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Abstract

Background: Cryptococcus neoformans is an encapsulated yeast pathogen with worldwide distribution, and the highest incidence
of cryptococcosis was attributed to C. neoformans (var. grubii. The pathogenicity of Cryptococcus species is associated with several
factors, including capsule and melanin production, growth at 37 ºC, and secretion of extracellular enzymes.
Objectives: The present study aimed to isolate and identify Cryptococcus species from pigeon guano in Ahvaz, Iran and investigate
important virulence factors in the isolates.
Methods: Seventy-three isolates of C. neoformans var. grubii were identified based on classical and molecular microbiology methods.
Capsule size was measured by the grow yeasts in the presence of 5% CO2. Specific media demonstrated the activity of extracellular
enzymes (phospholipase, hemolysin, proteinase, esterase, urease, catalase, and gelatinase). Besides, melanin production was eval-
uated by the niger seed agar medium.
Results: Two hundred and seventeen samples were examined for the presence of Cryptococcus over 165 days in Ahvaz. All tested
isolates were contained capsules with variable sizes under 5% CO2 concentration. Moreover, 100% of isolates were produced extra-
cellular enzymes (urease, hemolysin, and catalase), whereas no proteinase and gelatinase activities were observed among isolates.
Furthermore, most isolates had phospholipase (93.1%) and esterase activities (86.3%). Also, melanin was produced by all of the iso-
lates.
Conclusions: Although two methods were used for recovery of Cryptococcus, only Cryptococcus was isolated from pigeon guano,
and swabs from the cage walls were negative. Cryptococcus neoformans var. grubii was the only species from pigeon droppings from
Ahvaz with more pathogenic factors. Owing to the high pathogenicity of the isolates, the frequency of the disease is expected to be
higher.
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1. Background

Cryptococcus neoformans is an encapsulated yeast
pathogen with worldwide distribution, and pigeon drop-
pings are considered an important ecological niche of
this pathogen yeast (1-4). Patients with impaired immune
systems such as HIV patients, corticosteroid users, and
organ transplantation have a higher risk for develop-
ing cryptococcosis (5, 6). Inhalation of environmental,
infectious propagules or direct contact with etiologic
agents can cause cryptococcosis in humans (1). About 70
Cryptococcus species have been identified (7); however, the
highest incidence of cryptococcosis was attributed to C.
neoformans (var. grubii and var. neoformans) and C. gattii
(8, 9). Cryptococcus neoformans var. grubii has a worldwide
distribution and alone causes about 80% of cryptococcal

infections (6). Whereas C. neoformans var. neoformans
is more common in Europe, and C. gattii is common in
tropical and subtropical regions (5).

The pathogenicity of Cryptococcus species is associated
with two factors, host factors and organism virulence fac-
tors. Organism virulence factors consist of capsule and
melanin production, growth at 37ºC, and secretion of ex-
tracellular enzymes (proteinase, phospholipase, esterase,
and urease) (4, 10, 11). Virulence factors are an essential part
of microbial pathogenesis. Some of these factors, such as
extracellular enzyme production, are common among sev-
eral species (4). On the other hand, some factors (e.g., cap-
sule formation) are specific to one species (12, 13).

Extracellular enzymes cause host tissue damage and
provide optimal conditions for microorganism adhesion
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to tissues (1, 14). Proteases and phospholipases degrade
proteins and glycerophospholipids, respectively, as well
as help to colonization and tissue invasion (1, 4, 15). Es-
terase activity has been associated with virulence factors
in Cryptococcus (1); however, its role in tissue invasion re-
mains still unclear. Urease is one of the most necessary
enzymes for escaping Cryptococcus from the lungs to the
blood-brain barrier (1). Furthermore, C. neoformans in-
duces antioxidant activation enzyme (catalase). Catalase
converts hydrogen peroxide to water and molecular oxy-
gen and facilitates the growth and survival of Cryptococcus
in macrophages (16).

The capsule has a key role in C. neoformans virulence;
thus, capsule-free strains have low or without pathogenic-
ity (10, 11, 13). Melanin is a critical pathogenic factor in C.
neoformans that is produced by the phenoloxidase enzyme
(17, 18). The function of melanin involves the protection of
the fungal cell against oxidative degradation, increases the
resistance of fungal cells in tissue and environment, im-
mune modulation, and inflammatory response, and prob-
ably increased resistance to amphotericin B drug (1, 19, 20).

2. Objectives

Despite the development of molecular methods, very
limited studies have been conducted on the diversity of
Cryptococcus species in Iran. Most clinical available reports
in Iran are as case reports (21-23), and environmental epi-
demiological studies are limited to formal identification.
The present study aimed to isolate and identify Cryptococ-
cus species from pigeon guano based on molecular meth-
ods in Ahvaz, Iran and investigate the important virulence
factors in the isolated species.

3. Methods

3.1. Fungal Isolates and Growth Conditions

One hundred and forty-one dried pigeon droppings
samples and 76 samples of pigeon cages were collected
from 10 different areas in Ahvaz, southwest of Iran. Sam-
ples were collected from private houses and pet-shops in
sterile packets and transferred to the medical mycology
laboratory affiliated to Ahvaz Jundishapur University of
Medical Sciences. Approximately 5-10 g of each pigeon
dropping was transferred to a sterile tube containing 50
ml of sterile distilled water with several antibiotics, con-
taining penicillin 1,200 U (1 g/L) (Pharmco Jabir Hayyan,
Iran), gentamicin (20 µg/L) (Pharmco Jabir Hayyan, Iran)
and chloramphenicol (1 g/L) (Bio Basic, Canada). The sus-
pension was mixed for 5 minutes by a vortex (Heidolph,
Germany) and allowed to sediment for 1 h, then, 0.1 mL of

supernatant was streaked on a niger seed agar (NSA) plate
(24).

Samples from cages were collected by rubbing the ster-
ile and moist cotton swabs on the cage walls and immedi-
ately plated onto the NSA plates. The cultures were incu-
bated at 32°C and monitored for mucoid and dark-brown
colonies for up to two weeks. Then, the Indian ink smears
of suspected colonies to Cryptococcus were prepared, and
the presence of capsules confirmed Cryptococcus species.
Brown colonies were streaked on the new NSA to obtain
single and pure colonies. Pure colonies were subcultured
on Sabouraud dextrose agar (SDA) (Pronadisa, Spain) slant
tubes and stored at room temperature (25-29°C) until use.
In this study, a sequenced C. neoformans var. grubii isolate
(Accession no = KY216187.1) was gifted by prof. Pakshir (Shi-
raz University of Medical Sciences, Iran) was used as a pos-
itive control for all experiments.

3.2. Identification of Cryptococcus Isolates

3.2.1. Classical Identification

All isolates were initially identified as Cryptococcus spp.
by morphological and microcopy features and biochemi-
cal tests, including the Indian ink test, thermotolerance at
37°C, melanin synthesis on NSA medium, and urease pro-
duction (Figure 1) (24, 25).

3.2.2. Molecular Identification

For DNA extraction, each isolate was sub-cultured on
SDA and incubated at 28°C for two days. A loopful of fresh
yeasts was transferred into a sterile microtube contain-
ing 300 ml of lysis buffer and 50 mg glass bead (Sigma-
Aldrich, USA) and put at -20°C for 24 h. Microtube con-
tents were homogenized by a SpeedMill PLUS Homoge-
nizer (Analytikjena, Germany) and then were extracted
using phenol-chloroform-isoamyl alcohol (Sigma-Aldrich,
Germany) (26). The two sets of universal primers, in-
cluding ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4 (5’-
TCCTCCGCTTATTGATATGC-3’), were used to amplify the ITS
rDNA region (12). The 500 bp bands were observed after
the migration of the PCR product by electrophoresis on
agarose gel 1.5% (Cinagen, Iran). The PCR products were pu-
rified, then sequenced by the Sanger method with primers
ITS1 (forward primer), data aligned by MEGA 6 software,
and blasted in the NCBI database. The similarity was 100%
for 57 (78.1%) isolates whereas 16 (21.9%) isolates had < 99%
similarity. All sequenced data were deposited in NCBI Gen-
Bank, and accession numbers were obtained.
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Figure 1. Isolation of Cryptococcus from pigeon dropping; small, mucoid, and brownish colonies of C. neoformans (Left), C. neoformans with a large capsule in Indian Ink (Right).

3.3. Identification of Pathogenic Factors of Cryptococcus Iso-
lates
3.3.1. Capsule Size Determination

A loopful of fresh cultures was inoculated onto diluted
Sabouraud dextrose broth (1:10) (BioLife, Italia) (pH = 7.3)
and incubated at 37ºC under CO2 condition for 72h (13).
Then, 10 µL of a cell suspension was mixed with 10 µL of
India ink. A light microscope randomly photographed at
least five different fields of each slide. The size of the cap-
sules was scored as large, medium, and small.

3.4. Melanin Production
Thirty microliters of 0.5 McFarland cryptococcal cell

suspension were inoculated on NSA and incubated at 30°C
for six days (4, 27). Melanin production was evaluated by
direct visualization of colony color and scored based on
colony color intensity from 1+ to 4+ (4).

3.5. Different Temperature Tolerance
A loopful of each isolate was cultured on both NSA and

SDA plates and incubated at 4°C, 30°C, 37°C, 42°C, and 45°C
for one month, 48h, 48h, 48h, and 24h respectively. Then,
plates were evaluated every day for temperatures 30°C,
37°C, 42°C, and 45°C and 3-4 days for 4°C. Finally, the plates
that were previously incubated at 4°C, 42°C, 45ºC, and 30ºC
for five days and then were considered for growth again.

3.6. Phospholipase Activity

Secretory phospholipase activity was determined by
egg yolk agar medium, according to Price et al. method
(28). Egg yolk agar plates were cultivated by isolates and
incubated at 30ºC for 15 days in triplicate. Enzyme activity
was manifested as a dense zone of precipitation around the
colonies, and its level was calculated as precipitation zones
(Pz) (27, 29). Pz value is considered by dividing colony di-
ameter by the colony plus precipitation zone. Pz calculated
as: Pz value = 1 (negative); Pz value = 0.7-0.99 (weak); Pz
value = 0.5-0.69 (mild); and Pz value < 0.5 (strong).

3.7. Proteinase Activity

The proteinase activity of Cryptococcus isolates was as-
sayed based on Aoki et al. methods (30). In brief, 0.1 g
KH2PO4 (Merck, Germany), 0.05 g MgSO4, 7 ml H2O (Merck,
Germany), 0.01 g yeast extract (Merck, Germany), 1 g glu-
cose (Merck, Germany), and 2 g agar (Mirmedia, Iran) were
dissolved in 90 mL distilled water. After sterilization, 10 mL
of 0.2% sterilized bovine serum albumin (BSA) (Merck, Ger-
many) was added. The plates were inoculated with isolates
and triplicate plates incubated at 30ºC and 37ºC for three
weeks. Positive proteinase activity is defined as a clearance
zone around the inoculum site. The proteinase activity in-
dex (Pz) was calculated as described above.
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3.8. Hemolytic Activity

Determination of hemolysin activity was performed by
SDA plates containing 3% (W/V) glucose (Merck, Germany)
and 7 mL fresh sheep blood (Bahar Afshan, Iran) (V/V%) de-
scribed by Luo et al. (31). The plates were inoculated with
isolates, and triplicate plates were incubated at 30ºC for
five days. A translucent halo zone around the colonies in-
dicates the positive hemolytic activity of each isolate. The
hemolytic activity index was calculated as described above.

3.9. Esterase Activity

The esterase activity of isolates was evaluated using
the described method by Slifkin et al. (32). In brief,
the medium contained 10 g peptone (Merck, Germany),
5g NaCl (Mojallali Chemical Laboratories, Iran), 0.1 g
CaCl2 (Merck, Germany), 15g agar (Mirmedia, Iran), and 5
mLTween 80 (Merck, Germany) and 1,000 mL distilled wa-
ter. The esterase medium plates were inoculated with iso-
lates in triplicate and incubated at 30ºC for 15 days. The es-
terase activity index was calculated as described above.

3.10. Urease Activity

Urease activity of isolates was determined by the urea
agar base (Merck, Germany) supplemented by 50 ml/L urea
40%. The medium was inoculated with a 0.5 McFarland
standard suspension of each isolate and incubated at 37ºC
for one week. The coloration of urea agar was graded from
1+ to 4+, which indicated the intensity of urea hydrolysis
(12).

3.11. Catalase Activity

The catalase activity of isolates was detected using an
overnight culture. A loopful of a small colony was sus-
pended in an H2O2 drop on a clean microscope slide and
monitored to generate Oxygen bubbles.

3.12. Gelatin Hydrolysis

The production of gelatinase was assayed by gelatin
agar medium contained 8 g gelatin and 23 g nutrient agar
(BioMerieux, France) in 1,000 mL of distilled water. The
gelatin agar plates were inoculated with isolates and incu-
bated at 30ºC for four weeks, according to Kanemitsu et al.
(33). The presence of a hyaline halo around the inoculated
area indicates gelatinase activity.

4. Results

Of 217 samples from pigeon droppings (141 samples)
and pigeon cages (76 samples), only 43 (30.5%) pigeon
dropping samples were positive for Cryptococcus. More-
over, all cages samples were negative for Cryptococcus.
In the present study, 73 Cryptococcus strains were iso-
lated from samples, and based on the sequencing of
the ITS rDNA regions, all of the 73 isolates were de-
tected as C. neoformans var. grubii (44 accession numbers:
from LC535977 to LC536020; 22 accession numbers: from
LC537132 to LC537153; 7 accession numbers: from LC545841
to LC545847). It was found that 30 (41.1%) isolates produced
large capsules as well as medium and small capsules, fol-
lowed by 72 (98.6%) medium capsule size and 66 (90.4%)
small capsule size.

All C. neoformans isolates had robust growth at 30ºC
and 37ºC, whereas no growth was seen at 45ºC. Moreover, 52
(69.9%) of the isolates could grow at 4ºC, including moder-
ate grow 36 (49.3%), and weak grow 15 (20.6%). When cul-
tures were transferred from 4ºC to 30ºC conditions, most
isolates (86.3%) had well growth, followed by moderate
growth (12.3%), and weak growth (1.4%). Furthermore, the
ability to grow at 42ºC was only found at 14 (19.2%) isolates.
Although the melanin intensity and urease activity varied
among isolates, 100% of isolates were positive for melanin
pigmentation and urease activity (Table 1).

Table 1. Melanin Production and Urease Activity in 73 Isolates of Cryptococcus neofor-
mans var. grubii

Activity Melanin production, No. (%) Urease activity, No. (%)

Very high (4+) 6 (8.2) 29 (39.7)

High (3+) 24 (32.9) 26 (35.6)

Medium (2+) 24 (32.9) 13 (17.8)

Low (1+) 19 (26) 5 (6.8)

Total 73 (100) 73 (100)

Interestingly, 100%, 93.1%, and 86.3% of isolates pro-
duced hemolysin, phospholipase, and esterase extracellu-
lar enzymes with different pz index, respectively. Also, all
isolates were capable of utilizing hydrogen peroxide. How-
ever, all isolates lack extracellular proteinase and gelati-
nase activity (Figure 2).

5. Discussion

Cryptococcus neoformans has a worldwide distribution,
and it is also a common cause of cryptococcosis among
patients suffering from AIDS (2, 5, 13, 34). However, few
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Figure 2. Extracellular enzyme activities of 73 isolates of Cryptococcus neoformans var. grubii.

studies have demonstrated the epidemiology of Cryptococ-
cus species and their pathogenic factors in Iran. More-
over, some rare species of Cryptococcus have been isolated
in some clinical forms (35). Although some clinical cases
of cryptococcosis and a few environmental studies were re-
ported in Iran, C. neoformans var. grubii was only detected
by Badali et al., and Pakshir et al., using molecular methods
(21-24, 36-38). Cryptococcosis was reported from different
parts of the world, including India (39), Italy (40), Brazil
(41), and China (7, 42). Besides, C. neoformans var. grubii
was the most common variety in clinical and environmen-
tal samples (7, 39-43).

The present study is the first epidemiological and
molecular identification of Cryptococcus species isolated
from pigeon droppings in Ahvaz, southeast Iran. In the
present study, 43 (30.5%) pigeon dropping samples were
positive for Cryptococcus, and 73 isolates of C. neoformans
var. grubii were isolated from samples. Afshari et al. have
shown a lower occurrence (5%) of C. neoformans in pigeon
excreta in Mazandaran, northern Iran, with the most com-
mon species C. neoformans var. grubii (90%) followed by C.
neoformans var. neoformans (10%) (5). Although Kamari et
al. isolated 12 Cryptococcus species from pigeon nest and
Eucalyptus tree samples in Isfahan, only 1 (8.3%) C. neofor-
mans var. grubii was detected (3). Similar to the current
study, the frequency of positive cultures for C. neoformans
from pigeon droppings was 34%, based on Zarrin et al. re-
port from Ahvaz (44), and they were only identified based
on morphological tests. The main source of C. neoformans
is pigeon droppings; however, it was also recovered from

several trees, including Eucalyptus camaldulensis, Ceratonia
siliqua, Olea europaea, and Pinus spp. (45).

Extracellular enzymes have important key roles in the
pathogenesis of C. neoformans. These enzymes decompose
living host tissues and help invade organs (1, 29). How-
ever, the pattern of enzyme secretion varies in different
species/strains with different sources (12, 29). Pini et al. be-
lieve that there is a significant difference in phospholipase
activity between clinical and environmental isolates of C.
neoformans (4). In contrast, differences were not found be-
tween clinical and environmental isolates of C. neoformans
among the evaluated extracellular enzymes in virulence
factors in the Andrade-Silva et al. study (41). None of our
isolates could secrete proteinase or gelatinase enzymes,
while all isolates exhibited a variable rate of hemolysin,
catalase, and urease activities. Moreover, the majority
of isolates were positive for the presence of phospholi-
pase (93.1%) and esterase (86.3%). Pedroso et al. evaluated
the production of phospholipase and urease in C. neofor-
mans var. grubii and found that 100% and 90% of isolates
had phospholipase and urease activities, respectively (12).
However, they reported that most isolates (54.5%) had pro-
teinase activity.

The ability to form a polysaccharide capsule in C. neo-
formans is one of the most important virulence factors. In
the host body, the capsule prevents phagocytes and pro-
tects against oxidative bursts (1, 46). Although higher lev-
els of CO2 stimulate increasing capsule size in C. neofor-
mans strains, CO2 levels have not the same effect on all
strains of C. neoformans (13). In the present study, different
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capsule sizes were observed during incubation at CO2 and
37°C for three days. Large capsules were produced in 41.1%
of isolates. Although all of the isolates (100%) were pos-
itive for melanin production on G. abyssinica medium, it
was found that they differed in the intensity of melanin for-
mation. The melanization in Cryptococcus species is mainly
associated with adaptation to adverse environmental con-
ditions and resistance to oxidative damage and antimicro-
bial compound in tissue cells (19, 47). As a result, melaniza-
tion plays a vital role in the pathogenicity of Cryptococcus
species (17, 18). Pini et al. have shown that 2.4% and 3.1%
of clinical strains and environmental strains were negative
for melanization, respectively (4).

Although Cryptococcus species can grow in routine me-
dia at 25 to 37°C, the ability to grow at 37°C is very impor-
tant for its pathogenicity (12, 48). In the present study, the
isolates’ growth was well and similar at temperatures of
30°C and 37°C. Moreover, all incubated plates at 4°C for one
month began to grow after incubation at 30°C. Only 19.2%
of isolates retained their ability to grow at 42°C and the
rest of them (80.8%) were unable to grow at 42°C even af-
ter transfer to 30ºC. However, all incubated isolates at 45ºC
for 24 h were unable to grow after transfer to 30ºC. Cryp-
tococcus neoformans can produce different heat shock pro-
tein (hsp) types (examples, hsp 60, 70, and 80) that protect
the organism in mammalian hosts (48).

5.1. Conclusions

Although two methods were used for recovery of
Cryptococcus, only Cryptococcus was isolated from pigeon
guano, and swabs from the cage walls were negative. Cryp-
tococcus neoformans var. grubii was the only species from
pigeon droppings from Ahvaz with more pathogenic fac-
tors. Owing to the high pathogenicity of the isolates, the
frequency of the disease is expected to be higher.
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