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Abstract

Background: Enterococcus faecalis rapidly develops resistance to different antibiotics, thereby resulting in serious nosocomial in-
fections associated with high mortality rates and different problems in the healthcare systems.
Objectives: This study aimed to analyze the genetic diversity, antimicrobial resistance, and virulence factors of E. faecalis isolates
obtained from the stool samples of patients in a hospital in the center of Iran.
Methods: In this cross-sectional descriptive-analytical study, 108 stool samples were collected from September 2019 to February
2020 from 108 patients hospitalized in a hospital in the center of Iran. Enterococcus faecalis isolates were detected using the ddlE
gene detection technique, and antimicrobial resistance testing was performed using the disc agar diffusion method. Moreover,
polymerase chain reaction was used to detect antimicrobial resistance genes and virulence factors. Genetic diversity was also ana-
lyzed by enterobacterial repetitive intergenic consensus using PCR. The BioNumerics software was used to construct a dendrogram.
Results: Of 108 isolates, 50 samples were E. faecalis (46.2%). The prevalence of multidrug resistance among E. faecalis isolates was
62%, and most isolates were resistant to antibiotics tetracycline (70%), erythromycin (68%), and rifampin (60%). Among the E. faecalis
isolates, the most prevalent antimicrobial resistance genes were ermB (96%), aph (2′′) Ia (66%), aac(6′)-Ie (40%), and ermC (30%), and
the most prevalent virulence genes were gelE (78%), asa1 (74%), and esp (74%). The genetic diversity analysis showed 25 ERIC types in
two major clusters (ie, clusters H and J) and eight minor clusters (ie, clusters A-G and I). There was no significant difference between
clusters H and J in terms of antimicrobial resistance and resistance genes (P > 0.05). In contrast, the prevalence of the asa1 gene was
significantly higher in cluster J than in cluster H (P < 0.05).
Conclusions: This study showed the high prevalence of multidrug resistance, and high heterogeneity among the E. faecalis isolates
obtained from the stool samples of hospitalized patients.
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1. Background

Enterococcus faecalis is the normal flora of the gastroin-
testinal system of humans and animals. As an occasional
pathogen, it can cause community-acquired and nosoco-
mial infections (1). It is responsible for different nosoco-
mial infections, particularly bacteremia, sepsis, endocardi-
tis, wound infections, and urinary tract infections (2). Pre-
vious studies have revealed that most enterococcal infec-
tions are caused by E. faecalis strains (3, 4). Enterococcal in-
fections are a major challenge to healthcare systems and
a serious threat to patient life in Iran (5). In Iran, a study
on 111 clinical Enterococcus isolates showed that 80.1% of the
isolates were E. faecalis (6). Hospitalization and impaired

immunity are the risk factors of E. faecalis infections (7).
Moreover, antimicrobial resistance and virulence factors
remarkably contribute to enterococcal infections in hos-
pitalized patients (8). In addition to innate resistance to
several antimicrobial agents, Enterococcus species can ac-
quire high resistance to different antibiotics through the
horizontal transfer of mobile genetic elements (9).

Given the wide and inappropriate use of antibiotics
in clinical settings for managing community-acquired in-
fections, the emergence of multidrug-resistant (MDR) E.
faecalis strains has become a serious healthcare concern
worldwide. There are limited treatment options for MDR
bacterial species. Moreover, MDR species can transfer ge-
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netic antimicrobial resistance factors to other commensal
bacteria in the gastrointestinal system or the environment
(10). Accordingly, there are clinical challenges in managing
enterococcal infections due to their progressive resistance
to different antibiotics such as beta-lactams, macrolides,
fluoroquinolones, glycopeptides, and aminoglycosides (11,
12).

Antimicrobial resistance to the high concentrations of
aminoglycoside antibiotics is usually caused by the amino-
glycoside modifying enzymes found in and encoded by
mobile genetic elements. Moreover, resistance to van-
comycin is encoded by the van gene clusters transferred
in one transposon (13). Virulence factors such as gelati-
nase, aggregation substance proteins, Enterococcus surface
proteins, collagen adhesion, cytolysin, and hyaluronidase
play roles in bacterial adhesion, colonization, invasion,
escaping from the host’s immune response, extracellular
enzyme production, virulence, and infection aggravation
(14).

Source detection and the effective management of en-
terococcal nosocomial infections largely depend on deter-
mining their genetic diversity (15). Currently, different
methods such as pulse-field gel electrophoresis (PFGE), re-
striction fragment length polymorphism (RFLP), and en-
terobacterial repetitive intergenic consensus using poly-
merase chain reaction (ERIC-PCR) have been used for the
epidemiological assessment of bacteria (16, 17). ERIC-PCR
is a popular molecular analysis method for typing Entero-
coccus isolates. The ERIC sequences are the imperfect palin-
dromes of 127 base pairs (bp); however, the ERIC region can
be smaller or larger due to internal eliminations or the en-
trance of larger sequences. The ERIC sequences were first
detected in Escherichia coli, Salmonella typhimurium, other
Enterobacteriaceae members, and Vibrio cholerae. However,
it has recently been revealed that they are present in other
species and can be used for typing (18). In Indonesia, a
study showed that allE. faecalis isolates analyzed by the Eric
typing method had >60% similarity and were in five clus-
ters (19).

Several studies in different countries reported the
great antimicrobial resistance and the great genetic diver-
sity of Enterococcus species (20-22). A study on Enterococ-
cus isolates obtained from the stool samples of children
in the northwest of Iran showed great antimicrobial re-
sistance to tetracycline, rifampin, and erythromycin and
great genetic diversity among the E. faecalis isolates (23).
The genetic pattern of Enterococcus species such as E. fae-
calis varies not only in different areas but also in a single
setting; hence, there may be multiple clusters specific to a
single area or setting.

2. Objectives

Studying the epidemiology of E. faecalis can provide
valuable information about the current and future status
of nosocomial infections. The present study aimed to ana-
lyze the genetic diversity, antimicrobial resistance, and vir-
ulence factors of E. faecalis isolates obtained from the stool
samples of patients in a hospital in the center of Iran.

3. Methods

3.1. Sampling and Enterococcus faecalis Detection

This cross-sectional descriptive-analytical study was
conducted from September 2019 to February 2020. The
non-duplicated stool samples were obtained from patients
hospitalized for at least three days in the internal medicine
ward, infectious diseases ward, and coronary care unit of
the Shahid Beheshti Hospital, Kashan, Iran. The isolates
were cultured in the laboratory of the Microbiology De-
partment of the Kashan University of Medical Sciences,
Kashan, Iran. They were phenotypically detected at the
species level using biochemical tests such as catalase test,
culturing on the brain heart infusion broth containing
6.5% NaCl, and the Bile-Esculin test (24). The identity of
the isolates was genotypically confirmed using the PCR
method and the specific primer of the ddlE gene of E. fae-
calis (25).

3.2. Antimicrobial Resistance Testing

The antimicrobial resistance pattern of E. faecalis iso-
lates was determined phenotypically and genotypically. In
the phenotypic method, the disc agar diffusion method
was used according to the guidelines of the Clinical and
Laboratory Standards Institute (CLSI) to test the antimicro-
bial resistance of the isolates for the following 10 antibi-
otics: penicillin (PEN, 10 units), ampicillin (AMP, 10 µg),
ciprofloxacin (CIP, 5 µg), erythromycin (E, 15 µg), tetracy-
cline (TET, 30 µg), nitrofurantoin (NI, 300 µg), rifampin
(RI, 5 µg), quinupristin-dalfopristin (SYN, 15 µg), and line-
zolid (LZD, 5 µg). First, a 0.5 McFarland microbial suspen-
sion of the isolates was prepared. After culturing the iso-
lates, the inhibition zone diameter was measured and in-
terpreted based on the CLSI table (26). According to the
recommendations of the CLSI, Staphylococcus aureus ATCC
25923 was used as a control to standardize the antimicro-
bial resistance test. Isolates resistant to at least three an-
tibiotic classes were considered as MDR.
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3.3. DNA Extraction

DNA extraction was performed using the DNA
TIANamp extraction kit (TIANGEN Biotech, Beijing, China).
The spin column in this kit is made of a silica membrane,
which can attach to and detach from DNA under specific
pH and salt conditions. The DNA concentration was mea-
sured using a NanoDrop spectrophotometer (Thermo
Fisher Scientific, USA).

3.4. Detection of the Antimicrobial Resistance and the Virulence
Genes

The PCR method was employed to genotypically de-
tect the genes responsible for resistance to antibiotics
vancomycin (vanB, vanA), aminoglycosides (aac(6′)-Ie
aph(2′′)Ia), and macrolides (ermA, ermB, ermC) (Table 1). To
this end, specific primers and the method described in our
previous work (27) were used. Moreover, E. faecalis isolates
were assessed for the virulence genes efa, ace, asa1, gelE, hy1,
cy1A, and esp using specific primers and PCR conditions, as
explained in Table 2.

3.5. ERIC Typing

Genetic diversity was assessed using ERIC-PCR, as de-
scribed by Versalovic et al. (28). The ERIC region was de-
tected using the ERIC1R (5’-ATG TAA GCT CCT GGG GAT TCAC-
3’) and the ERIC2 (5’-AAG TAA GTG ACT GGG GTG AGC G-3’)
primers (Metabion, Germany). Moreover, the ERIC region
was amplified using a 25-µL mixture of sterile distilled wa-
ter (18 µL), 10X PCR buffer (2.5 µL), dNTP (1 µL of 10 mo-
lars), ERIC1R and ERIC2 primers (1 µL of each), Taq poly-
merase (0.5µL), and template DNA (1µL). The PCR reaction
consisted of initial denaturation at 95°C for three minutes
accompanied with 35 warming cycles, each of which con-
sisted of denaturation at 94°C for one minute, annealing
at 48°C for one minute, extension at 72°C for two minutes,
and final extension at 72°C for five minutes (29).

3.6. ERIC Analysis

The band profile analysis was done with BioNumerics
software version 8.0. The dendrogram was constructed by
the genetic diversity analysis using the Unweighted Pair
Group Mean Method with Arithmetic mean (UPGMA), disc
similarity coefficient, and 1% band position tolerance. Ac-
cording to the ladder, only the bands with a length of 100
- 3000 bp were included in the analysis. The BioNumer-
ics software creates groups with a specific similarity range.
The differences between band profiles in the dendrogram
were depicted using the digits above lines (Figure 1). For
the band analysis, the isolates with a genetic similarity of

at least 80% were grouped as an ERIC type; however, the iso-
lates not having such a similarity were considered as sepa-
rate ERIC types and then labeled as ERIC E1–En. ERIC cluster-
ing criteria in the BioNumerics software were a difference
of ≤ 20% and the presence of more than one isolate in each
cluster.

3.7. Statistical Analysis

The collected data was analyzed with SPSS software ver-
sion 22.0. Values were reported as relative frequency. The
chi-square test was used for frequency comparison at P <
0.05.

4. Results

4.1. Characteristics of Patients and Isolates

The phenotypic and genotypic tests were used, and
fifty E. faecalis isolates were obtained from 108 stool sam-
ples (46.2%). None of the samples was duplicated. The E.
faecalis isolates were obtained from an internal medicine
ward (n = 22), an infectious diseases ward (n = 16), and a
coronary care unit (n = 12). TheEnterococcus faecalis isolates
were obtained from both male (n = 29) and female (n = 21)
patients. The participants’ mean age was 65.1 ± 15.4 years
(Table 1).

4.2. Antimicrobial Resistance Testing

The antimicrobial resistance testing results showed
that the great resistance of the E. faecalis isolates to the
antibiotics TET (70%), E (68%), RI (60%), SYN (48%), and CIP
(48%). Table 3 shows the antimicrobial resistance of E. fae-
calis isolates to the ten tested antibiotics. Thirty-one E. fae-
calis isolates (62%) were MDR. In this regard, MDR had no
significant relationship with patients’ gender, age, length
of hospital stay, and hospitalization ward (P > 0.05). The
Enterococcus faecalis isolates showed the highest antimi-
crobial susceptibility to the antibiotics LZD (94%), NI (86%),
AMP (78%), and PEN (76%).

4.3. Antimicrobial Resistance Genes

The analysis of antimicrobial resistance genes among
the E. faecalis isolates indicated that the most prevalent
genes were ermB (96%), aph(2′′)Ia (66%), aac(6′)-Ie (40%),
ermC (30%), vanA (20%), and ermA (14%). Moreover, the most
prevalent antimicrobial resistance patterns were ermB+
aph(2′′)Ia (20%), ermB (18%), and ermB+aac(6′)-Ie+ aph(2′′)Ia
(10%).
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Figure 1. Dendrogram constructed based on fingerprint of ERIC regions of fifty Enterococcus faecalis isolates. According to a dice coefficient similarity of at least 80%, the E.
faecalis isolates were clustered into ten clusters (ie, clusters A–J).
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Table 1. PCR Conditions and Primers for Amplifying Antimicrobial Resistance Genes of Enterococcus faecalis Isolates Obtained from Hospitalized Patients’ Stool Samples

Target Gene Primers Oligonucleotide Sequence 5’-3’ Size of Amplified Product (bp) Annealing Temperature

vanA
F GGGAAAACGACAATT GC

732

54°C
R GTA CAATGC GGCCGTTA

vanB
F ATGGGAAGCCGATAGTC

638

R GATTTCGTTCCTCGACC

aac(6′)-Ie
F AGGAATTTATCGAAAATGGTAGAAAAG

369

54°C
R CACAATCGACTAAAGAGTACCAATC

aph(2′′)Ia
F CAAACTGCTAAATCGGTAGAAGCC

294

R GGAAAGTTGACCAGACATTACGAACT

ermA
F TAT CTT ATC GTT GAG AAG GGA TT

139

55°C

R CTA CAC TTG GCT GAT GAA A

ermB
F CTA TCT GAT TGT TGA AGA AGG ATT 142

R GTT TAC TCT TGG TTT AGG ATG AAA

ermC
F AAT CGT CAA TTC CTG CAT GT

299

R TAA TCG TGG AAT ACG GGT TTG

Table 2. PCR Plan and Primers for Amplification of Virulence Genes of Enterococcus faecalis Isolates Obtained from Hospitalized Patients’ Stool Samples

Target Gene Primers Oligonucleotide Sequence 5’-3’ Size of Amplified Product (bp) Annealing Temperature

asa1
F GCACGCTATTACGAACTATGA

375 56°C

R TAAGAAAGAACATCACCACGA

esp
F AGATTTCATCTTTGATTCTTG

510 56°C

R AATTGATTCTTTAGCATCTGG

hyl
F ACAGAAGAGCTGCAGGAAATG

276 56°C

R GACTGACGTCCAAGTTTCCAA

gelE
F TATGACAATGCTTTTTGGGAT

213 56°C

R AGATGCACCCGAAATAATATA

cylA
F GACTCGGGGATTGATAGGC

688 56°C

R GCTGCTAAAGCTGCGCTTAC

ace
F GGAATGACCGAGAACGATGGC

616 58°C

R GCTTGATGTTGGCCTGCTTCCG

efaA
F CGTGAGAAAGAAATGGAGGA

499 58°C

R CTACTAACACGTCACGAATG

4.4. Virulence Genes

The virulence gene analysis of the E. faecalis isolates
showed that the most prevalent genes were gelE (78%), asa1
(74%), and esp (74%), and that the prevalence rates of the
cylA and hyl genes were low (20% and 2%, respectively).
Moreover, the most prevalent virulence gene patterns were

asa1+esp+gelE (36%) and cylA+asa1+esp+gelE (16%).

4.5. Genetic Diversity Analysis

The genetic diversity analysis by ERIC-PCR revealed 25
genotypes among fifty E. faecalis isolates (E1–E25), which
consisted of fifteen genotypes with a genetic similarity of
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Table 3. Participants’ Characteristics and Enterococcus faecalis Isolates’ Antimicrobial Resistance, Virulence Genes, and Genotypes

No. Gender Age (y) Ward Hospital Stay (d) Resistance Patterns Resistance Genes MDR Virulence Genes ERIC Type Cluster

1 Female 60 IM 5 _ ermB, ermC, aac(6′ )-Ie asa1, esp, gelE E25 J

2 Female 84 CCU 4 E+SYN+TET ermB, aph(2′′ )Ia + asa1, esp E24 I

3 Female 63 IM 7 RI+E+SYN+PEN+CIP ermB, aph(2′′ )Ia + asa1, esp, gelE E25 J

4 Female 56 IM 3 E+SYN+TET +CIP ermB, aac(6′ )-Ie, aph(2′′ )Ia + asa1, esp, gelE E24 I

5 Male 65 IM 6 RI+E+SYN+CIP ermB, ermC, aph(2′′ )Ia + asa1, gelE E23 H

6 Female 70 IM 3 RI+E+PEN+TET+CIP+AMP vanA, ermB + asa1, esp E18 —

7 Female 75 IM 6 E+SYN ermB gelE E6 —

8 Male 82 CCU 4 RI+SYN+CIP ermB, aac(6′ )-Ie + — E1 —

9 Male 74 IM 5 RI+E+SYN+PEN+TET+CIP+AMP ermB, aac(6′ )-Ie, aph(2′′ )Ia + asa1, gelE E23 H

10 Female 78 CCU 3 SYN+TET ermB, ermC, aph(2′′ )Ia cylA, asa1, esp, gelE E4 —

11 Female 66 IM 3 RI+E+SYN+TET+CIP ermA, ermB, aac(6′ )-Ie, aph(2′′ )Ia + asa1, esp, gelE E25 J

12 Male 55 IM 3 _ ermB, ermC, aac(6′ )-Ie, aph(2′′ )Ia esp E11 —

13 Female 17 CCU 3 TET vanA, ermB, aac(6′ )-Ie, aph(2′′ )Ia cylA, asa1, esp, gelE E10 B

14 Female 67 CCU 3 E+NI+TET ermB + asa1, esp E10 B

15 Male 48 CCU 3 RI+E+SYN+TET ermB + asa1, esp, gelE E23 H

16 Male 86 CCU 7 E+TET ermB, aph(2′′ )Ia esp, gelE E21 G

17 Male 83 CCU 3 TET ermB cylA, asa1, esp, gelE E15 D

18 Female 80 IM 4 _ ermB gelE E15 D

19 Female 59 IM 3 RI+E+PEN+TET+CIP+AMP vanA, ermB, aph(2′′ )Ia + cylA, asa1, esp, gelE E14 C

20 Female 59 IM 4 _ ermB cylA, asa1 E15 D

21 Female 79 CCU 4 _ vanA, ermB, aph(2′′ )Ia cylA, asa1, esp, gelE E14 C

22 Female 86 IM 5 TET ermB, aph(2′′ )Ia gelE E23 H

23 Male 75 ID 4 E+CIP ermB, aph(2′′ )Ia asa1, esp, gelE E5 —

24 Male 41 IM 3 E+TET ermB cylA, asa1, esp E3 —

25 Female 54 IM 3 RI+E+PEN+TET+CIP+AMP ermB, ermC, aac(6′ )-Ie + asa1, esp, gelE E22 —

26 Male 42 IM 3 TET _ cylA, asa1, esp, gelE E16 E

27 Female 78 IM 5 E+CIP ermB, aph(2′′ )Ia asa1, esp E16 E

28 Female 45 ID 6 RI+E+CIP ermB, aph(2′′ )Ia + cylA, asa1, esp, gelE E17 —

29 Female 77 IM 4 RI+E+TET ermB, aph(2′′ )Ia + cylA, asa1, esp, gelE E13 —

30 Male 44 ID 8 RI+E+SYN+TET+CIP ermB, aph(2′′ )Ia + asa1, esp, gelE E8 A

31 Female 43 ID 10 RI+TET ermA, ermB, ermC, aph(2′′ )Ia asa1, esp, gelE E21 G

32 Male 51 ID 6 RI+SYN ermB, ermC, aac(6′ )-Ie, aph(2′′ )Ia asa1, esp, gelE E7 A

33 Male 53 CCU 5 RI+E+SYN+NI+PEN+TET+CIP+AMP vanA, ermB, ermC aac(6′ )-Ie, aph(2′′ )Ia + asa1, esp, gelE, hyl E8 —

34 Male 73 ID 7 RI+E+LZD+NI+PEN+TET+CIP+AMP ermB, aac(6′ )Ie, aph(2′′ )Ia + asa1, esp, gelE E2 —

35 Male 54 ID 4 RI+SYN+TET ermB, ermC, aac(6′ )-Ie, aph(2′′ )Ia + asa1, esp E25 J

36 Male 68 ID 5 RI+E ermB, aac(6′ )Ie, aph(2′′ )Ia asa1, esp, gelE E20 F

37 Male 49 ID 4 RI+E+SYN+TET ermA, ermB, ermC, aac(6′ )Ie + asa1, esp, gelE E20 F

38 Male 80 ID 3 RI+E+SYN+NI+PEN+TET+CIP+AMP vanA, ermA, ermB, ermC, aac(6′ )Ie, aph(2′′ )Ia + esp, gelE E19 —

39 Male 71 ID 3 RI+E+SYN+NI+PEN+TET+CIP+AMP vanA, ermB, ermC, aac(6′ )Ie, aph(2′′ )Ia + asa1, esp, gelE E25 J

40 Male 65 ID 3 RI+E+SYN+TET ermB, aac(6′ )Ie + asa1, esp, gelE E9 —

41 Male 90 IM 5 RI+NI+TET+CIP ermB + — E25 J

42 Male 52 ID 7 RI+TET ermA, ermB, ermC, aac(6′ )Ie, aph(2′′ )Ia asa1, esp, gelE E25 J

43 Male 71 ID 3 RI+E+ PEN+CIP+AMP vanA, ermA, ermB, ermC, aac(6′ )Ie, aph(2′′ )Ia + asa1, esp, gelE E25 J

44 Male 89 ID 3 RI+E+SYN+PEN+TET+CIP+AMP ermB, aac(6′ )Ie, aph(2′′ )Ia + asa1, esp, gelE E25 J

45 Male 65 IM 6 E+SYN+ TET+CIP ermB, aph(2′′ )Ia + asa1, gelE E25 J

46 Male 80 IM 3 RI+E+SYN+ TET+CIP vanA, ermB, aph(2′′ )Ia + esp, gelE E23 H

47 Male 45 ID 4 RI+E+SYN+PEN+TET+CIP+AMP ermA, ermB, ermC, aac(6′ )Ie, aph(2′′ )Ia + _ E23 H

48 Male 73 IM 4 RI+E+LZD+SYN+NI+TET ermB + gelE E23 H

49 Female 63 CCU 3 E+SYN+TET+CIP vanA, ermB, aph(2′′ )Ia + gelE E12 —

50 Male 73 CCU 3 RI+E+LZD+TET _ + gelE E23 H

Abbreviations: IM, internal medicine; CCU, coronary care unit; ID, infectious disease.
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at least 80% and ten genotypes with a genetic similarity
of < 80%. Each of the fifteen genotypes was placed in an
ERIC type (Figure 1). The dendrogram analysis revealed that
most E. faecalis isolates (n = 35) were clustered into ten clus-
ters (ie, clusters A–J). Eighteen isolates were further clus-
tered into two major clusters: cluster H with eight isolates
and cluster J with ten isolates. The remaining seventeen
isolates were clustered into eight minor clusters: A, B, C, D,
E, F, G, and I, each with 2 - 3 isolates (Figure 1).

The antimicrobial resistance analysis in the two major
clusters H and J revealed the greatest resistance to the an-
tibiotics E, RI, and TET. Moreover, the antimicrobial resis-
tance gene analysis also revealed that the most prevalent
genes in cluster H were ermB (87%) and aph(2 ′′)Ia (62.5%).
In comparison, the most prevalent genes in cluster J were
ermB (100%), aph(2′′)Ia (80%), andaac(6′)-Ie (70%). However,
Fisher’s exact test indicated no significant difference be-
tween clusters H and J in terms of antimicrobial resistance
and resistance genes. The virulence gene analysis also sug-
gested that the most prevalent genes in cluster H were gelE
(100%) and asa1 (37.5%), and the most prevalent genes in
cluster J were asa1 (90%), gelE (80%), and esp (80%). The
prevalence of theasa1gene was significantly higher in clus-
ter J than in cluster H (P < 0.05).

5. Discussion

This study analyzed the genetic diversity, antimicro-
bial resistance, and virulence factors of E. faecalis isolates
obtained from the stool samples of patients in a hospital in
the center of Iran. In this study, fifty E. faecalis isolates were
obtained from 108 stool samples. In other words, the preva-
lence of E. faecalis isolates was 46.2%. This prevalence rate
exceeds the rate reported in a study in China (15%) and is be-
low the rate reported in a study in Brazil (70%) (30). Several
recent studies reported that the prevalence of E. faecalis iso-
lates among clinical Enterococcus isolates was 28 - 70% (5, 31,
32). This difference in the prevalence of E. faecalis isolates in
these studies can be due to the differences among clinical
settings regarding their infection control policies.

The findings showed that the 62-percent prevalence
rate of MDR patterns among the E. faecalis isolates. Antimi-
crobial resistance among enterococcal serotypes is a ma-
jor public health concern worldwide (33). A study in Iran
showed that 29% of the E. faecalis isolates obtained from
urinary tract infections were MDR (34). Another study at
the Shahid Beheshti Hospital, Kashan, Iran, reported that
the prevalence rate of 37.7% for the MDR E. faecalis iso-
lates obtained from clinical samples (35). The higher preva-
lence of MDR among the E. faecalis isolates in our study de-
notes the high risk of enterococcal nosocomial infections

in the study setting. The MDR isolates cause treatment fail-
ure and are associated with a higher mortality rate com-
pared wo the non-MDR isolates (36). Factors such as health-
care exposure, shortage of diagnostic equipment, lack of
surveillance systems, and the wide and inappropriate use
of antibiotics can contribute to the emergence and spread
of antimicrobial resistance, the acquisition of antimicro-
bial resistance genes, and the transfer of these genes. These
factors might also have resulted in the high prevalence of
antimicrobial resistance in the present study.

The research findings also revealed great antimicrobial
resistance to antibiotics TET (70%), E (68%), and RI (63%)
among the E. faecalis isolates obtained from the stool sam-
ples of hospitalized patients. This is in line with the find-
ings of previous studies in Iran (37), Greece (38), and China
(39). However, studies in India (40) and Brazil (41) reported
lower antimicrobial resistance to these antibiotics. The use
of over-the-counter antibiotics for infection management
and agriculture may be the reasons for great resistance to
antibiotics such as TET in Iran. Most E. faecalis isolates in
the present study were susceptible to LZD. In Spain, a study
showed that 100% of the E. faecalis isolates were suscepti-
ble to LZD and AMP (42). Another study in our setting also
reported that the antimicrobial susceptibility of the E. fae-
calis isolates to antibiotics LZD and AMP was 100% and 88%,
respectively (35). Nonetheless, our findings showed three
LZD-resistant isolates, and the susceptibility of the E. fae-
calis isolates was 94% to LZD and 78% to AMP, which are
slightly smaller than the rates reported in the aforemen-
tioned study.

The antimicrobial resistance gene analysis in the
present study showed that the most prevalent genes were
ermB (96%), aph(2′′)Ia (66%), aac(6′)-Ie (40%), ermC (30%),
vanA (20%), and ermA (14%). Genetic antimicrobial resis-
tance attributes are either innate or acquired and can
be transferred to other isolates (10). A mechanism for
cross-resistance to macrolide-lincosamide-streptogramin
among E. faecalis isolates is to change the target site of the
antibiotic erythromycin, which is mediated by the ermB
gene (43). The high prevalence of this gene in the present
study is in line with the findings of studies in the United
States, China, South Korea, and Saudi Arabia (43). However,
the prevalence of the ermA gene in the present study was
14%.

This finding is in contrast with the findings of for-
mer studies, which reported that above 90% of E. fae-
calis isolates had the ermA gene (44, 45). The preva-
lence rates of the aph(2′′)Ia and aac(6′)-Ie genes in the
present study were 66% and 40%, respectively. These
genes encode the 6-aminoglycoside acetyltransferase and
2-aminoglycoside phosphotransferase enzymes found in
most aminoglycoside-resistant Enterococcus species. The
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incidence of these aminoglycoside-resistant genes has
been increased in recent years (46). Enterococcus species
with these genes have great antimicrobial resistance;
hence, they, can escape antimicrobial mechanisms and
cause infection in their hosts.

The prevalence rates of the vanA and the vanB genes in
the E. faecalis isolates were 20% and 0%, respectively. The
emergence of vancomycin-resistant Enterococcus species
and the limited treatment options for their management
have become a major clinical and epidemiological concern
since afflicted patients experience more complications
and higher treatment costs. Nine types of cluster genes
encode vancomycin resistance, among which vanA–vanN.
vanA and vanB are the most important and prevalent genes
in vancomycin-resistant Enterococcus species (45). Genetic
factors such as plasmids, integrons, and transposons con-
tribute to the emergence, transfer and the spread of an-
timicrobial resistance genes, particularly in Enterococcus
species, thereby resulting in treatment failure (47).

The virulence gene analysis in the present study also re-
vealed that the most prevalent virulence genes were gelE
(78%), asa1 (74%), and esp (74%), followed by the less preva-
lent genes of cylA (20%) and hyl (2%). These findings docu-
mented that most E. faecalis isolates carried the gelE, asa1,
and esp genes. A previous study on clinical E. faecalis iso-
lates in Shiraz, Iran, showed that the prevalence rates of the
asa1, esp, gelE, cylA, and hyl genes were respectively 100%,
94.1%, 80.4%, 64.7%, and 51% (47), respectively. The reported
rates are higher than the rates obtained in our study. More-
over, the prevalence of the asa1 gene was higher in the
present study than in some previous studies (48-50).

The high prevalence of the asa1 gene in the present
study can facilitate the exchange of virulence and antimi-
crobial resistance genes in our setting. The second most
prevalent genes in the present study were the asa1 and esp
genes, with a prevalence rate of 74%. The high prevalence of
theespgene in our study is in line with the findings of some
other studies (51-53). Moreover, our findings showed that
the E. faecalis isolates carried more virulence genes com-
pared to the prevalence reported in some previous studies
(18, 28, 48, 54, 55). This difference may be due to the differ-
ences in the participants’ characteristics and geographical
dispersion. Considering the remarkable role of virulence
factors in the adhesion, colonization, and biofilm forma-
tion ability of bacteria, the high prevalence of Enterococ-
cus species which carry virulence factors can be associated
with more severe infections (47).

The genetic diversity analysis revealed 25 ERIC types,
and the dendrogram analysis showed that most E. faecalis
isolates (n = 35) were clustered into ten clusters (ie, clusters
A-J). These clusters were further clustered into two major
clusters H with eight isolates and J with ten isolates, as well

as eight minor clusters, each with 2 - 3 isolates. These find-
ings can imply epidemiological relations among some cir-
culating MDR E. faecalis isolates in the study setting. More-
over, the genetic diversity analysis showed great genetic di-
versity among the isolates not included in the two major
clusters. Great genetic diversity among the isolates can im-
prove the survival of different E. faecalis strains in the study
setting. Several studies in Iran and other countries have
also reported the genetic diversity of the E. faecalis isolates.
For example, a study in Isfahan, Iran, found fourteen ERIC
types among 53 E. faecalis isolates (45). Another study in In-
donesia showed that all E. faecalis isolates had > 60% sim-
ilarity and reported five clusters (19). Moreover, a study on
patients with burn injuries in Tehran, Iran, found 34 ERIC
types among 57 Enterococcus isolates (18). These contradic-
tory findings can be attributed to the high heterogeneity
of E. faecalis due to differences in its nucleotide sequence.

The antimicrobial resistance analysis in the two major
clusters H and J showed the greatest antimicrobial resis-
tance to antibiotics E, RI, and TET. However, there was no
significant difference between these two clusters in terms
of the phenotypic and the genotypic patterns of antimi-
crobial resistance. However, the prevalence of the asa1 vir-
ulence gene was significantly higher in cluster J than in
cluster H. Different bacterial colonies may have different
virulence genes and factors; hence, they can pose more
problems in managing their associated infections. Given
the critical role of virulence factors in the virulence of E.
faecalis, the high prevalence of these strains can compli-
cate patients’ conditions. One of the limitations of this
study was the small sample size. Moreover, the study was
conducted in one hospital, which resulted in not having
enough bacterial isolates in all clusters. Further studies are
recommended to address larger sample sizes and several
hospitals.

5.1. Conclusions

This study showed the high prevalence of MDR and an-
tibiotic resistance to antibiotics E, RI, and TET among the
E. faecalis isolates obtained from the stool samples of pa-
tients in a hospital in the center of Iran. Most E. faecalis iso-
lates were susceptible to LZD. The most prevalent antimi-
crobial resistance genes were ermB, aph(2′′)Ia, and aac(6′)-
Ie, while the most prevalent virulence genes weregelE,asa1,
and esp. The ERIC-PCR analysis also revealed that the iso-
lates were relatively heterogeneous as such they were clus-
tered into two major and eight minor clusters with no
significant difference between the two major clusters in
terms of the phenotypic and genotypic patterns of antimi-
crobial resistance and virulence genes.
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