changing microbial metabolism

by disrupting nutrient absorption, disturbing energy

balance, and causing metabolic disorder. The effects of

viral infections may also vary in patients with metabolic

problems such as diabetes mellitus. Nutritional status

may also impact the pattern of events following viral

infection (17); (5) disrupting the integrity of the

intestinal barrier, transferring microbes and microbial

products from the intestine to the bloodstream, and

inducing an inflammatory response that leads to

changes in the composition of the intestinal microbiota

(18). Figure 1 shows the viral mechanisms that trigger or

contribute to the development of diabetes.

4. Autoimmune Reactions Triggered by Viral
Infections

Viral infections can cause autoimmune diseases

through several mechanisms.

4.1. Epitope Spreading

Since T1D is immune-mediated, it is crucial to identify

how the infecting viruses may trigger autoimmunity.
Several mechanisms could be at play here. During the

early stages of infection, the recognition of pathogen-

associated molecular patterns activates innate

immunity, leading to the secretion of type-I interferons

(IFNs) and pro-inflammatory cytokines. Interferons
function in an autocrine and paracrine manner,

inducing antiviral responses in infected cells and

establishing a virus-resistant state in neighboring cells.

The type I IFN response activates the Janus kinase (JAK)-

signal transducer and activator of transcription (STAT)
pathway, leading to the transcription of IFN-stimulated

genes (ISGs) that promote the antiviral state. In the later

stages of infection, virus replication may cause cell

damage, possibly from the release of self-antigens.
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Figure 1. Viral mechanisms trigger or contribute to the development of diabetes

Antigen-presenting cells take up these self-peptides and

deliver them to lymphocytes, which may give rise to

autoreactive T-cell clones and autoreactive B-cells

producing antibodies.

In brief, viruses infect host cells, present their

antigens to T-helper cells (Th cells) via antigen-

presenting cells (APCs), and cause the release of
cytokines from Th cells. Cytokines affect cytotoxic T-

lymphocytes (CTLs) and induce the release of their
granzymes to attack infected cells. Then, self-antigens

hidden in damaged cells are leaked and presented by

APCs to self-reactive T-cells. Finally, self-reactive T-cells

attack other non-infected cells carrying these antigens

(19).

4.2. Molecular Mimicry

T-cell receptors (TCRs) can recognize and react to

both viral antigens and self-antigens that have

structural or sequential homology.

4.3. Bystander Activation

Infected cells present viral antigens to virus-specific

T-cells. T-cells recognize infected cells and release

cytotoxic granules, leading to the cell death of both
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Table 1. Evasion Mechanism of Viruses

Virus Evasion Mechanism Ref

Poxviruses and
Herpes viruses Disrupt presentation of viral antigens by MHC molecules in order to evade control by T-lymphocytes (21)

Measles Antagonism of the phosphatase PP1 by the measles virus V protein is required for innate immune escape of MDA5 (22)

CVB Epitope mimicry mechanisms skewing the physiological antiviral response toward autoimmunity (23)

CMVs
Possess a complex DNA structure with a vast genome size (measuring up to 235 kilobases for HCMV). They carry numerous proteins that
facilitate their spread and immune evasion. (3)

EBV EBV stablishes latent infections in B-lymphocytes, making it challenging for the immune system to detect. (24)

Mumps Molecular mimicry: Identical antigenic epitopes ( nucleocapsid protein) with HLA class II induce cross-reactive antibodies (25)

VZV
The protein product of VZV ORF66 has been found to decrease the expression of MHC class I by interfering with the transport of MHC class I
molecules to the cell surface and allow the virus to avoid detection by CTLs and evade immune recognition. (26)

Abbreviations: VZV, Varicella-Zoster virus; CVB, Coxsackievirus B; CMV, Cytomegalovirus.

infected and nearby uninfected cells. The inflammatory

milieu further activates bystander cells within the

tissue.

5. How About "Viral Survival Tactics: Understanding
Mechanisms used by Viruses to Evade Host
Defenses"?

There are several mechanisms by which viruses evade

host defenses (20). Table 1 provides examples of viruses

along with their corresponding evasion mechanisms.

6. Viral miRNA Targeting Diabetes Related Gene
Expression

MicroRNAs (miRNAs) are non-coding RNAs that are 18

- 22 nucleotides in length and function to regulate gene

expression (27) through translational repression or gene

silencing (28). Studies have demonstrated that certain

viruses are capable of producing viral miRNAs that can

regulate the quantities of viral proteins or reduce the

expression of cellular factors that possess antiviral

properties. There has been limited investigation into the

function of viral miRNAs in diabetes. Nevertheless, an

investigation published in the Journal of Virology in

2017 indicated that hepatitis C virus (HCV) may be

involved in the development of T2D by modulating the

expression of several miRNAs in liver cells (29). The

study discovered that HCV infection downregulates the

expression of miR-29b, a miRNA that is involved in the

regulation of glucose metabolism and insulin

sensitivity, in human hepatocellular carcinoma cells.

The dysregulation of miR-29b expression by HCV may

contribute to the development of insulin resistance and

T2D in infected individuals (30, 31).

In another study, it was reported that Coxsackievirus
B5 disrupts the suppression of pro-inflammatory factors

by miRNAs (miR-155-5p and miR-181a-3p produced) in β-
cells. This disruption amplifies the antiviral immune

response, leading to β-cell destruction and the onset of

T1D (32). Furthermore, the study showed that miR-UL112-

3p from HCMV targets the insulin-like growth factor 1

receptor (IGF1R) gene, resulting in reduced insulin

sensitivity and impaired glucose uptake (28).

7. Viral Life Cycle in Human Cells, Initiate Infection

In this section, the infection mechanism of the HCMV

virus is described as an example of the viral life cycle in

human cells.

Human cytomegalovirus enters human cells through

either direct fusion or the endocytosis pathway. The

virus attaches to the cell via interaction (33) between

viral glycoproteins and specific surface receptors,

followed by the fusion of the envelope with the cellular

membrane, releasing nucleocapsids into the cytoplasm

(34). These nucleocapsids are then translocated to the

nucleus, where viral DNA is released, initiating the

expression of IE-1/IE-2 genes (35).

Viral replication and maturation follow, stimulated

by and parallel to the accumulation of viral synthesis

functions. This process involves encapsulating the

replicated viral DNA in capsids, which are then

transported from the nucleus to the cytoplasm.

Secondary envelopment occurs in the cytoplasm at the

endoplasmic reticulum (ER)-Golgi intermediate

compartment. This is followed by a complex two-stage

final envelopment and egress process that leads to the

release of virions by exocytosis at the plasma membrane

(36, 37).

8. Silent but Deadly: The Hidden Link Between
Latent Viruses and Diabetes

Although previous studies have shown that

herpesviruses are stable in the host, they may not be

detected in the blood by antibody analysis due to
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changes in the host's immune system or viral activity

(38-41). Scientists have stated that, in most cases,

infection caused by the herpesvirus occurs in early

childhood (42). An increased antibody response in a

person's blood serum does not necessarily mean they

are cured, as the virus may be latent and undetectable

(43).

By reporting the presence of the CMV genome in

lymphocytes and serum islet cell autoantibodies in T1D

patients (44), researchers found a strong relationship

between CMV infection and diabetes. They also argued

that human CMV could play an essential role in the
pathogenesis of T1D by examining the cross-reaction of

T-cells with beta-cell autoantigen GAD65 (45). In vivo

analysis revealed that the virus can infect pancreatic

islet cells in both type 1 and type 2 diabetes patients (46).

It is likely that the incidence of active viral infection

and T1D in the general population is not very high,

which is why many studies on the increased risk of

diabetes caused by CMV infection have not received

significant attention. On the other hand, due to the

observation of CMV infection occurring simultaneously

with diabetes in kidney transplant recipients (47), this

group of patients has attracted special attention from

researchers to investigate the potential relationship

between CMV and diabetes.

A defect in antiviral defense causes B-cell dysfunction

and increases the risk of developing diabetes after

infection with CMV (48).

9. Inflammatory Pathway Triggered by Viral
Infection in Diabetic Patients

Several studies suggest that viral infection may play a

crucial role in triggering islet-specific autoimmunity

and the development of T1D (3). Krogvold et al. reported

that live enterovirus antigens have been detected in

pancreatic islets of post-mortem T1D cases and live

patients (49). Studies have shown that children at

genetic risk for T1D have different enterovirus types

present in stools before developing islet autoantibodies

(50). Mechanisms are predicted to operate during

different phases of infection, leading to activation of

innate immunity, the transcription of ISGs, and the

production of cytokines. Marroqui et al. showed that

type I interferons are key players in pancreatic β-cell

dysfunction in T1D (51).

Enterovirus infection in T1D patients impacts

pancreatic islets and has a potential role in causing islet-

specific autoimmunity. Viral antigens have been found

in pancreatic islets from both deceased and living T1D

patients, and at the onset of clinical symptoms, ISGs and

human leukocyte antigen class-I antigens are hyper-

expressed in the islets, with memory CD8 T-lymphocytes

among infiltrating cells. Taken together, researchers

suggest that enterovirus infection may be a pre-

requisite for T1D development (52). Within islets,

macrophages and dendritic cells are involved in an

inflammatory process in which numerous immune

system components play a part (insulitis).

In the case of T2D, persistent CMV infection may play

a role in the pathogenesis of T2D. Cytomegalovirus

induces the accumulation of differentiated CD4+ and

CD8+ T-cells to produce pro-inflammatory cytokines,

resulting in a more pro-inflammatory environment and
ultimately, accelerated immunity (53). Specific pro-

inflammatory cytokines such as tumor necrosis factor-

alpha (TNF-α) can harm pancreatic β-cells (54, 55). It may

cause inflammation that contributes to insulin

resistance by promoting lipolysis, disrupting insulin
signaling, and decreasing the expression of GLUT4.

When there is an infection, macrophages release TNFα
to signal other immune cells and activate an

inflammatory response (56-58).

10. The Widespread Reach of Human
Cytomegalovirus: How Virus Spreads from Local
Sites to Entire Body"

The HCMV-infected epithelial cells at the initial

infection site likely rapidly produce the virus, which

then spreads to adjacent cells at these local sites.

Monocytes infected with HCMV, either as they are

patrolling or perhaps by a free virus, infiltrate various

organ tissues and spread throughout the body. These

monocytes differentiate into macrophages, allowing for

organ persistence, infection of new epithelial cells, and

virus release in various body fluids. Some of these

infected monocytes infiltrate the bone marrow, where

they enable the establishment of latency in CD34+ HPCs.

During a reactivation event, monocytes develop from

CD34+ HPCs, spreading the virus throughout the body

(59).

11. Conclusions

In conclusion, this investigation highlights the

complex relationship between viral infections and

diabetes, revealing how viruses such as Coxsackie B,

Rubella, Mumps, Epstein-Barr, Varicella-Zoster,

Cytomegalovirus, and Herpes Simplex contribute to the

pathogenesis of diabetes. These viruses employ various

evasion mechanisms, including molecular mimicry,

immune evasion proteins, and the establishment of

latency, which disrupt the host’s immune responses and

metabolic processes. Viral infections can lead to insulin

resistance and alter systemic metabolism, particularly
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in T2D, by impairing pancreatic function and affecting

gut microbiota. Furthermore, chronic viral infections

may exacerbate hyperglycemia, increasing the risk of

diabetes-related complications. Understanding these

intricate interactions is essential for developing

targeted antiviral strategies and vaccines that could

mitigate the impact of viral infections on diabetes

management. This underscores the need for ongoing

research to unravel these relationships and improve

therapeutic approaches against these dynamic

pathogens.
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