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Abstract

Background: Acinetobacter baumannii has emerged as a critical pathogen with high morbidity and mortality in long-term hospital-
ized patients who stay in intensive care units. Carbapenemases and integrons are two critical DNA elements that contribute to the
emergence of multidrug-resistant (MDR) A. baumannii.
Objectives: The current study aimed at characterization and molecular detection of class 1, 2, and 3 integrons among
carbapenemase-producing A. baumannii strains recovered from a clinical setting in Tehran, Iran.
Methods: A total of 65 non-replicated clinical strains were considered in this study. Class 1, 2, and 3 carbapenemase genes and clonal
relatedness of the isolates were investigated by PCR assay.
Results: The prevalence of carbapenemases was as follows: blaOXA23 (92.31%), blaVIM (69.23%), and blaNDM (1.54%). In addition, PCR se-
quencing confirmed the presence of gene cassette arrays consisting of aacA4-catB8-aadA1 (12/46, 26.09%), aadB-aadA1 (26.09%, 12/46),
arr2-cm1A5 (30.43%, 14/46), and dfrA1-aadA1 (7.39%, 8/46) in class 1 integron and dfrA1-sat2 (52.94%, 9/17), and sat2-aadA1 (47.06%, 8/17) in
class 2 integron. Sequence-based typing of both blaOXA-51-like and ampC revealed the following distribution of three different clone
types among isolates: clonal complex (CC) 10 (46.15%, 30/65), CC2 (40%, 26/65), and CC3 (13.85%, 9/65). Statistical analysis showed that
the presence of the intI1, blaOXA23, blaVIM, or blaNDM genes can significantly increase the acquiring MDR phenotypes in A. baumannii
isolates.
Conclusions: High prevalence of carbapenemase-producing A. baumannii harboring integrons is alarming public health. It seems
that class 1 integron can be served as a predictive biomarker for the presence of MDR phenotypes in the clinical setting. However,
integrons do not carry carbapenemases in these strains.

Keywords: Acinetobacter baumannii, Multidrug-Resistant Clinical Isolates, Integrons

1. Background

Antimicrobial resistance (AMR) has become a signifi-
cant problem with the increasing burden for healthcare
systems worldwide. In recent years, antibiotic resistance
has been associated with considerable morbidity and mor-
tality rates due to prolonged hospitalization (1). Although
the occurrence of antibiotic resistance is a natural phe-
nomenon in bacteria, it is exacerbated by the misuse of an-
tibiotics in humans and animals (2). A significant reason
for the rapid spread of antibiotic resistance is the highly
mobile genetic elements. These elements can replicate and

pass among bacterial species (3). Acinetobacter baumannii
is a common nosocomial pathogen that causes different
infections, such as ventilator-associated pneumonia, bac-
teremia, urinary tract infections, surgical site infections,
and secondary meningitis in hospitalized patients, espe-
cially those with immunodeficiency (4). The relatively re-
cent emergence and increased prevalence of multidrug-
resistant (MDR) A. baumannii has been an issue of great
concern. The World Health Organization (WHO) lists A.
baumannii as a critical pathogen, highlighting the need to
develop new and effective antibiotics (5).

Miserably, the number of MDR A. baumannii isolates
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has increased significantly worldwide. Also, A. bauman-
nii can acquire or upregulate resistance genes through ge-
nomic plasticity, limiting effective therapeutic options and
increasing mortality rates. This phenomenon can increase
resistance to multiple antibiotics, including those used as
a last resort, such as carbapenems, reserved for cases where
all alternatives have been depleted (6). The enzymes IMP,
VIM, GIM, SIM, and NDM are classified as class (B) Metallo-
β-lactamases (MBLs), and their genes are mostly found in
transmissible plasmids (7).

In Acinetobacter spp., the acquisition and spread of an
antimicrobial-resistant determinant in hospitals and com-
munities are often facilitated by horizontal gene trans-
fer of mobile genetic elements, including plasmids, trans-
posons, and integrons. Among these mobile elements, in-
tegrons are unique for their ability to carry and express re-
sistance genes (8). It has been suggested that multidrug-
resistant strains acquire their antibiotic-resistant genes via
integrons that take single or multiple gene cassettes (9).
Integrons carrying different cassette arrays have been re-
ported in several studies from South America to Far East
Asia (10).

2. Objectives

The current study aimed at characterizing class 1, 2, and
3 integrons among clinical carbapenemase-producing A.
baumannii isolates from hospitalized patients in Tehran,
Iran, followed by the genotypic analysis of these isolates.

3. Methods

3.1. Collection and Identification of Bacterial Isolates

In this cross-sectional study, a total of 103 consecu-
tive non-duplicate A. baumannii isolates collected from
clinical specimens in hospitalized patients from an ed-
ucational hospital in Tehran, Iran, from November 2019
to July 2020 were investigated. The isolates were ob-
tained from sputum, tracheal aspirate, wound, catheter,
and cerebrospinal fluid (CSF). Standard microbiological
and biochemical tests, including triple sugar iron agar
(TSI), indole, methyl red (MR), Voges–Proskauer (VP), citrate
(IMVIC), and oxidase test were used to identify A. baumannii
isolates. All K/K colonies on TSI and oxidase negative coc-
cobacilli (11) were genotypically confirmed as A. bauman-
nii by the presence of the blaOXA-51-like (1) and rpoB PCR se-
quencing (12).

3.2. Antibiotic Susceptibility Testing

According to the Clinical and Laboratory Standards In-
stitute (CLSI), the antibiotic susceptibility profiles of A. bau-
mannii isolates were determined using the disk diffusion
method. In this step, the results were interpreted with
criteria published in CLSI 2019 (13). For this purpose, var-
ious antibiotic disks, such as ampicillin/sulbactam (SAM,
10 µg), minocycline (MN, 30 µg), meropenem (MEM,
10 µg), amikacin (AN, 30 µg), ciprofloxacin (CIP, 5 µg),
trimethoprim-sulfamethoxazole (SXT, 1.25 + 23.75 µg), and
ceftazidime (CAZ, 30 µg) were used. In the next step,
minimum inhibitory concentrations (MICs) were deter-
mined for imipenem in carbapenem-resistant isolates us-
ing E-test (bioMérieux). Antibiotic susceptibility was inter-
preted based on CLSI clinical breakpoints. The Escherichia
coli ATCC 25922 was used as a quality control strain. The
categorizations of multidrug-resistant (MDR), extensively
drug-resistant (XDR), and pan-drug resistant (PDR) A. bau-
mannii were performed based on Magiorakos criteria (14).

3.3. Detection of Genes Encoding β-lactamase, Integrases, and
Clonal Complex Analysis

DNAs of bacterial isolates were extracted as previously
described (15). A PCR experiment was used to determine
the presence of genes producing carbapenemases and
integrases using primers targeting blaOXA-23-like, blaVIM,
blaNDM, intI1, intI2, and intI3 genes (Table 1). The PCR condi-
tions were based on the mentioned reference (16). All iso-
lates were confirmed as A. baumannii by sequencing of the
blaOXA-51-like, an intrinsic enzyme marker, and ropB, as de-
scribed previously (15). Determination of the allele num-
ber and detection of the clonal complex (CC) for each iso-
late were performed by a combination of sequence-based
typing (SBT) of blaOXA-51-like and ampC as reported previ-
ously (15).

3.4. PCR Amplification and Sequencing of Integrons Internal
Variable Region

All integron–positive MDR A. baumannii strains were
assessed for variable regions of Class 1 - 2 integrons by
the primers 5′-CS/3′-CS. The PCR conditions were based
on the mentioned reference (9). Sequencing of the puri-
fied PCR amplicons was performed using DNA analyzers
(Applied Biosystems, Inc.). The nucleotide sequence anal-
ysis was performed by the BLAST tool at the NCBI web-
site (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (22). The se-
quences were manually analyzed using CLC main work-
bench software version 20 (CLC Bio, Aarhus, Denmark).
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Table 1. Primer Pairs Used for PCR Amplification and Sequencing

Target Primer Sequence (5´ - 3´) Product Size (bp) Reference

rpoB 1024 (12)

F CTGACTTGACGCGTGA

R TGTTTGAACCCATGAGC

blaOXA-51 -like 501 (17)

F GATCGGATTGGAGAACCAGA

R ATTTCTGACCGCATTTCCAT

blaNDM 155 (18)

F GCGCAACACAGCCTGACTTT

R CAGCCACCAAAAGCGATGTC

blaVIM 518 (19)

F GGGAGCCGAGTGGTGAGT

R GGCACAACCACCGTATAG

intI1 250 (20)

F TCTCGGGTAACATCAAGG

R AGGAGATCCGAAGACCTC

intI2 789 (21)

F CACGGATATGCGACAAAAAGGT

R GTAGCAAACGAGTGACGAAATG

intI3 980 (21)

F GCCTCCGGCAGCGACTTTCAG

R ACGGATCTGCCAAACCTGACT

Conserved segment of class 1 integrons Variable (21)

5′ -CS GGCATCCAAGCAGCAAG

3′ -CS AAAGCAGACTTGACCTGA or GAAGCGGCGTCGGCTTGA

Conserved segment of class 2 integrons Variable (21)

5′ -CS ACCTTTTTGTCGCATATCCGTG

3′ -CS TACCTGTTCTGCCCGTATCT

3.5. Statistical Analyses

The normality of continuous data distribution was as-
sessed by the Kolmogorov-Smirnov test. Numerical data
were summarized as means and standard deviations or
median and interquartile range as appropriate. Categori-
cal data were summarized as frequencies and proportions.
The association of variables was analyzed using one-way
analysis of variance, student t-test, and Mann-Whitney U
Kruskal-Wallis tests as appropriate. All statistical analyses
were conducted with STATA 12.0 (StataCorp LP, College Sta-
tion, TX, USA), SPSS for Windows version 24.0 (IBM Corp.,
Armonk, NY), and GraphPad Prism software version 8.0
(GraphPad Software Inc., La Jolla, CA, USA). A P < 0.05 was
defined as statistical significance in all tests.

4. Results

4.1. Collection and Identification of Bacterial Isolates

A total of 65 non-repetitive isolates were collected and
confirmed as MDR A. baumannii by phenotypic and geno-
typic antimicrobial methods. The isolates were recovered
from clinical specimens, including tracheal aspirate (n =
57/65; 87.69%), sputum (n = 3/65; 4.62%), catheter (n = 3/65;
4.62%), CSF (n = 1/65; 1.54%), and wound (n = 1/65; 1.54%). The
mean age of the patients was 48.25 ± 21.09 years (ranging
from 5 to 96). Also, 41 patients (63.1%) were male, and 24
cases (36.9%) were female (Table 2). Antimicrobial suscep-
tibility results for the 65 A. baumannii isolates are shown
in Table 2. The isolates showed MDR phenotypes and re-
sistance to most of the tested antibiotics by the disk dif-
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fusion method, in particular high-level resistance to AN
(n = 64; 98.46%), SXT (n = 63; 96.92%), CIP (n = 62; 95.38%),
MEM (n = 60; 92.31%), and CAZ (n = 57; 87.69%) (Figure 1).
The imipenem MIC90 for all isolates was ≥16 mg/L. Quite
alarmingly, 5 isolates (7.69%) were resistant to all antibi-
otics tested. Surprisingly, 55 (84.62%) and 35 (53.85%) out of
65 isolates were susceptible to MN and SAM, respectively.
Notably, the frequency of MDR isolates was higher in non-
ICU wards rather than ICU (Figure 2).

4.2. Detection of β-lactamases Encoding Genes

The detected carbapenemase (blaOXA23) and Metallo-β-
lactamases (blaVIM and blaNDM) are listed in Table 2. The
blaOXA23 was detected in 92.31% (60/65) isolates using PCR
amplification. The blaVIM and blaNDM were detected in
69.23% (45/65) and 1.54% (1/65) of the isolates, respec-
tively. Data analysis showed that the presence of blaOXA23

in strains caused a 4- (95% CI, 1.07 - 14.57) and 14-fold (95%
CI, 4.22 - 47.50) increase (significantly) in the odds of re-
sistance to SAM and MEM and also the presence of blaVIM

caused a 3.5- (95% CI, 1.48 - 8.59) and 11-fold (95% CI, 3.90 -
33.67) increase (significantly) in the odds of resistance to
SAM and MEM, respectively.

4.3. PCR Amplification and Characterization of Class 1-3 Inte-
grons

The presence of integrase genes, intI1, intI2, and intI3
were detected by PCR in 70.77% (46/65), 26.15% (17/65), and
0% (0/65) of MDR A. baumannii isolates, respectively. The
class 1 and 2 integrons were widespread among clinical iso-
lates. The intI3 was not detected in any of the strains. Cas-
sette arrangements of class 1 and 2 integrons were charac-
terized by PCR sequencing of gene cassettes in the inter-
nal variable regions of integrons. Sequencing confirmed
the presence of cassette arrays consisting of aacA4-catB8-
aadA1 (12/46, 26.09%), aadB-aadA1 (12/46, 26.09%), arr2-cm1A5
(14/46, 30.43%), and dfrA1-aadA1 (8/46, 7.39%) in class 1 in-
tegron and dfrA1-sat2 (9/17, 52.94%) and sat2-aadA1 (8/17,
47.06%) in class 2 integron (Figure 3).

There was no significant difference in resistance to the
studied antibiotics among intI1-positive and intI1-negative
isolates. The intI1 negative isolates displayed 26.7%, 29.7%,
29%, 30.2%, 24.6%, and 40% resistance rate to SAM, AN,
CIP, SXT, CAZ, and MN, respectively, compared with intI1-
positive isolates. On the other hand, there was a statis-
tically significant relationship (P < 0.05) between resis-
tance to the tested antibiotics and the lack of the intI2 gene.
The intI2-negative isolates displayed 73.3%, 73.4%, 74.2%, 73%,
71.9%, and 50% resistance rate to SAM, AN, CIP, SXT, CAZ,
and MN, respectively, compared with intI2 positive isolates.
Also, the rate of MDR phenotype in A. baumannii isolates

positive for the intI1, blaOXA23, blaVIM, and blaNDM was statis-
tically significant. In addition, although the probability of
acquired MDR phenotype for the intI2-positive isolates was
2.7-fold (95% CI, 0.8-8.6) higher than intI2-negative isolates,
the latter value was not statistically significant (P > 0.05)
(Figure 4).

4.4. Sequence-Based Typing of blaOXA-51-like and ampC Alleles

Sequence-based typing of both blaOXA-51-like and ampC
is a discriminatory and reliable method that can distin-
guish Acinetobacter isolates at the level of clonal complex
(23). The SBT results revealed the following distribution
of three different clone types among MDR isolates, includ-
ing CC10 (46.15%, 30/65), CC2 (40%, 26/65), and CC3 (13.85%,
9/65), as shown in Table 2. Overall, 25 out of 30 isolates
(83.33%) in CC10, 22 out of 26 isolates (84.62%) in CC2, and
8 out of 9 isolates (88.89%) in CC3 showed MIC≥16 mg/L for
imipenem. Therefore, CC2 and CC10 showed a high level of
imipenem resistance. Data analysis showed a heterogenic
structure in integron cassette arrays within CCs. The distri-
bution of cassette arrays in class 1 and 2 integrons within
clonal complexes is shown in Table 2.

4.5. Nucleotide Accession Numbers

DNA sequences of gene cassette arrays consist-
ing of aacA4-catB8-aadA1 (GenBank accession num-
ber = MZ508285), aadB-aadA1 (MZ508283), arr2-cm1A5
(MZ508286), and dfrA1-aadA1 (MZ508284), in class 1 inte-
gron and dfrA1-sat2 (MZ508287) and sat2-aadA1 (MZ508288)
in class 2 integron were deposited in GenBank database.

5. Discussion

Infections associated with MDR bacterial strains have
become one of the leading causes of morbidity and mor-
tality worldwide (24). Integrons as transposon-like genetic
elements are conserved and encode antibiotic resistance
determinants and have a high capacity for chromosomal
integration in bacteria (25, 26). To date, several classes
of integrons have been described, of which class 1 and 2
integrons are commonly reported from MDR A. bauman-
nii strains (27). Carbapenems are usually the antibiotic of
choice against A. baumannii strains. However, the rate of
resistance to carbapenems in this bacterium is increasing
day by day. Resistance to carbapenems can be due to vari-
ous mechanisms, such as producing the enzymes, includ-
ing Metallo-β-lactamase and oxacillinase (28, 29).

According to our results, most MDR A. baumannii iso-
lates were obtained from the tracheal aspirate samples.
Consistent with our research, in a study conducted by
Souza et al., A. baumannii was the most frequently isolated
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Figure 1. Antibiotics resistance patterns in Acinetobacter baumannii isolates. Notably, out of 65 isolates, 10 (15.38%) and 30 (46.15%) strains were susceptible to MN and SAM,
respectively. Bars represent mean± standard deviation (SD). The numbers on the bars represent percentages.

bacterial species in the tracheal secretion of patients with
ventilator-associated pneumonia (30). However, Barbier
et al. reported that the most frequent pathogens associ-
ated with ventilator-associated pneumonia were Staphylo-
coccus aureus, Pseudomonas aeruginosa, and Enterobacteri-
aceae (31). The ICU has been described as the main cen-
ter of antibiotic resistance development, with increasingly
resistant isolates complicating the treatment of MDR in-
fections in ICU patients (32). Surprisingly, the frequency
of MDR A. baumannii isolates was higher in non-ICU wards
rather than ICU. This is alarming and indicates that MDR
isolates have been circulated in our hospital, and urgent at-
tention and application of preventive protocols are needed
to reduce such a fearful threat in hospitalized patients.
In this study, the highest antibiotic resistance was re-
lated to amikacin, trimethoprim + sulfamethoxazole, and
ciprofloxacin, respectively. Also, A. baumannii strains pro-
ducing aminoglycoside modifying enzymes (AMEs) are
highly resistant to different aminoglycosides, such as gen-
tamicin, amikacin, and tobramycin. Similar to our find-
ings, Cho et al. reported aminoglycoside resistance genes

in 81% Acinetobacter isolates from two Korean hospitals
(33).

In this study, the imipenem MIC90 for all isolates was
≥ 16 mg/L and showed resistance to carbapenems. Accord-
ing to a study conducted by Lee et al., isolates with MIC ≤
4 mg/L were susceptible to carbapenem, and those with
MIC ≥ 8 mg/L were resistant in patients with A. bauman-
nii bacteremia (34). Consistent with our results, Akbari De-
hbalaei et al. reported that resistant to carbapenems was
up to 85% in A. baumannii isolates (35). Unfortunately, in
this study, 7.69% of the isolates were resistance to all tested
antibiotics, which will be a significant obstacle to effective
treatment in the future. Therefore, antibiotic usage should
be controlled to prevent this serious threat. On the other
hand, 84.62% and 53.85% of isolates were susceptible to MN
and SAM, respectively. This result indicated that these two
antibiotics could be effective for the treatment of A. bau-
mannii infections in combination form. However, exces-
sive usage of these two antibiotics can also increase antibi-
otic resistance against them.

In this study, blaOXA-23, blaVIM, and blaNDM were detected
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Figure 2. The prevalence of Acinetobacter baumannii isolates obtained from different ICU and non-ICU wards. General ICU had the highest share of clinical samples (72%),
while the emergency ICU had the least share of clinical samples (50%). Bars represent mean± standard deviation (SD). The numbers on the bars represent percentages. ICU,
intensive care unit.

with high frequency in A. baumannii isolates. The blaOXA-23-
like gene is one of the most prevalent β-lactamase genes
in the carbapenem-resistant A. baumannii genome, mostly
on plasmids (36). Specific and quick identification of A.
baumannii and strains containing the blaOXA-23-like gene
will reference information on treatment and control mea-
sures for carbapenem resistance (37). Ning et al. showed
that ST191 and ST195 isolates of OXA-23-producing A. bau-
mannii could spread in a hospital and became potential
nosocomial outbreak strains. In this regard, they sug-
gested that antimicrobial management and surveillance
of imipenem-resistant A. baumannii should be improved
(38). Moreover, in the study by Akbari Dehbalaei et al., the
blaOXA-23 gene was detected in 81.81% of the isolates.

This study concluded that highly resistant blaOXA-23

gene-harboring endemic clones of A. baumannii were dis-
seminated in the ICUs of two studied hospitals (35). The

blaVIM is another β-lactamases encoding genes with a fre-
quency of 69.23% in this study. The frequency of this gene
was reported to be 17.44% and 18.18% in other studies con-
ducted in Iran in 2014 and 2016, respectively (39, 40). Com-
parison of these results showed that the frequency of this
gene had increased significantly in recent years in Iran (39,
40). Therefore, it seems necessary to find new treatments
to deal with this problem. In this study, only one isolate
harbored the blaNDM-1 gene. Pillonetto et al. presented the
first instance of A. baumannii sequence type 25 generating
blaNDM-1, isolated from the urinary tract of a 71-year-old man
in Brazil (41). Bonnin et al. recently suggested that A. bau-
mannii may accept resistant genes and act as a gene donor
passing resistance genes to other bacteria, including Enter-
obacteriaceae (42). It seems that the MDR phenotype in A.
baumannii is associated with the cooperation of carbapen-
emases, class 1 integrons, and possibly efflux pumps.
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Figure 3. The genetic maps of class 1 and 2 integrons in clinical isolates. PCR sequencing confirmed the presence of gene cassette arrays consisting of aacA4-catB8-aadA1 (12/46,
26.09%), aadB-aadA1 (12/46, 26.09%), arr2-cm1A5 (14/46, 30.43%), and dfrA1-aadA1 (8/46, 7.39%) in class 1 integron (left hand) and dfrA1-sat2 (9/17, 52.94%) and sat2-aadA1 (8/17, 47.06%)
in class 2 integron (right hand).
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Figure 4. Odds ratio and 95% confidence interval of risk factors (having the intI1, blaOXA23 , blaVIM , blaNDM , or intI2) for acquiring multidrug-resistant phenotypes in Acineto-
bacter baumannii isolates. The numbers on the bars show the probability of acquired MDR phenotype in each considered risk factor. All of these risk factors were statistically
significant except intI2. The dotted vertical line shows a significance threshold.
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The presence of integrase genes, intI1 and intI2, was de-
tected by PCR in 70.77% and 26.15% of A. baumannii iso-
lates, respectively. These data indicated that class 1 and
2 integrons were widely distributed among clinical iso-
lates of A. baumannii. The intI3 was not detected in any
of the strains. Similar to our study, Goudarzi and Azimi
reported class 1 and 2 integrons in 66.7% and 20% of iso-
lates, respectively. However, the class 3 integron was de-
tected in three A. baumannii strains (8). Moreover, Nour-
bakhsh et al. reported the frequency of class 1, 2, and 3 in-
tegrons to be 100%, 44%, and 3%, respectively, among A. bau-
mannii isolates (43). The sequence-based typing results of
blaOXA-51-like and ampC alleles revealed the following dis-
tribution of three different clone types among MDR iso-
lates, including CC10 (46.15%), CC2 (40%), and CC3 (13.85%).
In the study by Nazari et al., a comparison of clonal re-
latedness between clinical and non-clinical isolates illus-
trated that widespread clones, including CC2, CC3, and
CC10 were common clonal complexes among clinical and
non-clinical strains (15). In addition, a systematic review on
clonal relatedness of A. baumannii isolated from the Middle
East showed that CC2 was the most prevalent clonal com-
plex isolated from Lebanon, Palestine, Saudi Arabia, Turkey,
Yemen, Iran, Iraq, and Kuwait. In this study, CC2 and CC10
showed a high-level imipenem resistance (44).

5.1. Conclusions

The high prevalence of carbapenemase-producing A.
baumannii isolates in the ICU requires a rigorous an-
timicrobial stewardship and infection control program.
Class 1 and 2 integrons in clinical strains are repertoires
of aminoglycoside-modifying enzymes. Class 1 integron
can be served as a predictive biomarker for the pres-
ence of MDR bacteria in the clinical setting. However,
hoarding of carbapenemases on the integron apparatus
is not widespread among A. baumannii strains. Continu-
ous surveillance MDR A. baumannii and elucidation of their
AMR mechanisms in the clinical setting are clearly neces-
sary to help develop effective therapy regimens and to pre-
vent the further dissemination of these superbug bacteria.
Further studies are required to elaborate the association
of gene pools in A. baumannii and antibiotic resistance pat-
terns with epidemic and clinical outcomes of infection.
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Table 2. Demographic Data on Samples and 65 Non-duplicated Multidrug-Resistant Acinetobacter baumannii Isolates Recovered from Hospitalized Patients

Isolate
No.

Age/Sex Ward Outcome Isolation
source

Resistance
Patterns

MICIMP blaOXA23 blaVIM blaNDM intI1 Class 1
Integron
Cassette

Arrays

intI2 Class 2
Integron
Cassette

Arrays

IntI3 Clonal
Complex

1 42/M Poisoning
ward

ND S SAM-MEM-
AN-CIP-

SXT-
CAZ

8 + - - + aadB-
aadA1

- - - CC2

2 63/M Neurosurgery
ICU

Death T MEM-AN-
CIP-SXT-

CAZ

> 64 - + - + aadB-
aadA1

- - - CC10

3 50/M Emergency
ICU

Death T SAM-MEM-
AN-CIP-

SXT-
CAZ

16 + - - + dfrA1-
aadA1

- - - CC2

4 50/F Emergency
ICU

Death T MN-SAM-
MEM-AN-
CIP-SXT-

CAZ

16 + - - + dfrA1-
aadA1

+ sat2-aadA1 - CC2

5 40/M Poisoning
ICU

Death T SAM-MEM-
AN-CIP-

SXT-
CAZ

32 + + - + arr2-cm1A5 + dfrA1-sat2 - CC3

6 41/M Poisoning
ICU

Death T SAM-MEM-
AN-CIP-

SXT-
CAZ

> 64 + + - + dfrA1-
aadA1

- - - CC10

7 75/M General
ICU

Death T SAM-AN-
CIP-SXT-

CAZ

8 + + - + arr2-cm1A5 - - - CC10

8 50/M Poisoning
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

16 + + - + aacA4-
catB8-
aadA1

- - - CC10

9 42/M General
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

8 - - - + dfrA1-
aadA1

+ sat2-aadA1 - CC3

10 25/F General
ICU

Death T MEM-AN-
CIP-SXT-

CAZ

32 + + - - - - - - CC10

11 25/F General
ICU

Death T MEM-AN-
CIP-SXT-

CAZ

> 64 + + - + dfrA1-
aadA1

- - - CC3

12 37/M Poisoning
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

> 64 + + - - - + dfrA1-sat2 - CC3

13 22/M Poisoning
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

16 + + - + arr2-cm1A5 - - - CC10

14 37/M Poisoning
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

> 64 + + - + dfrA1-
aadA1

- - - CC10

15 29/M Neurosurgery
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

32 + - - + arr2-cm1A5 + dfrA1-sat2 - CC3

16 18/F Poisoning
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

> 64 + + - + arr2-cm1A5 - - - CC10

17 25/F General
ICU

Death C MN-MEM-
AN-CIP-

SXT-
CAZ

> 64 + + - + arr2-cm1A5 - - - CC2

18 49/M Neurosurgery
ICU

Death T SAM-MEM-
AN-CIP-

SXT-
CAZ

16 + + - + arr2-cm1A5 + dfrA1-sat2 - CC2

19 40/F Neurosurgery
ward

Discharge C SAM-MEM-
AN-CIP-

SXT-
CAZ

16 + - - - - + sat2-aadA1 - CC2

20 96/M Infectious
ward

Death T SAM-MEM-
AN-CIP-

SXT-
CAZ

32 + + - + dfrA1-
aadA1

- - - CC2

21 32/F General
ICU

Death T MEM-AN-
CIP-SXT-

CAZ

> 64 + + - + arr2-cm1A5 + dfrA1-sat2 - CC10

22 80/M Neurosurgery
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

16 + - - + dfrA1-
aadA1

- - - CC10
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23 5/M General
ICU

Discharge T SAM-MEM-
AN-CIP-

SXT-
CAZ

32 + + - + aacA4-
catB8-
aadA1

- - - CC10

24 60/M Poisoning
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

16 + - - + arr2-cm1A5 - - - CC2

25 32/F Poisoning
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

32 + + - + arr2-cm1A5 - - - CC10

26 65/F Emergency
ICU

Death T MEM-AN-
CIP-SXT-

CAZ

> 64 + - - - - - - - CC2

27 75/M General
ICU

Death T SAM-MEM-
AN-CIP-

SXT-
CAZ

16 + + - + arr2-cm1A5 + sat2-aadA1 - CC10

28 94/M Infectious
ward

Death T MN-SAM-
MEM-AN-
CIP-SXT-

CAZ

> 64 + + - + aacA4-
catB8-
aadA1

+ sat2-aadA1 - CC2

29 58/M Poisoning
ICU

Death T SAM-MEM-
AN-CIP-

SXT-
CAZ

16 + + - + aacA4-
catB8-
aadA1

- - - CC10

30 33/F General
ICU

Death T SAM-MEM-
AN-CIP-

SXT-
CAZ

32 + + - + aadB-
aadA1

- - - CC2

31 29/M Neurosurgery
ICU

Discharge T MEM-AN-
CIP-SXT

8 + - - - - - - - CC10

32 80/M Neurosurgery
ICU

Discharge S MEM-AN-
CIP-SXT-

CAZ

>64 + + - - - - - - CC10

33 16/F Poisoning
ICU

Discharge T MN-MEM-
AN-CIP-

SXT-
CAZ

16 + - - - - - - - CC2

34 74/F General
ICU

Death T SAM-MEM-
AN-CIP-

SXT

8 + - - + aacA4-
catB8-
aadA1

- - - CC10

35 25/M Poisoning
ICU

Discharge T SAM-MEM-
AN-CIP-

SXT-
CAZ

16 + + - - - - - - CC3

36 58/M Poisoning
ICU

Death T SAM-AN-
SXT

> 64 + + - + aadB-
aadA1

+ sat2-aadA1 - CC10

37 55/M Poisoning
ICU

Death T SAM-MEM-
AN-CIP-

SXT-
CAZ

> 64 + + - - - - - - CC10

38 74/F General
ICU

Death T MEM-AN-
CIP-SXT-

CAZ

8 + - - + aadB-
aadA1

- - - CC10

39 33/F General
ICU

Death T MEM-AN-
CIP-SXT-

CAZ

32 + + - - - - - - CC2

40 40/M Neurosurgery
ICU

Discharge T MN-MEM-
AN-CIP-

SXT

8 + - - - - - - - CC2

41 9/F General
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

16 + + - - - - - - CC10

42 62/F General
ICU

Death T SAM-MEM-
AN-CIP-

SXT-
CAZ

32 + + - - - - - - CC10

43 44/M Poisoning
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

16 + - - + aadB-
aadA1

+ sat2-aadA1 - CC10

44 40/F Poisoning
ICU

Death T SAM-MEM-
AN-CIP-

SXT-
CAZ

32 + + - - - - - - CC2

45 69/M General
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

32 + - - + aadB-
aadA1

+ sat2-aadA1 - CC2

46 40/F Poisoning
ICU

Death T MEM-AN-
CIP-SXT

8 + + - - - - - - CC2

47 69/F General
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

> 64 + + - + aacA4-
catB8-
aadA1

- - - CC2
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48 80/M Poisoning
ICU

Discharge T MEM-AN-
CIP-SXT-

CAZ

> 64 + + - - - - - - CC10

49 41/M Poisoning
ICU

Discharge T MN-SAM-
MEM-AN-
CIP-SXT-

CAZ

16 + + - - - - - - CC2

50 92/M General
ICU

Death T MN-MEM-
AN-CIP-

SXT-
CAZ

32 + + - - - + dfrA1-sat2 - CC2

51 45/M Neurosurgery
ICU

Discharge W MEM-AN-
CIP-
CAZ

8 + - - + arr2-cm1A5 - - - CC2

52 50/F Poisoning
ICU

Discharge T SAM-MEM-
AN-CIP-

SXT-
CAZ

16 + + - - - - - - CC10

53 55/M Poisoning
ICU

Discharge T SAM-MEM-
AN-CIP-

SXT-
CAZ

32 + + - + aacA4-
catB8-
aadA1

- - - CC2

54 45/M Neurosurgery
ICU

Discharge T SAM-MEM-
AN-CIP-

SXT-
CAZ

> 64 + + - + arr2-cm1A5 - - - CC2

55 69/M Poisoning
ICU

Death S MEM-AN-
CIP-SXT-

CAZ

16 + - - + arr2-cm1A5 + dfrA1-sat2 - CC10

56 68/F Neurology
ward

Discharge C AN-CIP-
SXT-
CAZ

32 - + - + aacA4-
catB8-
aadA1

- - - CC3

57 19/M Neurosurgery
ward

Discharge T SAM-MEM-
AN-CIP-

SXT-
CAZ

16 + + - + aacA4-
catB8-
aadA1

- - - CC3

58 65/M Poisoning
ICU

Discharge T MEM-AN-
CIP-
CAZ

8 - - + + aadB-
aadA1

- - - CC10

59 58/M Neurosurgery
ward

Discharge CF SAM-MEM-
AN-CIP-

SXT-
CAZ

> 64 + + - + aadB-
aadA1

- - - CC10

60 46/F Poisoning
ICU

Death T MN-MEM-
AN-CIP-

SXT-
CAZ

> 64 + + - + aacA4-
catB8-
aadA1

+ dfrA1-sat2 - CC2

61 55/M Poisoning
ICU

Death T MEM-AN-
CIP-SXT-

CAZ

32 + + - + aadB-
aadA1

- - - CC10

62 58/F Neurosurgery
ICU

ND T SAM-MEM-
AN-CIP-

SXT-
CAZ

16 + - - + aadB-
aadA1

- - - CC10

63 17/M Poisoning
ICU

Discharge T MN-SAM-
MEM-AN-
CIP-SXT-

CAZ

32 + + - + aacA4-
catB8-
aadA1

+ dfrA1-sat2 - CC2

64 35/M Neurosurgery
ICU

Discharge T CIP-SXT-
CAZ

32 - + - + aadB-
aadA1

- - - CC3

65 31/F General
ICU

Death T MN-SAM-
MEM-AN-
CIP-SXT-

CAZ

> 64 + + - + aacA4-
catB8-
aadA1

- - - CC2

Abbreviations: SAM, ampicillin/sulbactam; MN, minocycline; MEM, meropenem; AN, amikacin; CIP, ciprofloxacin; SXT, trimethoprim- sulfamethoxazole; CZ, ceftazidime; ND, not determined; S, sputum; T, tracheal; CF, CSF; C, catheter; W,
wound.
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