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Abstract

Background: Increases in fossil fuel consumption after industrial revolution has caused environmental problems and human dis-
eases, and it is vital to replace fossil fuels by biofuels, not only for sustainable energy production, but also for the survival of earth
and human lives.
Objective: Today, algae have become a potential source of biofuels to supply sustainable energy. Sargassum species are among
the most predominant brown macro-algae in seas. Hydrothermal liquefaction is a promising process in biofuel production from
biomass, which uses less energy to produce biofuel compared to other biofuel production techniques. The main objective of this
paper, is the extraction of bio-oil from Sargassum macro-algae.
Methods: The hydrothermal liquefaction of Sargassum sp. was performed under three temperature conditions of 250, 300 and
350°C, both with and without using NiFe2O4 as a catalyst. The GC-MS and FTIR analysis performed to analyze the obtained bio-oil.
Results: Maximum liquefaction yield for the non-catalytic and catalytic process was 6.85 and 7.20%, which occurred at 300 and 350°C
respectively. The obtained bio-oil has zero sulfur and low nitrogen (~ 4%) and oxygen (~ 10%) content, which implies that in terms of
human health, the bio-oil will be healthy with some upgrading. The bio-oil was mainly composed of n-Hexadecanoic acid (57.86%)
followed by tetradecanoic acid (5.12%).
Conclusions: According to the obtained results from this research, obtained the bio-oil requires upgrading to be useful as biofuel.
Also, NiFe2O4 nanoparticles increased the bio-oil yield and are useful to produce magnetic bio-char.
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1. Background

After the industrial revolution, fossil fuels became the
main source of energy for humankind (1). Increased fossil
fuel consumption has resulted in higher SOx, NOx, and CO2

emissions, leading to human health problems and global
warming (2). In addition, the excess use of fossil fuels in the
past decade has led this source of energy to depletion (3).
Burning fossil fuels releases SO2, NO2, and other toxic sub-
stances such as formaldehyde and benzene, which all dam-
age the human respiratory system and lungs and cause dis-
eases like bronchitis, asthma, and emphysema (4, 5). The
aforementioned problems give good reasons for research
to find less harmful biofuels.

Until today, different kinds of biomass such as corn,
sugar cane, soybean, coconut, jatropha, etc. have been
used as feedstock to produce biofuels (6). These biomasses
are known as the first and second biofuel generations,

which cannot meet the worldwide demand because they
have some challenges such as being also used as human
food, high production cost, limited sources of land and wa-
ter, production efficiency, and sustainable feedstock sup-
ply (7, 8). Algae (micro and macro), also known as the third
biofuel generation, are considered a promising feedstock
for the production of biofuels (9). The average photosyn-
thesis efficiency of algae is higher than that of terrestrial
plants (10). In addition, algae do not compete for land or
human food resources, use solar energy, fix carbon dioxide
from the atmosphere, and synthesize carbohydrates and
lipids, which can be extracted for biofuel production (11).

Hydrothermal liquefaction (HTL) technique is the con-
version route of wet biomass to bio-oil under subcritical
conditions. HTL is preferred over pyrolysis in the conver-
sion of biomass to bio-oil due to the lower reaction tem-
perature (300°C - 375°C) and using water as the reaction
medium, reactant solvent, and catalyst (12). Using water
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as the solvent and wet biomass as the feedstock are the
main advantages of the HTL process in comparison with
other conversion techniques, which decreases the conver-
sion costs of drying (13). However, since HTL occurs in a sub-
critical water environment, the corrosion of equipment is
one of the disadvantages of this process (14). In addition,
in order to use bio-oil as a biofuel, catalytic upgrading is
required (15).

Seaweeds can be classified into three taxonomic
classes, including brown algae (Phaeophyta), green algae
(Chlorophyta), and red algae (Rhodophyta) (16). Sargassum
is a widespread brown macroalgae that could be found in
the coastal areas, offshore platforms, and floating on seas;
they also can be cultivated in artificial ponds. Compared
to microalgae, macroalgae are considered interesting
biomasses for biofuel production due to their low breed-
ing cost and easy harvesting (17). Milledge and Harvey
reported over 350 different species of Sargassum genus
(18). In Iran, different Sargassum species such as Sargassum
angustifolium, Sargassum boveanum, Sargassum fluitans,
Sargassum latifolium, and Sargassum vulgare are found in
the seashores of the Persian Gulf and the Oman Sea (19).

The HTL process can be conducted in the presence of
a catalyst. The catalyst can reduce the retention time and
operating temperature of the HTL process and it is com-
monly used to increase the bio-oil yield (1). Different cat-
alysts have been employed by researchers to increase the
bio-oil yield in the algae HTL process such as Na2CO3, zeo-
lite, KOH, Ca(OH)2, etc. (20, 21). In this study, NiFe2O4 was
employed as a nano-catalyst in order to study the catalytic
effects on bio-oil production from Sargassum sp. To the best
of our knowledge, no study has used NiFe2O4 as a catalyst
in bio-oil production, especially algae bio-oil production.
Rojas-Perez et al. (22) reported the production of bio-oil
via the HTL process from Ulva fasciata by using Fe3O4 as
the catalyst. The results showed a 9% increase in the bio-
oil yield when catalyst loading increased to 1.25 wt%. Li et
al. (10) studied bio-oil production from brown algae Sar-
gassum patens, C.Agardh, via the HTL process. They found
out that the maximum bio-oil yield occurred at 340°C. The
obtained oil contained water, lipid, alcohol, phenol, esters,
and aromatic compounds.

2. Objectives

In this study, the bio-oil production as a promising bio-
fuel was studied by the HTL of Sargassum sp. in the pres-
ence of NiFe2O4 nanoparticles and analyzed in terms of the
possibility of SOx and NOx emissions by CHNOS elemental
analysis. In addition, gas chromatography-mass spectrom-
etry (GC-MS) and Fourier transform infrared spectrometer
(FTIR) analyses were conducted.

3. Methods

3.1. Materials

The algae sample of Sargassum sp. was collected in 2016
from the Persian Gulf, Iran. The algae were washed twice
with distilled water to remove impurities. The algae were
then dried in shade and pulverized to a particle size of <
0.5 mm.

3.2. Synthesis of Nanoparticles

Nickel (II) chloride hexahydrate (NiCl2.6H2O), Iron (III)
chloride hexahydrate (FeCl3.6H2O), chloroform (CHCl3),
and sodium hydroxide (NaOH) were purchased from a
Merck subsidiary in Iran. The NiFe2O4 nanoparticles were
synthesized via the co-precipitation method, as reported
by Bagbi et al. (23) with some modifications. Briefly, accord-
ing to a chemical equation (Equation 1), NiCl2.6H2O and
FeCl3.6H2O with a molar ratio of 2:1 were mixed in deion-
ized water under vigorous agitation at 60°C. Then, a so-
lution of NaOH (1.5 M) was added dropwise into the solu-
tion. After 1 hour, NiFe2O4 was collected by a magnet and
stored after being washed three times with distilled wa-
ter. Maaz et al. (24) and Sagadevan et al. (25) synthesized
nickel ferrite nanoparticles by the same materials and co-
precipitation technique and confirmed the formation of
NiFe2O4 nanoparticles by XRD and TEM (transmission elec-
tron microscopy) analyses. Since the synthesis methods
are similar, it can be assumed that nanoparticles in this
study had the same characteristics as reported in the men-
tioned studies.

(1)1NiCl2 × 6H2O + 2FeCl3 × 6H2O + 8NaOH

= 1 NiFe2O4 + 8NaCl + 22H2O

3.3. Experimental Methods

The HTL process occurs in subcritical water conditions
(below 374°C and 22 MPa) (26). Mainly, the operating con-
ditions for the biomass HTL process are 250°C - 350°C and
8 - 22 MPa (27-30). Hydrothermal carbonization occurs at a
lower temperature (180°C - 250°C) and hydrothermal gasi-
fication in supercritical conditions of water, which both
were not the aim of this study (31). In order to study the dif-
ferent HTL conditions, three temperature levels of 250°C,
300°C, and 350°C were chosen as experimental conditions.

The HTL of Sargassum sp. in the presence of nickel fer-
rite as a catalyst was conducted in a 75 mL cylindrical reac-
tor. The reactor was loaded with 2.5 g of Sargassum sp. at
a biomass-to-water ratio of 1:10. Then, NiFe2O4 was loaded
into the reactor with the catalyst-to-biomass ratio of 2:10
(dry basis). After that, distilled water was added to the re-
actor. The mixture was then purged under N2 atmosphere
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for one minute. The reactor was inserted into a furnace
and heated to the desired temperature (250°C, 300°C, and
350°C). The temperature was held constant for 35 minutes.
The measurements showed that the reactor would reach
the set reaction temperature after about 10 minutes at a
heating rate of 25 - 35°C/min. The reactor was then removed
from the furnace and put into a cool-water bath to reach
the room temperature.

The reactors were opened carefully and an equal
amount of distilled water and chloroform was added to the
reactor to completely recover the content. Then, the liquid
phase was filtered using vacuum filtration to separate the
solid phase. Next, chloroform was removed from the chlo-
roform soluble liquid to obtain the bio-oil. The bio-oil yield
was calculated using Equation 2 (32):

Bio− oil yield (wt%) =
weight of bio− oil obtained (g)

weight of biomass used (g)

× 100

(2)

3.4. Analysis Methods

The elemental composition of the product was deter-
mined using a “Flash EA1112” CHNOS analyzer at the Central
Instrumental Lab, University of Tehran, Iran. The compo-
nents of the bio-oil were analyzed by the GC-MS technique.
The GC-MS analysis was carried out with an Agilent 19091S-
433 analyzer equipped with an HP-5MS column at Kimiazi
Lab, Tehran, Iran. The helium carrier gas was set at a rate
of 22.9 milliliters per minute. The injector temperature
was set to 300°C and 2.0 microliters of bio-oil/methanol so-
lution were injected into the GC-MS apparatus using a sy-
ringe. The NIST mass spectral library was used to identify
the bio-oil compounds. In addition, an FTIR spectrometer
was employed to determine the functional groups of the
bio-oil.

4. Results

In this study, different amounts of catalysts were syn-
thesized via the co-precipitation method to evaluate the
results of using NiFe2O4 nanoparticles on the bio-oil yield
of Sargassum sp. Figure 1 illustrates catalytic and non-
catalytic bio-oil yield of Sargassum sp. at different temper-
atures. The yield of bio-oil was calculated on dry weight
basis. As it is shown, the maximum bio-oil yield without
a catalyst is 6.85 wt% at 300°C, while the maximum bio-oil
yield of 7.20 wt% was achieved at the temperature of 350°C.
In non-catalytic HTL, at the beginning the bio-oil yield in-
creased by rising the temperature from 250 to 300°C and
then decreased from 300 - 350°C.
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Figure 1. Catalytic and non-catalytic bio-oil yield at different temperatures

4.1. Analysis of Bio-Oil

The elemental structure of bio-oil inspected by CHNOS
elemental analysis in terms of carbon, hydrogen, nitrogen,
sulfur and oxygen contents. The GC-MS and FT-IR analysis
were employed to recognize the components and identify
the functional group of bio-oil.

4.2. Elemental Analysis

The elemental analysis of obtained bio-oils shows an
increase in the carbon content from 68.34 to 78.23 followed
by an increase in hydrogen content from 8.91 to 10.15%. The
content of oxygen, nitrogen, and sulfur was about 10%, 4%,
and zero respectively.

4.3. GC-MS Analysis

GC-MS analysis was used in order to study the chem-
ical component of Sargassum bio-oil. The chromatogram
was analyzed using a NIST library. The main components
of the bio oil is defined as the proportion of the area under
the peak of the curve to the total area of the peaks in the
chromatograms. As demonstrated in Figure 2, the largest
bio-oil peak area at the retention time of 18.257 belongs to
n-Hexadecanoic acid (palmitic acid) (57.86%) followed by
tetradecanoic acid (5.12%) at the retention time of 16.13 (Fig-
ure 3).

4.4. FTIR Analysis

FTIR spectra of the bio-oil obtained in non-catalyst and
catalytic HTL are shown in Figure 4. As it is shown both
spectra exhibit similar vibrational mode.

The strong absorption at around 3420 cm-1 is possibly
from O-H or N-H stretching vibration, it could be from wa-
ter in the bio-oil. The absorptions at 2960 - 2855 cm-1 are re-
lated to C-H bonding stretching vibration, indicating alkyl
C-H. Lots of weak peaks at 2100 to 2260 cm-1 represents
the alkyne CC bonding stretching vibration. The strong
C=O stretching vibration at 1726 cm-1 shows the presence
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Figure 2. Main compounds in bio-oil chromatogram
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Figure 3. Chromatogram of algae bio-oil liquefied in presence of NiFe2O4

of aldehydes, esters, ketones, or acids. The medium peak at
around 1600 cm-1 shows the C=C bonding stretching vibra-
tion. The bands peaking around 1350 to 1450 cm-1 indicates
the C-H bending characteristic of fats. The strong peak at
1100 to 1300 cm-1 shows the alcoholic C-O bonding stretch-
ing vibration. And the peaks occurring at around 700 cm-1

represent the presence of aromatic compounds (33).

5. Discussion

A low bio-oil yield was expected due to using macro-
algae as feedstock of HTL, which has also been reported
by other researchers. Parsa et al. (27) reported a bio-
crude yield of 15.7 and 16.9 percent for Gracilaria gracilis
and Cladophora glomerata macro-algae, respectively. Gen-
erally, macro-algae species have lower lipid content and
HHV in comparison to microalgae species, but some fac-
tors such as easy harvesting, the capability of cultivation
in natural environments, lower initial capital, fast grow-
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Figure 4. FTIR analysis of bio-oil obtained from non-catalytic and catalytic processes

ing, and high biomass productivity, made macro-algae an
interest feedstock for bio-oil production (2, 34, 35). The in-
crease in bio-oil yield is possible by changing other lique-
faction parameters such as process time, biomass-to-water
ratio, etc.

In non-catalytic HTL, decrease in the bio-oil yield could
be attributed to higher conversion of compounds to the
gas phase or secondary decomposition of compounds into
lighter molecules. The bio-oil yield for catalytic conversion
increased by rising the temperature from 250 to 350. This
could happen due to an increase in hydrolysis reactions
of biomass in response to temperature rise. At subcritical
conditions, the energy required for depolymerization, iso-
merization and repolymerization reactions provided due
to increasing the temperature of the process and more bio-
oil achieves (36). It seems that NiFe2O4 prevent secondary
decomposition and conversion of bio-oil to the gas phase
while the temperature increases to 350, compared to the
non-catalytic process.

Elemental analysis shows that the content of Oxygen,
nitrogen and sulfur was about 10%, 4%, and zero respec-
tively. Presence of nitrogen and sulfur leads to NOx and SOx
emission in the combustion of bio-oil, while the presence
of oxygen reduces the heating value of bio-oil (27). So, the
content of oxygen, nitrogen, and sulfur must be reduced to
zero by using catalytic processes. Díaz-Vázquez et al. (37) re-

ported similar elemental content for Sargassum with 71.54%
carbon, 8.05% hydrogen, 18.05 oxygen, and low nitrogen
and sulfur content.

GC-MS analysis results shows the majority of n-
hexadecanoic acid. Other researchers also indicated that
the main fatty-acid in a large number of macro-algae such
as Sargassum species, Dictyota dichotoma, Schizochytrium
limacinum, etc. is n-hexadecanoic acid (18, 38). Anand
et al. (39) and Li (40) reported that the majority of n-
Hexadecanoic acid and Tetradecanoic acid in bio-oil were
obtained from pyrolysis of Schizochytrium limacinum
microalga. The GC-MS results are consistent with the FTIR
results.

5.1. Conclusions

In this paper, the HTL was performed on Sargassum sp.
macroalgae at three temperature levels of 250°C, 300°C,
and 350°C, with and without using NiFe22O4 as a catalyst.
The liquefaction yield increased by increasing the reaction
temperature from 250°C to 300°C for both processes, but
for the non-catalytic process, the bio-oil yield decreased
when the temperature increased from 300°C to 350°C. The
obtained bio-oil had no sulfur with low nitrogen content.
The N2 content could be reduced to zero by upgrading the
bio-oil; thus, the bio-oil would be healthier and more envi-
ronmentally friendly than fossil fuels due to zero SOx and
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NOx emissions. GC-MS and FTIR analyses were conducted
to identify the compounds and the functional groups of
the bio-oil.
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