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Abstract

Background: Escherichia coli is recognized as a common cause of infection. Long-lasting presence of bacteria on biotic and abiotic
surfaces and failure of bacterial eradication are predicted by biofilm production. Some extracellular frills of E. coli can be implicated
in productive events, leading to biofilm formation by surface colonization.
Objectives: In the present study, correlation of csgA (encoding curli fimbriae) and fimA (encoding a large subunit of type I fimberiae)
gene expression with biofilm formation of extraintestinal bovine pathogenic E. coli strains was evaluated in different enrichment
media.
Methods: The microtiter plate-based crystal violet method was applied to examine the biofilm production of 30 E. coli strains in
Luria-Bertani (LB) and Brain-Heart Infusion (BHI) broth with 1% sucrose. PCR assay was performed to determine the presence of the
studied genes.
Results: According to the results, 100% of isolates contained csgA genes, and 96.7% contained fimA genes. Using the BHI medium
with 1% sucrose, 53.3% and 16.6% of strains were average and strong biofilm producers, respectively. On the other hand, by using the
LB medium, 66.6% of isolates were poor biofilm producers, whereas none were strong biofilm producers.
Conclusions: The BHI medium containing 1% sucrose was better detected in biofilm production, compared to the LB medium. Since
the studied genes were present in non-biofilm producing isolates, the correlation of these genes with biofilm-producing ability is
questioned.
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1. Background

Escherichia coli (E. coli) are facultative anaerobic bac-
teria, which are Gram-negative, rod-shaped, and motile
by peritrichous flagella. Common classification of E. coli
species is based on the mechanisms of pathogenicity, vir-
ulence factors, O and H antigenic serotyping, and clini-
cal syndromes (1). E. coli may be expressed in different
virulence factors related to different pathotypes, isolated
from bovine infections, such as diarrhea and septicemia in
calves and urinary infection, metritis, and mastitis in cows.

Microbial cell colonization of biofilms occurs on sur-
faces, and gentle rinsing cannot remove them. The simi-
lar structure of biofilms to the polysaccharide matrix ma-
terial can support the survival and growth of bacteria in
sessile environments (2). Pathogenic bacterial biofilms on
indwelling devices or tissues cause infections and increase

antimicrobial resistance and host immune responses (3).
Production of these bacteria on medically relevant sur-
faces may be difficult to eradicate, resulting in the stability
of infection (4).

Previous studies show that subinhibitory concentra-
tions of antibiotics can trigger the formation of biofilms
(5, 6). Pathogenic bacteria are embedded in a self-produced
extracellular protein matrix and some micromolecules, in-
cluding exopolysaccharide (EPS) and DNA (7, 8). Various
definitions of biofilm indicate three major constituents,
including the surface, microbes, and slime EPS; biofilm
production can be terminated by removing any of these
constituents (9).

Several superficial proteins in different organisms con-
tribute to early biofilm formation and attachment to eu-
karyotic cell hosts. These surface determinants contribute
to biofilm formation (e.g., flagella, autotransporter pro-
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teins, fimbriae, curli, EPS, and F-type conjugative pilus)
(10). Synthesis of bacterial surface appendages (including
flagella) in early stages of biofilm formation allows motil-
ity and reversible attachment, as major determinants of
biofilm structure. In the second stage, adhesive organelles,
such as type I fimbriae, which are encoded by fim genes,
and curli fimbriae, encoded by csg operon, contribute
to biofilm formation for irreversible attachment. At this
stage, flagella synthesis is repressed (11, 12).

Curli are wiry, long, and thin protein fibers on bacte-
rial surfaces (13). They not only improve the binding po-
tential to surfaces, such as polystyrene, glass cover slips,
and stainless steel in some Enterohemorrhagic Escherichia
coli (EHEC) strains, however, they also have a greater capac-
ity to bind intestinal cells in comparison with non-curli-
producing strains (14). In some previous studies, associa-
tion of biofilm formation by extraintestinal E. coli and dif-
ferent adhesins such as curli has been reported (15). Var-
ious bacterial species are known to form biofilms, which
bacterial biofilm formation is clearly preferred in the ma-
jority of nutrient-sufficient environments.

2. Objectives

This study examined the biofilm-producing ability of
pathogenic strains of E. coli via microtiter-plate crystal vio-
let method in two different media and investigated its cor-
relation with csgA and fimA gene expression.

3. Methods

3.1. Pathogenic E. coli Isolation

E. coli was isolated from the different infections of
cattle (metritis, mastitis, and urinary infection) in the
Khuzestan Province. After culturing the samples on blood
agar, they were incubated at 37°C for one day. Suspicious
colonies were again streaked on blood agar and examined
by oxidase test, catalase test, Gram staining, and biochem-
ical tests (i.e., MacConkey, triple sugar iron agar, urease,
sulfur-indole motility, phenylalanine deaminase, simmon
citrate, lysine iron agar, and methyl red Voges-Proskauer
tests) (16). Generally, E. coli is a normal flora of some organs
in animals and humans. Therefore, identification of E. coli
as the main pathogen in clinical samples is important.

3.2. Biofilm Assay

The modified technique described by Stepanovic et al.
was used for the assessment of biofilm-producing ability
on polystyrene microtiter plates (17). The positive control
was E. coli ATCC 25922. After separately growing the iso-
lates on Brain-Heart Infusion (BHI) broth with 1% sucrose

(Merck, Germany) and Luria-Bertani (LB) broth medium,
they were incubated for one day at 37°C. Then, 100 micro-
liter (µL) of overnight cultures, were added to 1 milliliter
(mL) of fresh BHI broth (1) containing 1% sucrose, as well
as LB broth. Following that, 200 µL of bacterial suspen-
sion (0.5 MacFarland) was incubated in triplicate on ster-
ile, flat-bottomed, polystyrene microtiter plates (96 wells;
Maxwell, China). Sterile, supplemented BHI and LB broth
were used as negative controls in triplicate.

After 24 hours of incubation at 37°C, microtiter plates
were aspirated and washed by 300 µL/well of sterile nor-
mal saline three times. After drying, for fixation of prob-
ably forming biofilms, 200 µL of methanol was used
for 15 minutes. Afterwards, methanol was removed and
the plates were dried at ambient temperature. Biofilm
staining was performed using 200 µL of crystal violet 2%
(Hucker’s solution). After five minutes, washing with dis-
tilled water and drying at ambient temperature were done.
An enzyme-linked immunosorbent assay (ELISA) reader
(Biotek SX2, USA) was used to measure the absorbance at
600 nanometer (nm) after adding ethanol-acetone (discol-
oring solution; 200 µL) for 15 minutes.

For each strain, the arithmetic mean of optical den-
sity (OD) in three wells was compared with the mean ab-
sorbance of negative controls (ODnc). Biofilm formation
was classified as follows: strong (4.ODnc < ODs); moderate
(2.ODnc < ODs < 4.ODnc); poor (ODnc < ODs < 2.ODnc);
and no production (ODs < ODnc) (17, 18).

3.3. Polymerase Chain Reaction (PCR) Assay

According to a study by Silva et al. PCR assay was
performed to identify curli (csgA) and Type I fimbria (fimA)
genes in the isolated E. coli. From each strain, DNA was
first extracted through boiling the bacterial suspension
in tris-EDTA (TE) buffer with 2-mercaptoethanol (2%). Fol-
lowing centrifugation, the supernatant of suspension
was used as the DNA source. Silva et al. designed specific
primers for fimA and csgA genes. The specific primers
for csgA gene included 5’-ATCTGACCCAACGTGGCTTCG-
3’ and 5’-GATGAGCGGTCGCGTTGTTACC-3’, which de-
tected the 178-bp segment. The specific primers
for fimA gene, which amplified the 119-bp segment,
were 5’-CTCTGGCAATCGTTGTTCTGTCG-3’ and 5’-
GCAAGCGGCGTTAACAACTTCC-3’.

The PCR assay was performed in a total volume of 25
µL, including bacterial DNA (5 µL), forward and reverse
primers (1 µL; 10 pmol/L), 2X PCR Master Mix (12.5 µL; Am-
pliqon), and nuclease-free water (5.5 µL). The assay in-
cluded a four-minute cycle at 94°C; followed by 30 cycles
for 30 seconds at 94°C, for 30 seconds at 60°C, and for 30
seconds at 72°C, as well as a final four-minute extension at
72°C in a thermal cycler (Eppendorf, Germany). E. coli ATCC
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25922 and nuclease-free water were used as positive and
negative controls, respectively. Via electrophoresis on 1%
agarose gel (Max Pure, Spain), the PCR products were visu-
alized. Then, a UV transilluminator (UVtech, Germany) was
used for staining (safe stain 1 × SinaClon) (19).

4. Results

After collection of 30 E. coli isolates via cultivation of
64 clinical samples (mostly metritis samples; 83.3%), their
biofilm-producing ability was evaluated using modified
microtiter plates, presented by Stepanovic et al. Most
isolates (66.6%) were poor biofilm producers in the LB
medium, whereas in the BHI medium containing 1% su-
crose, most isolates (53.3%) were moderate biofilm produc-
ers. In addition, the number of non-biofilm producing iso-
lates was lower in the BHI medium (16.6%), compared to the
LB medium (26.6%).

No isolate could strongly produce biofilm in the LB
medium, while 16.6% of the isolates showed strong poten-
tials. In fact, the BHI medium containing sucrose 1% had
a greater biofilm-formation potential in comparison with
the LB medium. Different levels of biofilm production by
the studied media are demonstrated in the columns of Fig-
ure 1. According to the PCR assay, as demonstrated in Fig-
ures 2 and 3, all isolates (100%) were carriers of csgA gene,
while only one isolate contained no fimA gene (3.3%) (Fig-
ures 2 and 3). Comparative diagram of the prevalence of
studied genes is demonstrated in Diagram 1. In this re-
search, all isolates with different biofilm-producing abili-
ties contained csgA and fimA genes; therefore, the presence
of csgA and fimA genes had no correlation with the biofilm-
producing ability.
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Figure 1. Comparison of biofilm inducing ability of LB medium (Blue) and BHI
medium (Red) based on biofilm producing ability scale (Negative, Weak, Moderate
and Strong) and number of studied strains.

Figure 2. CsgA gene in E.coli isolates; lane 1: 100 bp ladder; lane 2: positive control
(178 bp); lane 3: negative control; lanes 4, 5, 6, 7: positive isolates.

Figure 3. FimA gene in E.coli isolates; lane 1: 100 bp ladder; lane 2: positive control
(119 bp); lane 3: negative control; lanes 4, 5, 6, 7: positive isolates.

5. Discussion

Biofilm-producing bacteria cause various infections in
humans and animals. Resistance of biofilm-producing
bacteria to antibiotics and disinfectants is 500 - 5000 times
higher than that of the planktonic type (20). Bacteria can
be protected by the expression of specific resistance genes,
besides the production of a large quantity of EPS during
slow biofilm production (8). Dispersal of the planktonic
type is required in new locations for biofilm production
and colonization (21). The detected extraintestinal E. coli
genotype may indicate the binding ability of E. coli strains
to eukaryotic cells.

The improved binding ability of E. coli isolates to eu-
karyotic cells was indicated by the genotype of these ex-
traintestinal isolates. Various surface organelles and ex-
tracellular molecules contribute to biofilm development
of E. coli, including curli fimbriae, Type I pili, and flagella
(22, 23). In several studies, correlation of different viru-
lence factors in some bacteria with biofilm-producing abil-
ity was evaluated (24-27). Biofilm-producing ability has
been examined by different quantification methods, in-
cluding the commonly used microtiter plate systems (17,
28, 29). Biofilm formation by microtiter plate systems has
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been used for many different organisms and strains (18,
28, 30). Several studies have assessed the effects of enrich-
ment medium type on biofilm assays. However, regulation
of biofilm synthesis is a very complex process and there is
scarce information in different species.

In this study, biofilm formation of 30 bovine extrain-
testinal E. coli isolates was assessed using the microtiter-
plate crystal violet method in two culture media (LB and
BHI + %1 sucrose), and correlation of attachment factors
(Type 1 fimbria and curli fimbria) with biofilm-producing
ability was examined in the isolates. By using two different
culture media (LB and BHI + %1sucrose) in the microtiter
plate system, 73.4% and 83.4% of the isolates were produc-
ers of biofilm in LB and BHI + %1 sucrose media, respectively.

The level of biofilm production was higher in the BHI
medium containing sucrose (16.6%, strong production;
53.3%, moderate production) in comparison with the LB
medium (0%, strong production; 66.6%, poor production).
Some studies have examined the impact of enrichment
medium type in biofilm assays. In this regard, Stepanovic
et al. and Samet et al. found BHI medium to be superior
to others (17, 31). In the study by Samet et al. BHI medium
supplemented with 1% sucrose was used in biofilm pro-
duction. In addition, no association was observed in
uropathogenic E. coli strains between csgA and fimA genes.

Moori Bakhtiari and Javadmakoui in their studies
detected no correlation between the biofilm-producing
ability and presence of fimA and csgA genes in human
uropathogenic E. coli strains. They recommended the BHI
medium containing 1% sucrose for the study of biofilm-
producing ability of these strains (32). In a study by Rijavec
et al. biofilm production by pathogenic E. coli had no corre-
lation with the presence of papC, usp, and sfa/foc virulence
genes. However, Naves et al. showed that strong biofilm-
producing strains of E. coli had a higher frequency of papG,
sfa/foc, papC, hlyA, focG, and cnf1 genes (33, 34).

5.1. Conclusions

Since biofilm production is affected by different envi-
ronmental factors, similar to the species and type of bac-
teria, extensive research is necessary on these isolates. In
addition, considering the lack of association between the
biofilm-producing ability and studied genes, evaluation of
other involved genes is recommended.
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