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Abstract

Background: Organophosphates (OPPs) are toxic chemicals that can cause serious health problems through poisoning water and
food.
Objectives: A very simple and fast disperser-less liquid microextraction strategy before chromatographic detection was designed
for the analysis of organophosphates in various water solutions.
Methods: A 60µL aliquot of chloroform, as extraction solvent (without using disperser), was introduced into the sample solution
by rapid injection, and the sedimented organic phase was analyzed to assay some organophosphates.
Results: Analytical characteristics, including limits of detection (0.0003 - 0.001µg.L-1), linear dynamic ranges (0.001 - 100µg.L-1), rel-
ative standard deviations (2.5 - 10), enrichment factors (up to 238), and extraction recoveries (84% - 108%), indicated the high efficacy
of the developed method for analyzing the target analytes.
Conclusions: The proposed procedure was effectively used for the analysis of the OPPs in real tap water, river water, and fruit juice
samples. In the present study, the examined analytes were in the range of 0.07 - 1.56µg.L-1.
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1. Background

Organophosphates (OPPs) are toxic chemicals that can

cause serious health problems through poisoning water

and food. These compounds can extensively control pests;

however, they also undergo fast degradation in the envi-

ronment. Therefore, various types of OPPs are extensively

used in agriculture (1, 2). The potential threats of increased

concentration of OPPS to the environment have attracted

significant attention, which has resulted in the develop-

ment of sensitive and selective detection methods. OPPs

are detected in real samples using various methods like

gas chromatography with mass detection (GC/MS) (3, 4),

high performance liquid chromatography (HPLC) (5), elec-

trochemical techniques (6, 7), micellar electrokinetic chro-

matography (2), spectrophotometry (8, 9), and spectroflu-

orimetry (10, 11). OPPs are commonly found in real samples

at low concentrations and complicated matrices. There-

fore, before performing analyses, sample treatment is es-

sential for both purification and preconcentration. In gen-

eral, sample treatment and isolation of analytes from the

matrix is an important step in the analytical procedure,

which affects the whole analytical technique. Reduced

time of sample preparation steps, the sample amount,

and the consumption of hazardous reagents and solvents

can increase the ease of operation and safety for the en-

vironment. Besides, it provides a green sample prepara-

tion procedure. In the past few decades, several miniatur-

ized extraction techniques have been developed as alterna-

tives to classical methods of sample preparation, namely

liquid-liquid extraction (LLE) and solid phase extraction

(SPE). However, these techniques contain disadvantages

such as large consumption of time, toxic organic solvents,

and sample amounts (12). The extraction strategies like

solid-phase microextraction (SPME) (13) and micro solid-

phase extraction (µ-SPE) (3) have been developed for sam-
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ple treatment to improve the SPE method.

Besides, a number of new liquid microextraction

methods are introduced as alternatives to LLE, such as dis-

persive liquid-liquid microextraction (DLLME) (14), hollow-

fiber liquid-phase microextraction (HF-LPME) (15), and sin-

gle drop microextraction (SDME) (16).

Among the different types of liquid microextraction

methods, the DLLME strategy presents some appealing fea-

tures such as simplicity, rapidity, and high preconcentra-

tion factor (17). In this technique, a water-immiscible or-

ganic solvent (extractant) is mixed with a dispersive sol-

vent, which is water-miscible. The mixture is entered into

an aqueous sample solution by rapid injection, forming a

cloudy phase with fine droplets of the extractant (18, 19).

DLLME technique has been operated via different strate-

gies for extraction of OPPs from real matrices (4, 18, 20-

26). In all of these procedures, a disperser solvent (0.5 -

1.5 mL) has been used to disperse an organic extraction

solvent in the whole sample solution, which accelerates

the extraction of analytes. However, the polarity of the

sample solution relatively decreases in the presence of a

disperser solvent, which in turn increases the solubility

of lipophilic analytes in a water medium that causes de-

creased extraction efficiency (27). In addition, the exclu-

sion of a disperser solvent, which is consumed in fairly

larger volumes compared to an extraction solvent, will

make the extraction procedure greener. Ultra-sonication

(28), vortex (29), and air agitating (27) of the sample solu-

tion are proposed alternatives of the disperser solvent. Al-

though these techniques have been successful, being time-

consuming is their main drawback, particularly regarding

the case of the air-agitated method.

2. Objectives

In the present study, the elimination of the disperser

solvent in the DLLME procedure using a semi-soluble ex-

traction solvent has been accomplished for the first time.

Then, the proposed disperser-less DLLME (DL-LLME) tech-

nique coupled with GC/MS was exploited to separate and

determine three OPPs residues, namely malathion (MT),

methyl parathion (MP), and fenitrothion (FT), in various

water and fruit juice samples.

3. Methods

3.1. Materials and Apparatus

All selected OPPs were purchased from Fluka, and their

stock solutions in methanol (500 mg.L-1) were kept at -20°C.

Deionized water was used to prepare the working solu-

tions by step-by-step dilution of the stock solutions. All sol-

vents, including methanol (MeOH), acetonitrile (ACN), ace-

tone (ACT), chloroform (CLF), carbon tetrachloride (CTC),

and dichloromethane (DCM), were obtained from Merck

(Germany). Heidolph vortex model REAX top (Germany)

and KUBOTA Centrifuge Centrifuge Model KN-70 (Japan)

were used for mixing and centrifugation of the sample so-

lutions. A Mettler TOLEDO model Seven Compact pH meter

(Germany) was used to adjust the pH values.

3.2. Chromatographic Conditions

GC analysis was conducted using the Agilent 7890A in-

strument (Palo Alto, CA, USA) with an Agilent 5975C mass

detector (electron impact (EI) mode with ionization en-

ergy of 70 eV). The temperatures of the injection port (in

the splitless mode), Ion source, quadruple, and GC/MS in-

terface were set at 250°C, 230°C, 150°C, and 280°C, respec-

tively. An HP-5MS column (30 m × 0.32 mm) with a film

thickness of 0.25 µm was used for OPPs separation. The

flow rate of carrier gas helium 99.999% was 1 mL.min-1.

With a solvent delay of 7 min, the total separation time was

22 min. The selected ion monitoring (SIM) mode with the

m/z values of 125, 263, and 277 for MT, MP, and FT, respec-

tively, was used for the analysis.

3.3. DL-LLME Experiments

A graphical presentation of the DL-LLME strategy is dis-

played in Figure 1. For the extraction procedure, a 5.00

mL solution of the OPPs mixture in concentrations ranging

from 0.001 to 100 µg.L-1 at pH = 2 was transferred into the

conic screw-capped glass tubes. Then, 60µL aliquots of ex-

traction solvent (CLF) were rapidly injected into these solu-

tions and vortexed for 5 sec to homogenize the sample so-

lution. The obtained cloudy phase solutions were then cen-

trifuged for 3.0 min at 5000 rpm to separate the organic

phase (CLF) from the aqueous phase. The volume of the or-

ganic phase was obtained using a microsyringe. Afterward,

1 µL of the organic phase was injected into the GC/MS.

3.4. Real Water and Juice Samples

The tap water and the river water samples were col-

lected from the drinking water of Ahvaz City and Karun

River (Ahvaz, Khuzestan Province, Iran). Grape and apple

juices were provided from local supermarkets in Ahvaz. All

real samples were kept at 4°C after filtering by a 0.45 µm

membrane filter. Two point five milliliter of real sample
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Figure 1. Schematic illustration of DL-DLLME procedure: A and B, injection of the extraction solvent into the aqueous sample and formation of the fine droplets of extraction
solvent in the aqueous phase; C, vortexing the mixture of extraction solvent and aqueous sample for 5 sec; D, centrifugation of the mixture for 3 min; E and F, removing the
aqueous phase using a syringe and obtaining the sedimented organic phase; and G, retracting the sedimented phase and injection into the GC-MS.

was spiked with the appropriate concentration of the stan-

dard OPPs and was diluted up to 5 mL with the deionized

water. Then, the OPPs were extracted and analyzed accord-

ing to the optimized procedure. Besides, non-spiked sam-

ples were subjected to the proposed method in parallel.

Each experiment was carried out in triplicate.

3.5. Extraction Recovery (ER) and Enrichment Factor (EF)

The ratio of OPP concentration in the organic phase

(Corg) after liquid microextraction to the initial concentra-

tion of the analyte (Caq) in sample the solution was consid-

ered as enrichment factor (EF):

(1)EF =
Corg

C aq

It worth noting that Corg can be calculated via a stan-

dard curve, which is constructed by direct analysis of the

OPPs standard solutions in CLF (0.1 - 250 µg.L-1) using

GC/MS.

The percentage of the total moles of the extracted OPPs

into the organic phase (norg) is called ER. This term is re-

lated to the EF via the following equation:

ER =
Corg × Vorg

Caq × Vaq
× 100 = EF × Vorg

Vaq
× 100 (2)

(2)

4. Results and Discussion

4.1. The Optimization of DL-LLME Operation Conditions

To obtain more EFs and ERs, some extraction param-

eters that can influence the performance of the microex-

traction, including pH, ionic strength, extraction solvent

(type and volume), presence of disperser solvent, and cen-

trifugation time, were investigated in details.

Jundishapur J Health Sci. 2020; 12(4):e109594. 3



Rahbar N et al.

4.1.1. Effect of pH

The influence of the solution pH on the microextrac-

tion performance was examined in the range of 2 - 10 (5

mL of OPPs solution, 10 µg.L-1; the volume of CLF, 50 µL; 5

min centrifugation time, and without the use of disperser

solvent). As shown in Figure 2A, the best value for extrac-

tion efficiency is achieved at pH = 2. The reason might be

due to the existence of high concentrations of ions (H+ and

Cl- ions), which increases the ionic strength of the solution

leading to the extraction of target analytes into the organic

extractant solvent.

4.1.2. Extraction Solvent: Type and Volume

An appropriate extraction solvent should have some

particular properties including high density, low solubil-

ity in aqueous solution, and extraction capability for the

analyte. Three solvents (namely DCM, CLF (relatively low

polar solvents), and CTC (nonpolar solvent)) with high den-

sities were chosen and compared with each other using DL-

LLME (5 mL of OPPs solution, 10 µg.L-1; the volume of ex-

traction solvent, 50 µL; pH = 2; 5 min centrifugation time,

and without the use of disperser solvent). As seen in Fig-

ure 2B, the best performance was obtained with CLF. It pos-

sesses polarity index comparable with DCM (polarity index

sequence: CLF (4.1) > DCM (3.5) > CTC (1.56)). However,

the partial solubility of CLF (8.1 g.L-1 in 20°C) is significantly

lower than DCM with 17.5 g.L-1 solubility in water, and thus,

it can be dispersed in the solution, and good performance

is achieved in the DL-LLME process. Cases with both more

soluble solvent (DCM) and lower soluble solvent (CTC with

0.8 g.L-1 solubility) are accompanied by decreased extrac-

tion efficiency. From this observation, it can be concluded

that the solubility of the extraction solvent is a more crit-

ical parameter in the DL-LLME procedure. The reason can

be attributed to the lower tendency of OPPs for extraction

in the presence of more soluble solvent (DCM) because of

increased miscibility of the solvent with the sample solu-

tion. On the other hand, the presence of nearly insolu-

ble solvents like CTC is associated with the immiscibility

of the sample solution as well as the decreased volume of

the solvent. To optimize CLF volume, further experiments

were performed with various volumes (µL) within 50 - 100

range. As shown in Figure 2C, the results revealed that the

best microextraction result was achieved with 60 µL CLF

and this optimum volume of extraction solvent was used

in subsequent experiments. In volumes lower than 50 µL,

the obtained organic phase was too little. After applying

larger volumes of the extractant, analytical signals were

decreased, mainly due to the decreased concentrations of

OPPs in the sedimented phase.

4.1.3. Presence of the Disperser on Microextraction Efficiency

The addition of 30 µL disperser solvent and its effects

on the extraction performance were studied using MET,

can, and ACT (as disperser) according to the optimized con-

ditions. As displayed in Figure 3A, the best extraction effi-

ciency was obtained in the absence of the disperser. The ob-

servations indicated that the extraction performance was

considerably decreased in the presence of disperser sol-

vent even at low volumes. This observation might be due

to the decreased aqueous solution polarity. As a result,

administering larger volumes of disperser (i.e., > 30 µL)

was associated with considerable declines in the volume of

the sedimented organic phase, which can be attributed to

the increased solubility of CLF in this solution, which pos-

sesses a polarity lower than that of the solution without

disperser. Consequently, when the extraction solvent con-

tains suitable partial solubility in the aqueous sample solu-

tion, the presence of another reagent as disperser solvent

causes an adverse effect on extraction efficiency, and there-

fore, it should be removed from the DLLME procedure.

4.1.4. Salt Addition

In some DLLME procedures, adding salt to the sample

solution may enhance the efficiency of the extraction. To

test the salt effect on the microextraction performance,

various concentrations of NaCl in the range of 0% - 10%

(w/v) were used in the DL-LLME procedure. As seen in Fig-

ure 3B, the salt addition decreased the analytical signals

of OPPs. These observations can be possibly due to the

increased viscosity of the sample solution and the sub-

sequent reduction in the diffusion rate of OPPs from the

aqueous solution into the organic phase (27, 30). Accord-

ing to the results, the subsequent experiments were car-

ried out without adding salt (31).

4.1.5. The Centrifugation Time Effect

After injecting the extraction solvent, the mixture

should be centrifuged to sediment the organic phase.

Therefore, we investigated the effect of various centrifuga-

tion times (3 to 10 min) at 5000 rpm. As shown in Figure

3C, centrifugation times longer than 3 min were associated

with decreased extraction efficiency as well as lower analyt-

ical signals. Moreover, in centrifugation times longer than

3 min, the sedimented organic phase volume was slightly
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reduced, possibly due to the higher dissolution of the or-

ganic phase in the aqueous phase in longer durations.

4.2. Method Validation

To validate the DL-LLME method, some important char-

acteristics, including limits of quantification (LOQ) and

detection (LOD), precision, accuracy, ER, EF, and linear

dynamic range (LDR), were considered. The calibration

curves were constructed by analyzing standard OPPs solu-

tions at selected levels ranging from 0.001 to 100µg.L-1. The

regression coefficients (R2) were used to evaluate the lin-

earity goodness of the standard curves. The LODs (0.0003-

0.001 µg.L-1) and LOQs (0.001 - 0.003 µg.L-1) were obtained

using signals of known concentrations of OPPs solutions

based on signal to noise ratios of 3 and 10, respectively. Two

LDRs were achieved for all selected OPPs in this method,

and good linearity was observed with correlation coeffi-

cients greater than 0.9970. The features of the analytical

strategy are provided in Table 1. To obtain the precision and

accuracy of values, the quality control (QC) samples (0.05,

5, and 50 µg.L-1) were analyzed in five runs (on the same

day) and on three consecutive days. The results (Table 2)

indicated the good reproducibility of the method with the

relative standard deviations (RSD %) in the ranges of 2.5% -

9.3% (intra-day precision) and 3.5% - 10.0% (inter-day preci-

sion).

4.3. Real samples Analysis

To assess the capability of the proposed method to ex-

tract and determine the OPPs in real matrices, the water

and juice samples were analyzed by the optimized analyt-

ical procedure. Matrix effect can be used to compare the

response of the detector signal for the analytes in real and

solvent sample solutions (26). At first, the matrix-matched

calibration curves were obtained in order to attain accu-

rate results and determining the extent of matrix effects.

These curves were constructed using the solutions contain-

ing the real samples fortified with standard OPPs, and their

analytical features were compared to external calibration

curves. According to the findings, their slopes were sig-

nificantly different (> ± 20%). Therefore, the concentra-

tions of OPPs in the spiked real sample solutions were ob-

tained from the matrix-matched calibration curves. After-

ward, the water and juice samples were spiked with OPPs

at the levels of 0.5, 5, and 50 µg.L-1 to calculate the recov-

ery data and to test the reliability of the method. The re-

sults of the analysis of the real sample (after subjection

to the optimized procedure) are provided in Table 3. As

shown, the recoveries (84% - 108 %) are in the acceptable

range, and it can be concluded that the developed method

can be successfully exploited for the real samples analysis

with suitable accuracy (-20% to +20%). The typical GC/MS

chromatograms obtained from water and juice samples

(spiked with 5 µg.L-1 of each OPP) are illustrated in Figure

4.

4.4. Comparison of DL-LLME with the Other Techniques

The analytical performances of the developed DL-LLME

strategy in comparison with some published DLLME tech-

niques for the extraction and analysis of OPPs are pre-

sented in Table 4. As mentioned before, in the present

study, the LOQs, LODs, and RSDs % were better or compa-

rable to the currently available alternatives.

5. Conclusions

The current study presented a simple, rapid, and

environment-friendly strategy with satisfactory EFs and

ERs, namely DL-LLME. A highly sensitive and selective

methodology was obtained by the coupling of the DL-LLME

procedure by the GC/MS method. The analytical features

of the presented microextraction procedure, such as LOQs,

LODs, and RSDs % were found to be comparable or better

than the other strategies for the analysis of OPPs. As seen,

for this work, the exclusion of disperser solvent and too

short extraction time (< 4 min) are two main advantages

of this method over the other compared protocols, which

could significantly improve EFs, rapidity, and greenness of

the process.
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Table 1. Analytical Features for Determination of OPPs by the Current Methoda , b

Pesticide LOD LOQ LDR1
A R1

2B LDR2
C R2

2D EFE ERF

Fenitrothion 0.0003 0.0010 0.001 - 0.1 0.9992 0.1 - 100 0.9977 173 ± 17 69 ± 5

Methyl parathion 0.0010 0.0030 0.003 - 0.1 0.9986 0.1 - 100 0.9970 238 ± 10 95 ± 4

Malathion 0.0010 0.0030 0.003 - 1 0.9997 1 - 100 0.9978 153 ± 24 61 ± 6

aValues are expressed as mean ± SD.
bA and C, Linear dynamic range (µg.L-1) in low and high concentrations of OPPs in deionized water; B and D, regression coefficients of calibration curves in two regions;
E, enrichment factor ± standard deviation (C = 1 µg.L-1 , n = 3); F, extraction recovery ± standard deviation (C = 1 µg.L-1 , n = 3).

Table 2. Relative Recoveries and RSDs% for QC Samples on Three Spiked Standard Levels of OPPs in Deionized Watera

s AddedA FoundB RecoveryC
RSD%

Intra-day (N = 5) Inter-day (N = 3)

Fenitrothion

0.050 0.045 90.0 7.4 9.1

5.000 4.730 94.6 3.2 5.4

50.000 48.834 97.7 2.5 3.5

Methyl parathion

0.050 0.046 92.0 9.3 10.0

5.000 5.231 104.6 4.8 6.1

50.000 51.720 103.4 3.4 4.1

Malathion

0.050 0.044 88.0 8.4 9.5

5.000 4.679 93.6 4.1 6.7

50.000 49.102 98.2 3.1 4.9

aA, Spiked concentration of OPPs (µg.L-1); B, recovered concentrations of OPPs (µg.L-1) (n = 3); C, relative recovery (%).
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Figure 4. The typical chromatograms of: A River water; B, apple juice; C, grape juice, and tap water samples after being spiked with OPPs at 5 µg.L-1 .
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Table 3. Investigation of Matrix Effect in the Spiked Real Samples with the Proposed Method (All Real Samples Were Diluted with Deionized Water at a Ratio of 1:2)a

Sample AddedA
Fenitrothion Methyl Parathion Malathion

FoundB Recovery, %C Found Recovery, % Found Recovery, %

River water

0 1.26 - 1.21 - 0.38 -

0.50 0.46 92.0 0.47 94.0 0.54 108.0

5.00 5.35 106.4 4.89 97.8 4.72 94.4

50.00 51.49 103.0 48.47 96.9 49.76 99.5

Tap water

0 0.12 - 0.12 - 0.07 -

0.50 0.42 84.0 0.43 86.0 0.47 94.0

5.00 5.15 103.0 5.11 102.2 4.91 98.2

50.00 50.54 101.1 48.33 96.66 51.34 102.7

Grape juice

0 0.14 - 0.08 - 0.24 -

0.50 0.47 94.3 0.54 107.4 0.45 89.8

5.00 5.25 104.9 4.86 97.2 4.76 95.2

50.00 49.61 99.2 49.35 98.7 48.71 97.4

Apple juice

0 0.61 - 1.56 - 0.99 -

0.50 0.54 107.3 0.53 105.6 0.46 91.7

5.00 4.88 97.6 4.72 94.3 5.22 104.3

50.00 49.78 99.6 49.77 99.5 48.30 96.5

aA, Spiked concentration of OPPs (µg.L-1); B, recovered concentrations of OPPs (µg.L-1); C, relative recovery (%).

Table 4. Comparison of the Current Method with the Some Reported Studies in OPPs Detection

Method Matrix LDR, µg.L-1 LOD, ng.L-1 Extraction time, min Recovery, % References

DLLME-SFO/HPLC-UV a Summer crops 5 - 800b 1000 - 4000b 10 88 - 110 (20)

NHS-DLLME/GC-MSc Water - 3.3 - 8.0 10 50 - 91 (25)

ET-DLLME/GC-FIDd Water-juice 2 - 1000 0.82 - 2.72 > 9 75 - 99 (4)

UA-DLLME/S-MEKCe Medicinal plants 25 - 2500b 2000 - 8000b > 6 83 - 122 (2)

DLLME/UPLC-MS/MSf Wine and beer 0.1 - 100 0.48 - 18.8 4 76 - 122 (1)

DLLME-GC/MS Fruit, vegetables and herbal medicines 0.1 - 1000 0.02 - 0.23 > 9 70 - 119 (21)

DL-DLLME-GC/MS Water and juice 0.001 - 100 0. 3 - 1 ~ 3 84 - 108 Present work

aDispersive liquid-liquid microextraction/solidification of floating organic drop/high-performance liquid chromatography-UV detection.
bµg.kg-1 .
cNonhalogenated solvents/dispersive liquid-liquid microextraction/gas chromatography-mass spectrometry.
dElevated temperature dispersive liquid-liquid microextraction/gas chromatography-flame ionization detection.
eUltrasound-assisted dispersive liquid-liquid microextraction/sweeping micellar electrokinetic chromatography.
f Dispersive liquid-liquid microextraction/ultra-high-performance liquid chromatography-tandem mass spectrometry.
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