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Abstract

Background: Chloroform, as a hazardous chemical, can contaminate water resources via the reaction of chlorine as an antiseptic
chemical with humic acids resulted from agricultural activities. In humans, chloroform may cause dizziness, heart disorders, and
disorders of the nervous system. Hence, its removal is of crucial importance.
Objectives: The current study aimed to propose cheap and efficient adsorbents to remove chloroform from water.
Methods: Four different nanomaterials (ZnO, ZnO/graphene oxide (ZnO/GO), ZnO/GO/Zeolite, and GO/Zeolite nanocomposites) were
prepared and characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) images. Textural
properties of the nano- adsorbents were evaluated using Brunauer Emmet Teller (BET) and Barrett-Joyner-Halenda (BJH) techniques.
Different isotherms and kinetic models were studied. The effect of pH on the removal efficiency of the nano-adsorbents was tested.
Regenerability of the nano-adsorbents towards the removal of the chloroform was also evaluated.
Results: XRD patterns and FESEM images of the nanocomposites confirmed lattice structures and nanoscale particle size of the pre-
pared nanocomposites. According to the BET and BJH models, all samples had mesoporous structures. The BJH cumulative surface
area of pores of ZnO, ZnO/GO, ZnO/GO/Zeolite, and GO/Zeolite nanocomposites were 8.5, 26.4, 17.2, and 20.8 m2/g, respectively. The
best removal speed and efficiency were obtained according to the different isotherm and kinetic models for the removal of chloro-
form ZnO/GO nanocomposites. All adsorbents revealed characteristic adsorption in the pH range of 7 to 8.
Conclusion: The ZnO/GO, a cheap and efficient nanocomposite, showed the best performance to remove chloroform from water
samples due to its superior textural property. Hence, it can be used to remove chloroform from water for up to 5 cycles.
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1. Background

Water treatment is a major challenge in water engi-
neering science because of extensive contamination of sur-
face and underground waters with chemicals (1). Halo-
genated hydrocarbons are widely used to synthesis pesti-
cides and herbicides as well as for preparing detergents.
Over time, they have contaminated water resources, which
resulted in the production of halogenated hydrocarbons
(2). Besides, the propagation of such chemicals in the wa-
ter resources causes their emission into the soil and atmo-
sphere. Hence, such contaminations are not only a great
public health challenge but also can deplete the ozone
layer (3). In humans, these compounds cause dizziness,
heart disorder, and disorders of the nervous system (4-6).
Trichloromethane (chloroform) is one of the most abun-
dant halogenated hydrocarbons found in water resources

because of the extensive use of chlorine as an antiseptic
compound that can produce chloroform through reacting
with humic acids (7).

One of the well-known catalysts for chloroform re-
moval is Pt/Pd NPs., which are not cost-effective for com-
mercial applications (8). Hydro-dechlorination is another
approach to degrade chloroform; however, this method
requires a high-temperature treatment (9-16), indicating
that this method is not a cost-effective alternative. More-
over, this method has the drawback of producing toxic
byproducts such as phosgene and furan (17, 18). Adsorption
of pollutants is a favorable technique to remove hydrocar-
bons due to its simplicity, non-destructiveness, and being
cost-effective (12, 16, 19-23). By using electromagnetic induc-
tion, the Fenton like process was applied for the removal of
chloroform. Other adsorbents, such as snow, bran rice, and
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mud, were also applied for the remediation of chloroform
from water resources (12, 16, 23-25).

Nano-adsorbents are good candidates for the adsorp-
tion of chemical species because of their large specific sur-
face area, pore-volume, and maximum adsorption capac-
ity (10, 26-29). Zinc oxide NPs are reported as good nano-
adsorbents in this regard; hence, several studies have used
these compounds as good photocatalytic material and ad-
sorbent, but due to agglomeration of ZnO NPs, it is neces-
sary to use substrates, such as GO, zeolites, and the other
organic polymers (30-39). Meanwhile, the application of
inorganic substrates is favored because of less toxicity and
ease of preparation compared to the organic substrates
(9). In this work, two different inorganic substrates (zeo-
lites and GO sheets) were impregnated with zinc oxide NPs
to overcome the agglomeration problem of ZnO NPs and
hence to enhance its textural properties to achieve a better
chloroform removal efficiency.

2. Objectives

The current study aimed to propose cheap and efficient
adsorbents to remove chloroform from water.

3. Methods

3.1. Materials

Zinc sulfate, sodium hydroxide, and hydrochloric acid
were obtained from Merck, Germany. HPLC grade chloro-
form from Fluka (Switzerland) was used without further
purification. Natural zeolite NPs were purchased from
Tamad-Micro Inc. Ultrapure water (Millipore) was used
through the work.

To prepare chloroform samples, a 500 mg. L-1 chloro-
form stock solution was prepared by dissolving the appro-
priate volume of pure chloroform into 1L of ultrapure wa-
ter in a volumetric flask. It was then used to prepare other
diluter chloroform samples.

3.2. Synthesis

ZnO NPs were prepared as described in our previous
work (9). The prepared ZnO NPs were used as a support
for preparing the nanocomposites. ZnO/GO was prepared
as described earlier (9, 38). For preparing ZnO/GO/Zeolite
or GO/Zeolite nanocomposites, at first, the purchased ze-
olites were washed with plenty of ultra-pure water to re-
move ionic salts within the zeolite pores. So that 0.5 g of
the zeolite weighted in a beaker, 0.5 g of ZnO NPs, and 0.1
g of GO was added to it, then 20 mL of ultrapure water was
added to the mixture. The mixture was sonicated for 1 h.
Afterward, it was placed over a magnetic stirrer for stirring
overnight.

3.3. Experimental Procedure

Five different 100, 75, 50, 25, and 10 mg. L-1 chloro-
form solutions were prepared, and then 20 mL of each of
them was poured into four beakers containing 20 mg of
the four nano-adsorbents, ZnO, ZnO/GO, GO/zeolite, and
ZnO/GO/zeolite. The nano-adsorbents/chloroform mix-
tures were stirred over stirrers for 30 min. Then the mix-
tures were filtered. After that, 1 µL of each of the filtrates
were presented to the GC to measure the equilibrium con-
centrations of chloroform and hence to obtain adsorption
isotherm models.

50 mL of 50 mg. L-1 solution was poured into the differ-
ent beakers containing 20 mg of the different adsorbents.
The mixtures were placed over the stirrer, and 5 mL of the
samples were taken after each 10 min duration time. Each
of the taken mixtures was centrifuged to remove the ad-
sorbents, and then 1 µL of the clear solutions were pre-
sented to GC to measure the remained chloroform concen-
trations.

To study the effect of pH on the adsorption of chloro-
form, various 50 mg.dm-3 chloroform solutions were pre-
pared in different pHs. A metrohm 780 pH/ion-meter was
used to monitor pH. Adjustment of pH was performed
by adding appropriate amounts of sodium hydroxide salt
and/or hydrochloric acid into the chloroform solutions.

3.4. Analysis

Concentrations of chloroform were measured using
a gas chromatograph (GC), Varian CP-3800, Australia,
equipped with a 300 mm, 0.32 mm in diameter column
#cp 8752, flame ionization detector, 1177 split injector. He-
lium gas was used as carrier gas. The GC column worked
over-temperature ranged from 35°C to 120°C BJH and BET
models, based on N2-adsorption-desorption at 77K, were
performed with (BElSORP Mini (Microtrac Bel Corp CO)) to
determine the pore diameter, pore volume, and active sur-
face area of the nanocomposites. XRD patterns were ob-
tained with X’Pert Pro (Panalytical Co.). The FESEM images
were taken with Sigma VP, Zeiss, Germany.

Kinetic studies of adsorption phenomena are good
keys to derive information about the adsorption mecha-
nism. Different adsorption kinetic models, pseudo-first-
order, pseudo-second-order, and inter-particle diffusion
were introduced by the authors (40-44). Equilibrium ad-
sorption capacity (qe) and instantaneous adsorption ca-
pacity (qt) were measured according to Equations 1 and 2.

(1)qe =
(Co − Ce)× V

m

(2)qt =
(Co − Ce)× V

m
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Where C0, and Ce are initial and equilibrium concen-
trations of chloroform, respectively. To fit the pseudo-first-
order kinetic model of the adsorbents, the corresponding
qe and qt were fitted in Equation 3. In the following Log
(qe- qt) was plotted versus t (40, 41). So that intercept of
the straight-line produced log qe, and its slope presents the
rate constant of the pseudo-first-order adsorption rate con-
stant, K1:

(3)log (qe − qt) = logqe −
k1

2.303
t

The pseudo-second-order kinetic model was obtained
by regressing t/qt versus t (Equation 4) (42). So that the
pseudo-second order rate constant, K2, and equilibrium
adsorption capacity of the adsorbent were obtained from
intercept and slope of the regression line, respectively.
Squared correlation coefficient of the regression line gives
the goodness of fit to the adsorption kinetic models:

(4)t/qt =
1

K2 q2e
+

1

qe
t

Inter-particle diffusion model was obtained by regress-

ing qt versus t
1/2 (44):

(5)qt = Kpt
1/2 + xt

Where Kp is the inter-particle diffusion rate constant,
which can be obtained from the slope of the inter-article
diffusion model, and xt is a constant related to the quantity
of adsorption extent.

4. Results and Discussion

4.1. Characterization of Nanocomposites

To obtain structural information of the composites,
XRD patterns of the nanocomposites were taken. The re-
sults are depicted in Figure 1. Figure 1A - D indicate the
XRD patterns of the pristine ZnO, ZnO/GO, ZnO/GO/zeolite,
and GO/zeolite, respectively. As shown in Figure 1A, the ap-
peared sharp peaks are attributed to ZnO NPs (JCPDS Card
No. 036-1451). Comparing Figure 1A and B reveals the effect
of the presence of GO on the lattice structure of the pris-
tine ZnO NPs, and also the presence and absence of new
small peaks may be due to the presence of GO. Figure 1C
is related to ZnO/GO/Zeolite. It preserves the characteristic
peaks related to pristine ZnO. The remained peaks are at-
tributed to zeolite and GO. Figure 1D is related to GO/zeolite
that its peaks were at 2tetah 9.89, 11.22, 13.05, 16.96, 17.36,
20.95, 21.94, 22.45, 22.8, 26.04, 26.64, 30.03, and 32.05, at-
tributed to both of GO and zeolite. In addition, the mor-
phology of the nanocomposites was also studied (Figure
2). As shown in Figure 2A - C, ZnO NPs revealed potato-like

particles, which decorated over GO or zeolite in the case of
ZnO/GO. ZnO/GO/Zeolite (Figure 2B and C). Finally, Figure
2D showed zeolite NPs that were well dispersed within the
GO sheets. In order to obtain surface characteristics and
porosity of nanocomposites, N2- adsorption-desorption on
the nanocomposites was studied. The BET and BJH models
of the nanocomposites were obtained, and then the active
surface area, pore diameters, and pore volume of the ad-
sorbents were calculated (45-47). The results of the study
are depicted in Figure 3A and B as well as Table 1. As shown
in Figure 3A, a hysteresis loop shape revealed that the sam-
ples had mesostructured. In addition, a greater extent of
adsorption was achieved with ZnO/nanocomposites com-
pared to the pristine ZnO NPs. This may be due to the cre-
ation of the core-shell of ZnO-NPs. with zeolite and GO-
NPs, so it can cause ZnO lattice layers to be separated from
each other, which in turn causes improved porosity of the
nanocomposites. On the other hand, active surface ar-
eas for the ZnO/GO are extremely greater than the other
nanocomposites. Based on the BJH model, pore volumes
of ZnO/GO were extremely greater than pure ZnO NPs (Fig-
ure 3B and Table 1). Mean pore diameters of ZnO NPs were
increased from 116.5 nm to 140.2 nm, due to the presence
of GO. On the other hand, mean pore diameters were de-
creased in the case of ZnO/GO/zeolite and GO/zeolite, it may
be due to the penetration of ZnO NPs and GO NPs into
the zeolite tetrahedral frameworks. Hence, the decrease in
the mean pores diameter can be justified. Meanwhile, the
greater pore volume and surface area of ZnO/GO/zeolite
and GO/zeolite, compared to that of ZnO NPs, can be ex-
plained by the presence of zeolite and GO sheets, which
causes the spread of ZnO NPs over GO sheets to produce an
extensive surface. Zeolite could not help ZnO NPs to pro-
duce more extensive surfaces than GO, because of penetra-
tion of some of ZnO NPs into the zeolite frameworks, as dis-
cussed earlier.

4.2. Effect of Adsorbent Dosage

Different amounts of adsorbents were examined to in-
vestigate the effect of the adsorbent dosage on the removal
of chloroform (Figure 4). As shown in Figure 4, about 0.3 g
of the adsorbents was enough to reach the maximum chlo-
roform removal for each of the nano-adsorbents. The fig-
ure also shows that ZnO/GO could remove a greater extent
of chloroform compared to the other nanocomposites.

4.3. Kinetic Study of Chloroform Removal

Figure 5 shows the fitted data, based on the above-
mentioned adsorption kinetic models for the different ad-
sorbents. As obvious in the figure, almost all of the adsor-
bents followed the inter-particle diffusion kinetic model.

Jundishapur J Health Sci. 2020; 12(4):e107662. 3
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Figure 1. XRD patterns of ZnO NPs (A), ZnO/GO (B), ZnO/GO/zeolite (C), and GO/zeolite (D)

Table 1. Textural Parameters of Samples of The Different Nanocomposites

Sample Specific Surface Area (ap) (m2 . g-1) Mean Pore Diameter (rp) (nm) Pore Volume (Vp) (cm3 . g-1)

ZnO/GO 23.34 140.2 0.088

ZnO 8.8 116.5 0.025

ZnO/GO/Zeolite 19.2 80.3 0.046

GO/Zeolite 22.5 87.4 0.047

All of the corresponding kinetic constants of the adsor-
bents are summarized in Table 2. As shown in the table,
ZnO/GO and GO/Zeolite showed a greater adsorption rate
constant compared to the other two adsorbents. However,
the results of the isotherm study, which are provided in
the following sections, confirm the superiority of ZnO/GO
to GO/Zeolite, because of the greater maximum capacity of
the former compared to the latter.

4.4. Maximum Capacity of the Adsorbents

The maximum capacity of an adsorbent is the maxi-
mum amounts (mg) of adsorbate that can be adsorbed on

one gram of the material. Different sorbents have vari-
ous adsorption mechanism or adsorption routes. Differ-
ent adsorption isotherms are introduced by authors (48-
51). In this work, two famous adsorption models, Lang-
muir (Equation 6) and Freundlich (Equation 7), were stud-
ied for the different adsorbents (48, 49). Adsorption mod-
els of the adsorbents are shown in Figure 6. As this fig-
ure shows, almost all of the nanocomposites follow the
Langmuir adsorption model, which predicts a monolayer
physical adsorption of the chloroform on the sorbents.
This is more rational, because of the hydrophobic charac-
ter of chloroform, which makes it possible to be adsorbed
on the nanocomposites. Different isotherm parameters

4 Jundishapur J Health Sci. 2020; 12(4):e107662.
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Figure 2. FESEM images of ZnO NPs (A), ZnO/GO (B), and ZnO/GO/zeolite (C), and GO/zeolite (D)
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Figure 3. A, BET isotherm based on Nitrogen-adsorptiondesorption on the different adsorbents; B, Pore size distribution of the different nanocomposites

Jundishapur J Health Sci. 2020; 12(4):e107662. 5



Salehi-Babarsad F et al.

Table 2. Kinetic Parameters of the Different Adsorbents (Nanocomposites)

Adsorbent
composition

Pseudo-first order Pseudo-second order Interparticle diffusion

R2 K1 R2 K2 R2 Kp

ZnO 0.859 0.119756 0.835 0.000555 0.996 27.63

ZnO/GO 0.763 0.096726 0.845 0.000281 0.993 35.5

ZnO/GO/Zeolite 0.961 0.156604 0.993 0.006 0.929 27.9

GO/Zeolite 0.894 0.175028 0.928 0.0007 0.996 45.45
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Figure 4. Effect of the different nanocomposite amount on the removal percent of
chloroform, (a) ZnO/GO, (b) GO/Zeolite, (c) ZnO/GO/Zeolite, and (d) ZnO NPs

were also computed using the different isotherm models
of interest (Table 3). As indicated by the results, ZnO/GO
showed a greater adsorption capacity compared to the
other nanocomposites. As evident from Table 3, the order
of the maximum adsorption capacity of the nanocompos-
ites was predicted as follows: (ZnO/GO) > (ZnO/GO/Zeolite)
> (GO/Zeolite) > (ZnO NPs.). These results are consistent
with those earlier obtained with BET and BJH models (Ta-
ble 1).

(6)
1

qe
=

1

KL .Qmax .Ce
+

1

qmax

(7)qe = kf . C
1
n
e

4.5. Effect of the pH on the Removal of Chloroform

pH is a crucial condition for all aquatic environments.
It also can affect chemical, physical, and microbial proper-
ties. For this reason, the pH of water samples was changed
from 3 to 10. The different adsorbents showed different
trends toward the removal of chloroform in a different pH.

As indicated in the inset of Figure 7, about all of the adsor-
bents had better adsorption of chloroform in the pH range
between 7 to 8 compared to the other pHs. This is due to
the solubility of ZnO in acidic and alkaline media. ZnO/GO
and GO/Zeolite even had shown remarkable adsorption in
acidic regions because of the presence of GO in these harsh
conditions. On the other hand, in alkaline regions, the re-
moval of chloroform was diminished remarkably for all ad-
sorbents. This may be due to the negative charge of the
nanocomposites resulted from the adsorption of hydrox-
ide ions in high concentrations in these regions. Hence op-
timal pH range for the best removal percentage for all of
the adsorbents was concluded to be 7 to 8.

4.6. Regenerability of the Nanocomposites

From a commercial viewpoint, using regenerable ad-
sorbents is necessary to reduce the cost of water treatment.
Hence, the regeneration of the adsorbents is highly im-
portant. For this reason, four removal cycles were per-
formed using sixteen industrial wastewater samples that
were spiked with 50 mg.dm-3 of chloroform. Afterward,
four aliquots of 50 mL of the wastewater samples, contain-
ing chloroform, were treated with the different adsorbents
in each removal cycle. After each chloroform-removal cy-
cle, the nano adsorbents were regenerated by incubating
in an electric oven at 150°C for 1 hour, during which the
adsorbents were degassed. Then, the removal tests were
performed with the rest of the wastewater samples in the
same way. The results of the study are depicted in the in-
set of Figure 7. As shown in the figure, the approximately
adsorptive character of the nano adsorbents remained in-
tact after their repetitive usages. Indeed, the porosity of
the nano adsorbents did not change during several usages,
which confirms their stability and applicability.

4.7. Comparing ZnO/GO Nanocomposites with other Adsor-
bents

Different characteristics of the ZnO/GO nanocompos-
ite were compared with reported adsorbents used for the
removal of chloroform, and the results are summarized in
Table 4 (23, 50-52). As seen, the proposed ZnO/GO had a
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Figure 5. Kinetic models for the adsorption of chloroform on ZnO/GO, (a1-a4) concentration-time profile of chloroform removal, (b1-b4) pseudo-first-order model, (c1-c4)
pseudo-second-order model, and (d1-d4) inter-particle diffusion model for ZnO/GO, ZnO, ZnO/GO/Zeolite, and GO/Zeolite, respectively

greater maximum adsorption capacity and surface charac-
teristics compared to the other adsorbents. The ZnO/GO
showed a greater chloroform removal efficiency than the
reported adsorbents. These results can be explained by the
fact that both GO and ZnO have adsorption capacity toward

chloroform, and GO acts as good support for dispersing
ZnO NPs. Hence, the prepared nanocomposite indicated
better surface characteristics and removal efficiency com-
pared to the other adsorbents.

Jundishapur J Health Sci. 2020; 12(4):e107662. 7
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Figure 6. Different isotherm models, (a1-a4) Langmuir models, and (b1-b4) Freundlich models for ZnO/GO, ZnO NPs, ZnO/GO/Zeolite, and GO/Zeolite, respectively

Table 3. Isotherm Parameters of the Different Adsorbents for the Removal of Chloroform

Adsorbent
composition

Langmuir Freundlich

qmax KL R2 1/n KF R2

ZnO 43.47 0.025 0.997 0.651 1.853 0.983

ZnO/GO 250 0.1333 0.993 0.82 26.73 0.997

ZnO/GO/Zeolite 100 0.0125 0.994 0.803 1.686 0.994

GO/Zeolite 90.9 0.0257 0.995 0.692 3.698 0.975

Table 4. Comparison of Zno/GO Characteristics with the Reported Adsorbents Used for Chloroform Removal

Adsorbent qmax (mg. g-1) Specific Surface Area
(m2 . g-1)

Mean Pore Diameter
(nm)

Pore Volume (cm3) Chloroform Removal (%) Ref.

Snow 3.77 × 10-3 - - - - (23)

Asf 2.33 0.81 - - - (50)

Asf/Nitro 9.16 3.11 - (50)

Silica loaded AC 8.66 - - - 95 (51)

AC - 62.348 61.53 95 50 (51, 52)

AC/ZnO 86.28 15.178 80.16 0.3 80.7 (52)

ZnO/GO 250 23.34 140.2 0.088 98 This work

Abbriviations: Asf, Asphaltene; AC, Activated carbon.
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Figure 7. Regenerability of the nano adsorbents for removal of chloroform from 50 mg.dm-3 chloroform solutions after four times use (a) ZnO/GO, (b) ZnO/GO/Zeolite, (c)
GO/Zeolite,(d) Zn NPs, Inset: Effect of pH on the removal of chloroform by using the different adsorbents: (a) ZnO/GO, (b) GO/Zeolite, (c) ZnO NPs and (d) ZnO/GO/Zeolite

5. Conclusion

Different nanocomposites of ZnO-inorganic sorbents
were synthesized and used for the removal of chloroform.
N2-adsorption-desorption isotherms of the nanocompos-
ites were used to essay and compare their textural prop-
erties. The results revealed that all of the synthesized
nanocomposites are mesoporous. Active surface area, pore
size, and pore volumes of the nanocomposites were deter-
mined using BET and BJH models. Kinetic and isotherm
models of the nanocomposites also were investigated.
ZnO/GO showed the best performance to remove chloro-
form from water samples due to its superior porosity.
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