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Abstract

Background: Cold-Fiber Solid-Phase Microextraction (CF-SPME) is often used for the extraction of volatile and semi-volatile com-
pounds from complex matrices. Multivariate statistical optimization techniques can save time and chemicals and thus decrease
the analytical cost in comparison with the Single Variable Approach (SVA). Over the past few decades, different beneficial mathe-
matical tools have been developed for the optimization of separation processes.
Objectives: In this study, the Artificial Neural Network (ANN) and Response Surface Methodology (RSM) applications were com-
pared for CF-SPME optimization to determine 2, 5-hexandion in urine samples. 2, 5-Hexanedione is a colorless liquid and the main
metabolite of n-hexane as a result of occupational exposure.
Methods: N-hexane is widely used in the rubber industry, food processing, solvents, and medicinal drugs and has adverse effects
such as neurotoxicity on humans. Thus, biological monitoring, analytic methods, and mathematical and statistical techniques
concerning 2.5-HD are very important. The RSM and ANN are mathematical and statistical techniques applied for the optimization
and process modeling. Designing an experiment based on the Historical Data Design (HDD) of RSM was adopted to evaluate the
relationship between independent parameters such as extraction temperature, extraction time, sample volume, and extraction
efficiency of 2, 5-hexandion.
Results: The models were compared for their predictive ability by the coefficient of determination (R2) and Root Mean Square Error
(RSME) based on the train and test dataset.
Conclusions: The results were highly significant (P < 0.05) for the optimization of variables. The ANN model had more generaliz-
ability than the RSM model. Also, the ANN had higher predictive accuracy.
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1. Background

Solid-phase Microextraction (SPME) is a solvent-free
sampling technique that includes fiber and an extracting
phase (1). Many published studies have described the role
of SPME in the field of occupational and environmental
health (2, 3). The principal advantage of SPME is the com-
bination of two extraction and pre-concentration steps in
one step. It is also a simple, cost-effective, efficient, and
environmentally friendly method (4). However, SPME has
certain limitations such as poor thermal, mechanical, and

chemical stability of fibers along with low selectivity and
sample carry-over (1, 5).

To overcome some of these limitations, novel ap-
proaches have been developed based on SPME, includ-
ing ultrasound-assisted SPME, electrochemically assisted
SPME, in-tube SPME, and cold fiber SPME (CF-SPME) (5-7). In-
creasing temperature has a leading role in facilitating the
transfer of the analyte from the matrix to the gas phase
during conducting the SPME technique. However, this
would contribute to the decrease in distribution coeffi-
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cients of the analytes between the extraction phase (fiber)
and the matrix. According to the procedure, the deter-
mination sensitivity will decrease. The CF-SPME method
has overcome this limitation by heating the matrix and
cooling the fiber simultaneously (8-10). According to this
method, the partition coefficient does not decrease. The
analyte mass transfer from the gas phase to the extraction
phase (fiber) will improve; hence, it increases the sorp-
tion capability and detection limits for most volatile and
semi-volatile analytes (11-13). On the other hand, the opti-
mization of an analytical procedure is an important step
in any method development. Accordingly, attempts have
been made for the optimization of this method, and sev-
eral techniques have been developed, as well (14).

The traditional optimization approach is usually based
on the classical method called one-variable-at-a-time (15,
16). However, this approach has disadvantages, such as not
including the interactions between independent variables
and increasing the number of experiments, experiment
duration, and amount of chemicals (17, 18). Employing
multivariate statistical techniques for the optimization of
experiments can save time and chemicals and reduce the
cost of analytical experiments (19, 20).

In recent decades, different mathematical tools have
been developed for the optimization of separation pro-
cesses, such as Response Surface Methodology (RSM) and
Artificial Neural Network (ANN). These methods are pow-
erful mathematical methods suitable for specifying the ex-
perimental conditions that produce the best possible ana-
lytical performance (5, 21).

Response surface methodology is a significant tool de-
veloped by Box and collaborators (17, 22). It is a statistical
method based on empirical models for experimentally an-
alyzing the quantitative data, and it is mostly related to the
experimental design (23, 24). The RSM evaluates the effects
of variables and their interactions on response variables.
This standard approach has already been used in many ex-
periments involving volatile and semi-volatile compounds
(25, 26). The RSM principal advantages include the reduc-
tion of the number of experimental trials and evaluation
of parameters and their possible interactions (27-29). Be-
sides, the Artificial Neural Network (ANN) has been used in
combination with the experimental design for represent-
ing relationships between variables and predicting the op-
timum conditions based on the results from a few num-
bers of experiments (14, 20). The ANN has also been re-
ported as a powerful tool for modeling chemical processes
(30, 31).

In this study, 2, 5-hexanedione (2, 5-HD) determination
by the CF-SPME method in urine was optimized by RSM and
ANN methods. 2, 5-HD is a colorless liquid and the biologi-
cal index of hexane exposure. Design of Experiment (DOE)

was adopted based on the Historical Data Design (HDD) of
RSM to evaluate the relationship between independent pa-
rameters such as extraction temperature, extraction time,
and sample volume, on the one hand, and the extraction
efficiency of 2, 5-HD, on the other hand.

2. Objectives

Therefore, this paper aimed to compare the ANN and
RSM performance for optimizing this process. The mod-
els were compared by the coefficient of determination (R2)
and Root Mean Square Error (RSME) for their predictive
ability based on the train and test dataset. Analysis of Vari-
ance (ANOVA) was used to assess any significant lack-of-fit
with experimental results in RSM.

3. Methods

3.1. Instrumentation

SPME fiber assembly Carboxen/polydimethylsiloxane
(CAR/PDMS - df 75µm) and manual holder were purchased
from Supelco (Bellefonte, PA). Clear glass vials (20 ml vol-
ume), sealed with silicone septum and aluminum cap,
were used for sample extraction.

An analytical method using capillary gas chromatogra-
phy (Shimadzu GC-2010, Kyoto, Japan) with Flame Ioniza-
tion Detector (FID) was developed for the analysis of 2, 5-
HD.

For heating and stirring the sample, a hot plate-
stirrer (Alfa hs-810 - Tehran, Iran) was employed. Temper-
ature controller (Busan, South Korea), electronic power
(220VAC/50/60HZ), thermoelectric cooler (TEC), and re-
lated heat sink and fan (Busan, South Korea) were used for
cooling the CF-SPME system and control the temperature
during the procedure.

3.2. Reagents and Materials

All reagents were of analytical grade. 2, 5-HD, and cy-
clohexanone (internal standard, IS) were purchased from
Merck (Darmstadt, Germany). Stock standard solutions
(1000 mg/L of 2, 5-HD, and 5 mg/L of IS) and working stan-
dard solutions (20 mg/L of 2, 5-HD for extraction process)
were prepared with distilled water. The calibration curves
for analysis (0.06–20 µg/ml) were established using work-
ing standard solutions prepared from the stock standard
solutions with distilled water. 2, 5-HD was added to dis-
tilled water.
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3.3. SPME Method

Samples were put into 20 mL glass vials containing a
certain amount of Na2SO4 (20 w/v %) and a small magnetic
stirring bar for HS-CF-SPME optimization. Then, the vials
were tightly capped and sealed with an aluminum cap and
silicone septum. To control the effect of temperature on ex-
traction, a hot plate and a water bath were used.

Before starting each extraction, the solutions were un-
der a certain extraction temperature and stirring rate of
1000 rpm for 10 min to reach equilibrium. To initiate the
extraction process, the SPME fiber was exposed to the sam-
ple headspace. Following the extraction process, the fiber
injected into the GC injection port directly that was with-
drawn into the needle. The CF-SPME system was performed
based on a thermoelectric device that created a cooling
source for the extraction procedure. The device was run-
ning during the procedure.

A copper plate was joined to the heat sink of the Ther-
moelectric Cooling Device (TEC), and a groove of 0.7 mm
depth was made on the surface of the copper plate. The
needle from the SPME syringe was placed into the groove,
and the fiber was exposed to the headspace of the solution
for 17.5 min. A K-type thermocouple was fixed on this cop-
per plate. The temperature of the fiber was around 5 °C. A
small fan inside the chamber was used to facilitate air con-
vection (32).

3.4. Experimental Design

Cold fiber headspace solid-phase microextraction (CF-
HS-SPME) based on a thermoelectric cooling method for
the analysis of 2, 5 hexandion in urine samples was opti-
mized using Response Surface Methodology (RSM) and Ar-
tificial Neural Network (ANN). The RSM and ANN are math-
ematical and statistical techniques applied for optimiza-
tion and process modeling.

3.5. Historical Data Design (HDD) of RSM

Based on the HDD of RSM, to assess the effects of the
main independent variables on the extraction efficiency
of 2, 5-HD, the CF-HS-SPME optimization was carried out
using RSM. The levels of independent parameters investi-
gated in this research including extraction time, extrac-
tion temperature, and sample volume are given in Table
1. The levels of three independent variables were selected
based on preliminary work and previous data. According
to the quadratic model, the response prediction and coef-
ficient estimations were performed by the least-squares re-
gression.

(1)Y = β0 +

k∑
i=1

βiXi +

k∑
i=1

βiiX
2
i +

k−1∑
i=1

k∑
j=2

βijXiXj + e

Where Y is the predicted extraction efficiency of 2, 5-HD,
βo is the model intercept coefficient,βi,βii, andβij are the
linear, quadratic, and interaction coefficients, respectively,
Xi and Xj are the independent variables, and e is the error.
The Analysis of Variance (ANOVA) was used to determine
the statistical significance of each regression coefficient.

3.6. Artificial Neural Network

A neural network trained by the Back Propagation Al-
gorithm (BPA) was applied. The layers of the network in-
clude the input layer, hidden layer, and output layer. Ac-
cording to the research method, a feed-forward back prop-
agation neural network with three layers was used.

In the feed-forward neural network, information flows
from input to output. This progress was without feedback.
Learning nonlinear and linear relationships between in-
put and output vectors to network happens with multiple
layers of neurons with nonlinear transfer functions. Ac-
cording to research, multilayer ANN models with only one
hidden layer have universal applications.

Figure 1 illustrates ANN (8: 4: 1) for modeling of 2, 5-
HD analysis in urine samples. To determining the num-
ber of neurons in the hidden layer, different neural net-
works with different topologies were fitted to the data, and
finally, the best neural network architecture was identi-
fied. It is noted that linear transfer function considered for
the output layer, and Hyperbolic tangent is considered as
a transfer function of the hidden layer. (Neural networks
toolbox of Matlab 7.12.0).

4. Results and Discussion

2,5-HD extraction condition was optimized by the RSM.
Therefore, three factors were optimized in this design. Ta-
ble 2 shows the entire 48 runs. According to the quadratic
model, the process response and three independent fac-
tors of empirical relationships are as follows:

Chromatographyarea = 589.90 + 94.54A+ 86.56B

−244.84C+34.63AB−2.44AC

+ 10.63BC − 115.85A2

− 63.16B2 − 52.87C2

(2)

The order of effectiveness of all model terms is as fol-
lows: C > A2 > A > B > B2 > C2 > AB > BC > AC (irrespective
of the sign of model coefficients).

There was a coefficient of determination (R2) of 0.897.
The R2 from the above quadratic equation was explained by
independent variables of extraction temperature (A), ex-
traction time (B), and sample volume (C).

Jundishapur J Health Sci. 2020; 12(3):e100925. 3



Pourbakhshi Y et al.

Table 1. Experimental Variables and Levels

Variable Symbol Unit Min. Max.

Extraction Temperature A Celsius 50 80

Extraction Time B minute 5 30

Sample Volume C milliliter 5 15

Figure 1. Neural Network Architecture (3-4-1) Trained for the Extraction Efficiency of 2, 5-hexandion

The results of the ANOVA are shown in Table 3. All the
independent variables were significant (P < 0.05). The F
values and P values represent the high significance of the
model and no significant lack-of-fit. The variables were not
significantly correlated with each other (P > 0.05). The pre-
dicted values matched well with the experimental values
(R2 = 0.9325 and Adj. R2 = 0.9165).

As presented in Figure 2A, the residuals are normally
distributed and show a random scatter. Also, there is a
linear correlation between predicted and actual response
values that indicates a sufficient agreement between real
data and model data (Figure 2B). These plots show that the
model fits well to optimize the independent variables for
the chromatography area prediction.

The model describes the entire experimental range of
the study. It shows the comparison of the graphical repre-
sentation of actual versus predicted values (Figure 2). The
results of ANOVA of the linear model for the analysis of 2,
5-HD in urine samples are shown in Table 3.

The model came up with an F value of 69.90 and a P
value of < 0.0001. P values of less than 0.05 were consid-
ered significant. According to the results, all factors were
found to be highly significant (P < 0.05). According to
the non-significant lack-of-fit, the model shows good pre-
dictability.

The predicted values were found to match well with the
experimental values (R2 = 0.9325). The R2 value was in a rea-
sonable agreement with Adj. R2 (Adj. R2=0.9165), which in-

dicates fair predictability of the model.
The lowest training and verification errors in architec-

ture 3-4-1 of an MLP neural network were permissible. Ac-
cording to the results, it was a suitable network for the pre-
diction of optimization for the analysis of 2, 5-HD in urine
samples.

The predictive performance of ANN and RSM models
are presented in Table 4. The results showed that the ANN
model in both tests and training sets had better perfor-
mance in terms of R2 and RMSE compared to the RSM
model. Smaller values of RMSE for ANN indicate less pre-
diction error for this model. Considering the perfect pre-
diction line, the predictions of the ANN model were closer
than those of RSM models. Therefore, in terms of general-
ization capacity, the ANN model had more generalizability
than the RSM model. Also, The ANN had a higher predictive
accuracy, which might be related to its general ability to es-
timate the system nonlinearity. The RSM limitation is in a
second-order polynomial.

A large number of iterative calculations are required in
the ANN model. In contrast, there is a single- step calcula-
tion for the response surface model

The most important limitation of the RSM method
is that the experimental data are fitted to a polynomial
model at the second order, while in practice using a
second-order polynomial model is not compatible with
all systems. In comparison, although the neural network
model is a black box in nature, it can take into account the
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Table 2. The Coded Historical Design of Independent Factors and Their Corresponding Experimental Values, the RSM Model Predicted and ANN Model Predicted Values of
Chromatography Area

Run Aa Bb Cc Y (Observedd ) RSM Predicted ANN Predicted Run A B C Y (Observedd ) RSM Predicted ANN Predicted

1 80 5 15 182.45 116.002 137.81 25 60 5 10 433 421.507 436.04

2 80 10 15 130.65 192.078 123.15 26 60 10 10 483.48 478.926 486.86

3 80 20 15 297.7 295.217 291.74 27 60 20 10 652.17 543.752 659.71

4 80 30 15 291 333.006 298.02 28 60 30 10 640.03 545.228 626.96

5 70 5 15 104.95 183.687 122.99 29 50 5 10 165 293.277 187.41

6 70 10 15 153.33 249.171 147.69 30 50 10 10 202.7 340.14 194.85

7 70 20 15 324.25 331.127 329.03 31 50 20 10 217.23 384.747 212.87

8 70 30 15 315 347.733 357.96 32 50 30 10 210.67 364.039 209.55

9 60 5 15 69 156.729 151.46 33 80 5 5 600 591.332 584.9

10 60 10 15 117.17 211.621 131.42 34 80 10 5 638.3 672.461 639.3

11 60 20 15 286.13 272.393 280.94 35 80 20 5 787.23 785.706 803.04

12 60 30 15 297 267.817 293.19 36 80 30 5 756.68 833.602 754.81

13 50 5 15 65.23 35.127 152.18 37 70 5 5 612.7 645.761 602.95

14 50 10 15 95.2 79.428 117.23 38 70 10 5 654.3 716.298 659.61

15 50 20 15 107.25 119.017 113.75 39 70 20 5 818.5 858.36 822.83

16 50 30 15 147.1 93.256 73.32 40 70 30 5 797.2 835.073 763.12

17 80 5 10 449.7 394.036 415.26 41 60 5 5 578.8 605.536 582.35

18 80 10 10 496.7 472.639 491.69 42 60 10 5 618.2 665.492 620.67

19 80 20 10 662.5 580.831 666.45 43 60 20 5 778.1 736.371 770.28

20 80 30 10 649.7 623.674 644.75 44 60 30 5 751.3 741.9 720.44

21 70 5 10 502.03 455.094 439.01 45 50 5 5 565.3 470.688 547.75

22 70 10 10 545.6 523.105 520.98 46 50 10 5 586.9 520.042 586.58

23 70 20 10 694.8 610.114 678.5 47 50 20 5 611.73 569.737 601.16

24 70 30 10 658.53 631.773 660.28 48 50 30 5 597.2 554.083 602.64

a Extraction Temperature (°C)
b B: Extraction Time (min)
c Sample Volume (ml)
d Observed: Chromatography area

Normal Plot of Residuals Predicted vs. Actual 
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Figure 2. Comparison of graphical representation of actual versus predicted values
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Table 3. Analysis of Variance (ANOVA) for Process Responsea , b

Parameters Statistics

Sum of squares Degree of freedom Mean square F Value P Value

Model 2.576×106 9 2.862×105 58.30 < 0.0001

A 2.346×105 1 2.346×105 47.79 < 0.0001

B 2.121×105 1 2.121×105 43.20 < 0.0001

C 1.886×106 1 1.886×106 384.27 < 0.0001

AB 18872.33 1 18872.33 3.84 0.0573

AC 106.04 1 106.04 0.022 0.8839

BC 2134.46 1 2134.46 0.43 0.5136

A2 1.273×105 1 1.273×105 25.92 < 0.0001

B2 33066.55 1 33066.55 6.74 0.0134

C2 29815.63 1 29815.63 6.07 0.0184

Residuals 1.865×105 38

Cor Total 2.762×106 47

aR2 : 0.9325
bAdjusted R2 : 0.9165

Table 4. Comparison Between RSM and ANN

Measure
Neural Networks RSM

Train Test Train Test

RMSE 9.00 38.79 71.88 65.74

R2 0.999 0.992 0.953 0.961

complexities of systems well, even with the limited num-
ber of experiments.

5. Conclusions

In this study, the main factors, extraction temperature
(A), extraction time (B), and sample volume (C), were found
to be highly significant (P < 0.05). The non-significant lack-
of-fit showed good predictability. The ANN and RSM mod-
els were the same in predicted values. The results showed
that the ANN method is preferable for recording nonlinear
behavior and prediction. It had more generalizability, cost,
and calculation time than the RSM model. Because of the
ANN general ability to approximate the system nonlinear-
ity, it had higher predictive accuracy. Unlike the response
surface model, a large number of iterative calculations is
required in the ANN model.
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