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Abstract

Background: At present, there is no report that the intestinal flora of pregnant women with mild thalassemia is different from that
of healthy pregnant women.
Objectives: This study compared the composition and changes of the intestinal flora of pregnant women with mild thalassemia to
those of healthy pregnant women using metagenomic sequencing technology and evaluated the potential microecological risk for
pregnant women and the fetus.
Methods: The present study was carried out on 14 mild thalassemia pregnant women with similar backgrounds in the Affiliated
Hospital of Putian University, Fujian, China. In the same period, 6 healthy pregnant women were selected as the control group.
The genomic deoxyribonucleic acid was extracted from the sable stool samples of pregnant women. Illumina HiSeq sequencing
technology was adopted after library preparation. Prodigal software (ver 2.6.3), Salmon software (ver 1.6.0), and Kraken software
(ver 2) were used to analyze the sequence data. Moreover, analysis of variance and Duncan’s multiple-comparison test or Wilcoxon
rank-sum test were used as statistical methods.
Results: The characteristics of the intestinal flora of pregnant women with mild thalassemia differed significantly from those of
healthy pregnant women, showing an increase in some conditionally pathogenic bacteria (e.g., Prevotella stercorea rose and Es-
cherichia coli) and a decrease in some probiotic bacteria, which might affect pregnant women and cause physiological function
damage to their offspring by changing metabolic pathways; however, further validation is needed.
Conclusions: The diversity and composition of intestinal flora in pregnant women with mild thalassemia vary significantly from
those in healthy pregnant women, especially at the genus and species levels, representing more profound alterations in intestinal
microecology.
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1. Background

Thalassemia, one of the most prevalent single-gene
hereditary disorders worldwide, is caused by a mutation
or deletion of the alpha-globin and beta-globin genes
in the human body, causing the globin peptide chain
to become imbalanced and resulting in hemolytic ane-
mia, also known as marine anemia. Thalassemia is
widespread, with higher rates in the Mediterranean, the
Middle East, and Southeast Asia (1). According to the
reduction of the peptide chain, thalassemia is classified
as alpha-thalassemia (α-thalassemia), beta-thalassemia (β-
thalassemia), gamma-thalassemia (γ-thalassemia), delta-
thalassemia (δ-thalassemia), and delta-beta-thalassemia

(δβ-thalassemia). The α-thalassemia and β-thalassemia
are both frequent in the clinic. According to the clinical
classification, thalassemia is categorized as mild, moder-
ate, or severe.

The intestinal flora is associated with numerous
metabolic pathways in the body and affects human health
and differences in the composition and abundance of
the intestinal flora when the body is ill. Intestinal flora’s
variety, stability, and balance play an important role
in maintaining human health in a steady state. Clini-
cally, women with mild thalassemia can have normal
pregnancies, delivery, and newborns, just like healthy
women. Because individuals with mild thalassemia have
no evident clinical signs, their health is essentially indis-
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tinguishable from that of the general population. Due to
various physiological changes of pregnant women, great
physiological and immune function changes will happen
in the intestinal flora (2). The intestinal flora might be
dysfunctional, resulting in maternal maladjustment, fetal
development restriction, and spontaneous abortion (3).

2. Objectives

Metagenomic next-generation sequencing (mNGS) is a
technology based on metagenomics that directly analyzes
microbial deoxyribonucleic acid (DNA) or ribonucleic acid
in samples without growing them. In this study, metage-
nomics sequencing technology was used to analyze intesti-
nal flora changes in healthy pregnant women and preg-
nant women with mild thalassemia; the specific species
categories were analyzed to identify key bacterial species
and assess potential effects on pregnant women and fe-
tuses.

3. Methods

3.1. Research Subjects

All the samples were from pregnant women hospital-
ized in the Affiliated Hospital of Putian University, Fujian,
China. The hospitalized pregnant women in this study
took the designated food at the specified time as expected
2 weeks before sampling and did not follow other diets and
sampling at a fixed time. The selected pregnant women all
came from similar backgrounds, including (1) from nearby
suburbs with comparable living habits (e.g., eating habits,
living hours, and labor intensity), (2) no family history of
other genetic illnesses, and (3) within the age and weight
ranges of 26 - 29 years and 55 - 60 kg, respectively. Six
healthy pregnant women (control group), seven pregnant
women with mild α-thalassemia (treatment B group), and
seven pregnant women with mild β-thalassemia (treat-
ment C group) were all subjected to rigorous thalassemia
gene testing. The inclusion criteria were (1) no antacids,
probiotics, antibiotics, or micro-antibiotics taken by the
patients in the previous month, (2) no diabetes or other
metabolic diseases influencing the intestinal flora, and
(3) without digestive gut surgery. The exclusion criteria
were (1) hematochezia symptoms and (2) digestive disor-
ders that might create an imbalance in the intestinal flora.

3.2. Fecal Collection and DNA Extraction

The fresh morning feces of the selected pregnant
women were collected and stored at -80ºC immediately.
The sable stool samples were extracted with the HostZERO
microbial DNA kit (Zymo Research, California, USA). The

DNA was tested for quality control and quantified before
library construction. The purity and integrity of the DNA
were determined using agarose gel electrophoresis, and
DNA concentration was measured using a Qubit 3.0 Fluo-
rometer (Invitrogen, USA). Each sample’s DNA fragments
ranged from 3000 to 5000 bp, reaching the parameters for
creating the DNA library.

3.3. Library Preparation and Metagenomics Sequencing

During library construction, eligible DNA samples
were randomly digested into 500-bp-long pieces using an
ultrasonic crusher (Covaris, UK). The fragments were lig-
ated to adapters after being end-repaired and A-tailed. Fol-
lowing library preparation, an initial quantification was
performed using a Qubit 3.0 Fluorometer, and the library
was diluted to 2 ng/µL. Following that, an Agilent 2000 Bio-
analyzer (Agilent, USA) was used to assess whether the li-
brary’s insert sizes corresponded to expectations. A quan-
titative polymerase chain reaction was used to quantify the
library’s effective concentration (> 3 nM) to ensure library
quality. The follow-up metagenome sequencing was com-
pleted by Shenzhen Weishengtai Technology Co., Ltd, Shen-
zhen, China. The Illumina NovaSeq 6000 platform (Illu-
mina, USA) was used for sequencing.

3.4. Quality Control and Genome Assembly

The low-quality sequences in the raw data were
firstly removed using Trimmomatic 0.36 software (pa-
rameter: ILLUMINACLIP: adapters_path:2:30:10 SLIDING-
WINDOW:4:20 MINLEN:50) to ensure the accuracy of
subsequent analysis results (4), followed by Bowtie 2
software (parameter: –very-sensitive) to remove the host
genome (hg38) to obtain the clean data of the samples
(5). The clean data were gained following these filtering
procedures, and MEGAHIT software (parameter: –k-list
21,29,39,59,79,99,119,141 –min-contig-len 500) was used for
assembly analysis (6). The scaffolds were severed at the
N-junctions to produce N-free sequence segments known
as scaftigs (7). Bowtie 2 software (parameters: -end-to-end,
-sensitive) was used to match the clean data for each sam-
ple to the scaftigs of each sample to get PE (paired-end (PE))
readings. MEGAHIT software was used for mixed assembly
after pooling the clean readings from each sample, and
the remaining assembly parameters were similar to those
used for single sample assembly. The fragments of fewer
than 500 bp were filtered out of the scaftigs generated by
both single sample assembly and mixed assembly (8), and
then gene predictions were carried out.
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3.5. Gene Prediction, Abundance Analysis, and Species Annota-
tion

Prodigal software (parameters: -p meta) was used to
predict open reading frames (ORFs) using the scaftigs for
each sample assembly and mixed assembly (≥ 500 bp)
(9). The fragments shorter than 100 nt were removed from
the prediction results. CD-HIT software (parameters: -G 1
-c 0.9) was used to eliminate redundancy from each sam-
ple’s ORF prediction findings, providing an initial non-
redundant gene catalog. Salmon software (parameters: -
validate Mappings - meta) was used to compare the clean
data into the de-redundant genes and determine their rel-
ative abundance reads per million of the de-redundant
genes (10). Kraken 2 software (parameters: –confidence
0.2) was used to compare the unigenes to the sequences
retrieved from the NCBI NR database of bacteria, fungi, ar-
chaea, and viruses (11). The lowest common ancestor (LCA)
technique was used to assign the categorization level be-
fore the first branch as the sequence’s species annotation
information. The abundance information of each sample
at each categorization level (i.e., genus and species) was
collected using the LCA annotation findings and the gene
abundance table. The abundance of a species in a sample
was calculated as the sum of the gene abundance of the an-
notated species.

3.6. Statistical Analysis

The collected data were analyzed by SPSS software (ver-
sion 20.0) and represented by mean±standard deviation.
Analysis of variance and Duncan’s multiple-comparison
test were used for the comparison between the groups.
All the results were considered statistically significant at
a P-value of less than 0.05. The Wilcoxon rank-sum test
was used to detect significant intergroup differences in the
relative abundance of taxonomy and species features (P <
0.05).

4. Results

4.1. Quality Control of Metagenomics Sequencing

The clean reads of each sample account for more than
92% of the raw reads after processing the original sequenc-
ing data. Typically, there are numerous redundant se-
quences in the ORF sequences of predicted genes, making
it simple to commit errors and skew the findings. CD-HIT
software (12) was applied to the cluster for removing re-
dundant sequences (cluster similarity ≥ 0.95; coverage ≥
0.9). The longest ORF sequence from each category was
chosen as the representative sequence to construct a set of
non-redundant gene sequences (Figure 1).

4.2. Differences in Intestinal Flora Between Mild Thalassemia
and Healthy Pregnant Women

The relative abundance of Desulfovibrionales in preg-
nant women with mild thalassemia decreased signifi-
cantly, compared to that of healthy pregnant women
(healthy: 1.48%; mild thalassemia: 0.05%; P = 0.017) (Figure
2A).

Linear discriminant analysis (LDA) was used to com-
pare the relative abundance of family, genus, and species in
mild thalassemia and healthy pregnant women and iden-
tify the characteristic intestinal flora of pregnant women
with mild thalassemia. The relative abundance of Micro-
coccaceae and Corynebacteriaceae in the mild thalassemia
group significantly increased (P = 0.027 and P = 0.041),
compared to that of the healthy pregnant women group;
however, the relative abundance of Desulfovibrionaceae
and Erythrobacteraceae decreased significantly (P = 0.017
and P = 0.036). In the mild thalassemia group, the rel-
ative abundance of Bilophila decreased significantly (P =
0.027), compared to that of the healthy pregnant women
group; nevertheless, the relative abundance of Prevotella
increased significantly (P = 0.011) (Figures 2B and 2C).
While comparing the mild thalassemia pregnant group
to the healthy pregnant group, Prevotella stercorea rose
(P=0.008), Bacteroides fragilis, a B. species, Roseburia in-
ulinivorans, and a Roseburia species had a reduced relative
abundance (P = 0.011) (Figure 3A).

According to the species difference analysis, pregnant
women with mild thalassemia belonged to Micrococcaceae
at the family level (Figure 2D). Healthy pregnant women
belonged to Deltaproteobacteria at the class level, Desul-
fovibrionales at the order level, and Erythrobacteraceae and
Desulfovibrionaceae at the family level; the latter’s results
were compatible with those of LDA difference analysis.

4.3. Differences in Intestinal Flora Between Pregnant Women
with Mild α-Thalassemia and Healthy Pregnant Women

The relative abundance of Desulfovibrionaceae was sig-
nificantly lower (P = 0.043) and Mycoplasmataceae sig-
nificantly higher (P = 0.047) in pregnant women with
mild α-thalassemia, compared to that of healthy preg-
nant women. At the genus level, the relative abundance
of Bilophila was significantly lower (P = 0.043) in mild α-
thalassemia pregnant women, compared to that of healthy
pregnant women; however, the relative abundance of Aero-
coccus was significantly higher (P = 0.047), and Prevotella,
Slackia, Shigella, and Escherichia were also significantly in-
creased (P = 0.043). At the species level, the relative abun-
dance of Escherichia coli in mild α-thalassemia pregnant
women increased remarkably (P = 0.043), compared to
that of healthy pregnant women; however, the relative
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Figure 1. Sets of Non-redundant Gene Sequences; A, Predicting the length distribution of gene open reading frame (ORF) sequence; B, Predicting the G + C% distribution of
gene ORF sequence; C, When predicting the start site of a gene ORF sequence, "edge" indicative of the anticipated gene’s start codon as uncertain; D, When predicting the
gene’s ORF sequence integrity, "10" expressive of only the stop codon, "01" expressive of only the start codon, "11" expressive of neither the stop codon nor the start codon, and
"00" expressive of the whole gene with both the stop and start codons.

abundance of Clostridium saccharogumia and Bacteroides
nordii decreased markedly (P = 0.021) (Figure 3B).

4.4. Differences in Intestinal Flora Between Pregnant Women
with Mild β-Thalassemia and Healthy Pregnant Women

The relative abundance of Veillonellaceae and
Desulfovibrionaceae was significantly lower in mild β-
thalassemia pregnant women, compared to that of
healthy pregnant women (P = 0.043). However, the rel-
ative abundance of Micrococcaceae, Peptococcaceae, and
Sphingobacteriaceae increased remarkably (P = 0.021; P =
0.043; P = 0.047). At the genus level, the relative abun-
dance of Tepidibacter was significantly lower in mild
β-thalassemia pregnant women than healthy pregnant
women (P = 0.047); nevertheless, the relative abundance
of Kocuria and Prevotella increased significantly (P = 0.018
and P = 0.021, respectively). The relative abundance of
Eubacterium eligens and Bilophila wadsworthia in mild
β-thalassemia pregnant women decreased significantly,
compared to that of healthy pregnant women at the
species level (P = 0.021 and P = 0.043, respectively) (Figure
3C).

5. Discussion

Microorganisms colonize the digestive system and cre-
ate a natural symbiotic flora or microflora, which is es-
sential for decomposing nutrients and helps resist the set-
tlement of potential pathogens. At present, it is consid-
ered that the changes in intestinal flora composition are
related to the onset and progression of illnesses, and there
are clear disparities between patients with various diseases
and healthy individuals (13). In a healthy human gut, the
flora will synergize or antagonize one another to preserve
intestinal flora’s diversity, stability, and balance, which is
crucial for maintaining host health (14). The intestinal
flora utilizes specific enzymes and metabolic pathways to
degrade nutrients that the body cannot digest or absorb,
promoting nutrient absorption and sustaining gut mu-
cosal immunity and systemic autoimmunity (15, 16).

The fetus is generally sterile during the development
in the mother’s uterus; therefore, the unborn fetus’s gut is
sterile. However, the mother transfers her flora to the new-
born neonate during the delivery process. As a result, the
mother provides the bulk of the intestinal flora in the early
stages of the fetus, protecting the child’s initial and even
future health (17). It means that various maternal factors
and vertical intestinal flora transfer from the mother will
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Figure 2. Analysis of difference between mild thalassemia and healthy pregnant women; A, Average abundance difference at order level between mild thalassemia and healthy
pregnant women; B, Difference in linear discriminant analysis (LDA) at family level between mild thalassemia and healthy pregnant women; C, Difference in LDA at genus level
between mild thalassemia and healthy pregnant women; D, Evolutionary analysis of intestinal flora in mild thalassemia and healthy pregnant women, circles extending from
inside to outside representative of classification level from the phylum to the genus, yellow-green nodes indicative of no significant differences in bacterial colonies across
groups; yellow areas indicative of a higher abundance of differential colonies in mild thalassemia pregnant women, in contrast to blue areas indicative of a higher abundance
of differential colonies in healthy pregnant women.

obviously impact fetal development, delivery, and postna-
tal neonate health. Returning to the present study, the
diversity and composition of the intestinal flora in preg-
nant women with mild thalassemia varied significantly
from those in healthy pregnant women, especially at the
genus and species levels, representing more profound al-
terations in intestinal microecology.

Prevotella is a Gram-negative obligate anaerobe that
has been linked to insulin resistance, rheumatoid arthritis,
diarrheal irritable bowel syndrome, and hyperlipidemia
(18, 19) with a similar growth-promoting impact on pri-
mary and metastatic colorectal cancer tumors (20). Nu-
merous studies have shown Prevotella to be practically
widespread in non-westernized communities that eat a
plant-rich diet and less prevalent in European and North
American individuals (21-23). Several studies in the recent
decade have linked Prevotella to disease-causing qualities,

owing to their prevalence in inflammatory situations (24).
According to detailed microbial community characteriza-
tion and metabolome research, Prevotella has a remarkable
potential to disrupt the gut microbiome (25) and reduce
the amounts of short-chain fatty acids (26). On the other
hand, another study proposed that Prevotella might be pro-
inflammatory in the stomach by lowering the protective
mucus layer (27). Therefore, Prevotella might play an im-
portant role in the occurrence and progression of inflam-
mation in pregnant women with mild thalassemia.

Bacteroides fragilis is a Gram-negative anaerobic bacte-
ria that dwell on numerous animals’ lower digestive tracts
(i.e., mucosal surface) (28). Bacteroides fragilis coloniza-
tion has been demonstrated to dramatically enhance the
inhibitory action of inflammation-related molecules and
the generation of anti-inflammatory cytokines (29). Bac-
teroides fragilis also possesses immunomodulatory char-
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Figure 3. Significant variations in species levels between group of pregnant women with mild thalassemia and group of healthy pregnant women; A, Between group of
pregnant women with mild thalassemia and group of healthy pregnant women; B, Between group of pregnant women with mild alpha-thalassemia and group of healthy
pregnant women; C, Between group of pregnant women with mild beta-thalassemia and group of healthy pregnant women.

acteristics and is crucial for the development of the hu-
man immune system. Intestinal colonization and immune
regulation in humans are dynamic. Intestinal coloniza-
tion and immune regulation in humans are dynamic. The
neonate’s initial intestinal flora is primarily derived from
the mother’s delivery process and postnatal exposure (30,
31), and B. fragilis, which might be transferred from mother
to neonate, is the most abundant bacterium in the new-
born’s early digestive tract. The shift in intestinal abun-
dance corresponds to the development of the adaptive im-
mune system (32).

Roseburia inulinivorans in the Firmicutes can prevent

colitis by binding to G-protein coupled receptors (33), indi-
cating that B. fragilis and R. inulinivorans have certain anti-
inflammatory properties. These two bacteria are much
lower in pregnant women with mild thalassemia than
healthy pregnant women, rendering them more prone to
inflammation. The inflammatory response has long been
linked to threatened preterm delivery and birth (34). Si-
multaneously, the reduction in B. fragilis might affect the
development of the fetal immune system.

Escherichia coli is the most prevalent facultative anaero-
bic bacterium in the human gut flora and one of the main
opportunistic pathogens of nosocomial infection (35). It
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can cause body inflammation via immune responses, re-
sulting in diarrhea, peritonitis, cystitis, and cholecystitis
(36). Colon cancer-related anemia could increase the rel-
ative abundances of E. coli as one of the intestinal flora
imbalance-inducing bacteria (37). Clostridium can be clas-
sified into two main types, namely beneficial and harmful.
Clostridium saccharogumia is an intestine probiotic Clostrid-
ium that can convert Secoisolariciresinol diglucoside into
lignan Enterolactone and Enterodiol, which could prevent
breast cancer, colon cancer, atherosclerosis, and diabetes
(38, 39).

Bacteroides nordii can oxidize primary bile acids to sec-
ondary bile acids, protect intestinal epithelial cells, and
fight infections, modulating bodily health and intestinal
flora composition (40). In comparison to healthy preg-
nant women, mild α-thalassemia pregnant women are
prone to intestinal microecological imbalance, bile acid
metabolism disorders, and increased plasma bile acids,
leading to adverse consequences, such as premature deliv-
ery and respiratory distress or death.

Eubacterium is a symbiotic anaerobic bacterium found
in the human intestine that is part of the dominant flora.
Eubacterium can effectively reduce blood glucose levels,
protect intestinal epithelial barriers, and treat inflamma-
tory bowel disease (41). Bilophila wadsworthia is an obliga-
tory anaerobic Gram-negative bacillus with high bile salt
tolerance in the Desulfovibrionaceae family. Bile acids can
promote the proliferation of B. wadsworthia in the intes-
tine. The main treatment for thalassemia is blood trans-
fusion coupled with chelation therapy with iron remover.
The major treatment approach for β-thalassemia is blood
transfusion chelation therapy coupled with an iron re-
moval agent. Regardless of whether the patient undergoes
blood transfusion treatment, the iron in the body will be
overloaded, with most of it being stored in the liver (42).

Excess iron has been shown to harm the liver and im-
pair bile acid production (43). The relative abundance of B.
wadsworthia in the intestines of mild β-thalassemia preg-
nant women reduced, which might be attributed to re-
duced bile acid production induced by iron overload. Bile
acids act as a detergent in lipid metabolism and are essen-
tial for metabolism and immunological regulation. They
can maintain a steady state of intestinal flora, improve
mucosal barrier defense, and inhibit bacteria growth. Re-
duced bile acid synthesis and damage to the intestinal ep-
ithelial barrier might result in intestinal bacterial translo-
cation, activation of the inflammatory immune defense
mechanism in pregnant women with mild thalassemia,
stimulation of the systemic inflammatory response, and
threatened premature birth or a negative impact on the
newborn’s health.

However, there are still numerous areas to be im-

proved in the present study. The most serious issue is
the difficulty of collecting samples, which leads to a small
number of samples in this study. The selected subjects in
this study only represented the composition of the intesti-
nal flora in local samples, and the subjects’ factors affected
the results. Due to the limitation of the existing mNGS
methodology, numerous strains have not been discovered.
As a result, the investigation of flora still meets hindrance
everywhere. In addition, the intestinal flora is dynamic,
and this study can only show the state of the research ob-
ject at a certain point in time. Therefore, long-term practi-
cal dynamic observation should be made in the follow-up,
which might be more valuable for research.

5.1. Conclusions

In conclusion, the present study results showed that
the diversity and composition of the intestinal flora in
pregnant women with mild thalassemia vary significantly
from those in healthy pregnant women, especially at the
genus and species levels, representing more profound al-
terations in intestinal microecology. The disorder of the
intestinal flora has a certain negative impact on the health
of pregnant women with mild thalassemia, the fetus, and
the process of pregnancy and childbirth.
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