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Abstract

Background: Microorganisms represent a potentially valuable source of biologically significant compounds that should be ex-
plored for their potential agrochemical use.
Objectives: The compounds ZM-1 and ZM-2 were isolated from the extract of the fermentation broth of Streptomyces parvus 33 by
bioassay-guided fractionation.
Methods: The compound ZM-1 was isolated in the form of a clear single crystal for the first time, and identified as holomycin via
X-ray crystallography. The compound ZM-2 was characterized by IR, 1H-NMR, 13C-NMR, DEPT (90° and 135°), and MS analyses.
Results: The compound ZM-1 showed a strong antibacterial activity against the tested bacteria, and its value of minimum inhibitory
concentration (MIC) was greater than that of the positive control Ampicillin. The compound ZM-1 also exhibited significant antimi-
crobial activities against some plant pathogenic fungi. Nevertheless, ZM-2 showed no activities against the tested bacteria and plant
pathogenic fungi.
Conclusions: The compound ZM-1 was isolated in the form of a clear single crystal for the first time, and identified as holomycin
via X-ray crystallography. Streptomyces parvus 33 is a newly discovered producer of holomycin. ZM-1 showed a strong antibacterial
activity against the tested bacteria. Therefore, the compound ZM-1 is a valuable lead compound for the development of agricultural
fungicides while acts against bacteria, as well.
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1. Background

Bacterial and fungal plant diseases pose a major threat
to agricultural production worldwide (1, 2). Nowadays,
it remains a global challenge to develop new therapeutic
modalities for treating infectious diseases caused by bac-
terial and fungal pathogens. A wide range of important
secondary metabolites, including antibiotics and growth
promoting substances, are produced by several members
of Actinomycetes (3, 4). More than 60% of the nearly 6000
antibiotics of microbial origin are produced by Strepto-
myces spp. including both antibacterial and antifungal
agents beside a considerable number of other bioactive
compounds (5-11). Microorganisms represent a potentially
valuable source of biologically significant compounds that
should be explored for their potential agrochemical use
(12). Soil strains of Actinomycetes are still important sources
of novel antibiotics.

In the past decades, although many species, which pro-
duce biologically active metabolites, have been obtained
from soil samples, the chance of isolating a new Actino-
mycete strain from a common terrestrial habitant has re-
duced markedly. In the process of screening new agricul-

tural antibiotics, researchers have to look for novel mi-
croorganisms in unusual environments. Chemically pol-
luted soil is one sort of such unusual environments. Chem-
ical pollutants could be mutagens, and some of the mu-
tant strains might give rise to increased productivity of
bioactive metabolites, or even produce new bioactive com-
pounds (13, 14).

2. Objectives

In this study, we report the compounds ZM-1 and ZM-2
of the fermentation broth of Streptomyces parvus 33, which
was isolated from the chemically polluted soil samples.
The compound ZM-1 was isolated in the form of a clear crys-
tal for the first time.

3. Methods

3.1. General Materials and Selected Microorganism

Solvents were of analytical grade (AR) unless other-
wise mentioned. TLC was performed on 60 F254 silica gel
plates (Merck, USA). Column chromatography was used on
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HPD100 macroporous resin (Baoen, China) with methanol
elution (MeOH, qingdao marine chemical, China). A Wa-
ters 2692 HPLC apparatus (Waters, USA) equipped with a
Sinochrom ODS-BP (10×300 mm, 10µm, Shimadzu, Japan)
reverse phase column was employed using methanol-
water as mobile phase at flow rate of 3.0 mL/min, moni-
tored by UV detector at 240 nm.

The selected microorganism: Pathogenic bacteria were
Solanacearum (Ralstonia solanacearum), Pseudomonas sy-
ringae pv. Actinidiae provided by the college of plant pro-
tection, Northwest A and F University. Bacillus cereus (Waxy
bacillus, 1.184), B. subtilis (Bair conditionerillus subtilis, 1.88),
P. aeruginosa (1.2031), Staphylococcus aureus (1.89), and Es-
cherichia coli (1.1574) were purchased from China general
microbiological culture collection center. The pathogenic
bacteria were inoculated in beef extract peptone agar cul-
ture medium at 37°C for 1 day. Pathogenic fungi were Fusar-
ium graminerum, Curvularia lunata, Colletotrichum orbicu-
lare, C. gloesporioides provided by the College of Plant Pro-
tection, Northwest A & F University. The inoculation of the
pathogenic fungi was carried out in potato dextrose agar
(PDA) medium at 25°C for 3 - 7 days.

3.2. Isolation and Identification of Streptomyces parvus 33

The strain 33 was isolated from a chemically polluted
soil sample collected from the Shaanxi province of China.
According to the results of morphological examination
and culture characteristics, physiology and biochemical
measurement and 16S rDNA sequence analysis, the strain
33 was highly homological (up to 99%) with S. parvus
NRRLB- 1455T (Figure 1). Therefore, the strain 33 was identi-
fied and designated as S. parvus 33. The voucher specimen
of the Streptomycete was deposited in the Microbiology In-
stitute of Shaanxi, China.

Streptomyces parvus 33 was cultivated at 28°C in Gause’s
medium, which contained soluble starch (2%), K2HPO4

(0.05%), KNO3 (0.1%), NaCl (0.05%), MgSO4•7H2O (0.05%),
FeSO4•7H2O (0.001%), and agar (1.5%), pH = 7.2 - 7.4. Fermen-
tation was performed in two stages: seed growth and pro-
duction. The spores of strain 33 grown on Gause’s medium
were used to inoculate a 250 mL flask containing 60 mL of
a sterile seed medium consisting of glucose (1.0%), millet
steep liquor (1.0%), peptone (0.5%), (NH4)2SO4 (0.1%), NaCl
(0.25%), and CaCO3 (0.05%), pH 7.2. The flask was shaken on
a shaker at 180 rpm for 18 h at 28°C. 6 mL of the seed cul-
ture were transferred to 250 mL flasks containing 60 mL of
a sterile production medium consisting of glucose (1.0%),
millet steep liquor (1.0%), peptone (0.3%), (NH4)2SO4 (0.1%),
NaCl (0.25%), and CaCO3 (0.1%), pH 7.2. Fermentation was
carried out at 180 rpm for 4 days at 28°C on a rotary shaker.

3.3. Extraction and Isolation

The culture of 90 L of S. parvus 33 was filtered through
cheesecloth to separate the medium and culture liquid
at 25°C, pH 7.0. The filtrate was absorbed onto HPD-100
macroporous resin, and then eluted with MeOH. The MeOH
fraction was evaporated in vacuum. The concentrate was
subjected to column chromatography and eluted with
petroleum ether and EtOAc, in sequence. The antimicro-
bial fraction was concentrated under vacuum, and further
purified on a Waters 2695 HPLC apparatus equipped with
a Sinochrom ODS-BP (10.0 mm × 300 mm, 10 µm) reverse
phase column, using 50% MeOH/H2O as the mobile phase
at flow rate of 3.0 mL/min, monitored by UV detector at 240
nm to afford two compounds ZM-1 and ZM-2. ZM-1 was ob-
tained as a single crystal, and determined by single crys-
tal diffraction. ZM-2 was obtained as colorless amorphous
solid.

3.4. Antimicrobial Activity

3.4.1 Inhibition of Bacteria

Minimum inhibitory concentration (MIC) was (15) de-
termined against bacteria using micro-dilution method
(Method 96): 5 mL sterile MH broth was added to a test
tube; using an inoculating needle, a small amount of bac-
terial broth was picked and added to the tube, placed in
37°C incubator for 12 hours. The absorbance of cell culture
was measured using UV-Vis spectrophotometer at 600 nm
against a culture medium without bacteria as blank con-
trol, according to each equivalent to a concentration of 0.1
OD600 1 × 108 cfu/mL, were diluted to a concentration of 1
× 106 cfu/mL.

To conduct tests with 96-well culture plates (12 × 8, U-
shaped hole at the end), 0.1 mg of the test compound was
first dissolved in 5µL dimethyl sulfoxide (DMSO), and then
dissolved in 100 mL sterile water to be formulated at a con-
centration of 100µg/mL as the mother liquor. The first test
well was filled with 50 µL maximum concentration of the
drug solution, each of 50 µL sterile water are added, the
double dilution method using a gradient of 1 - 8 hole di-
luted to 500 ~ 3.9µg/mL gradient series. The 9th and 10th
holes were filled with 50 µL sterile water as negative con-
trol. Then, it was added at a concentration of 1 to 9 holes 1×
106 cfu/mL of bacteria solution 50 µL, 10th hole by adding
a blank incubation 50 µL sterile water. The 11th hole was
filled with 50 µL 2.5% DMSO and 50 µL solution at a con-
centration of 1× 106 cfu/mL of the broth. The 12th hole was
filled with 100 µL sterile water as blank. Then, the microp-
orous oscillation mixing was performed in 37°C incubator
while ampicillin was used as positive control. Each treat-
ment was repeated three times.

12 hours after treatment, the results were observed: in
the case of a black background light observation, there are
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Figure 1. Phylogenetic Tree Based on 16S rDNA Sequences of Strain 33

holes in the bottom of the growth of bacteria precipitate
or diffuse type turbidity, the lowest sample concentration
of holes contained sterile growth inhibition is the lowest
of the sample bacterial concentration (MIC).

3.4.2. Inhibition of Plant Pathogenic Fungi

Using suppression spore germination: pathogenic
fungi spores will develop well paired with sterile water at
a concentration of 1 × 105 ~ 1 × 107 spore suspension. 0.1
mg of the test compound was first dissolved in 10µL DMSO,
and then dissolved in 200 mL sterile water, formulated at
a concentration of 50µg/mL of the mother liquor (16). The
agent activity was set at final concentrations of 25 µg/mL,
12.5µg/mL, 6.25µg/mL, as 3 liquid concentration gradients.

With a pipette to draw 25µL and 25µL each concentra-
tion liquid droplets prepared spore suspension was added
to the dry cleaner’s concave slide, so that the liquid and
mix equal amounts of spore suspension, then placed with
shallow water dish, capped at 25°C constant moisture in-
cubator. Each treatment was repeated three times against
distilled water. When the control spore germination rate
was more than 85%, spores were checked in each treatment
(per treatment were observed each repeated five horizons,
the total number of spores survey less than 250) germina-
tion under an optical microscope. Table 2 shows a formula
agent for inhibition rate of spore germination.

4. Results

4.1. Chemistry

The active ingredients were obtained by the tech-
niques of macroporous resin adsorption, silica gel column
chromatography, and preparative reverse phase high per-
formance liquid chromatography. The compound ZM-1
was obtained in the form of a clear single crystal, and un-
ambiguously confirmed by X-ray crystallography. ZM-2 was
characterized by IR, 1H-NMR, 13C-NMR, DEPT (90° and 135°),
and MS analysis, as illustrated in Figure 2.

The compound ZM-2: colorless amorphous solid; HR-
ESI-MS (positive) m/z: 283.1059 [M + Na]+ (calcd for
C14H16N2O3Na, 283.1059). 1HNMR (400 MHz, CD3OD) δ: 7.18
- 7.32 (5H, m, H-12-H-16), 4.22 (2H, m, H-3 and H-8), 3.87 (1H,
dd, J = 12.4,3.9 Hz, H-9a), 3.27 (1H, dd, J = 12.6, 4.9Hz, H-9b),
3.19 (1H, dd, J = 5.1, 13.6 Hz, H-10a), 3.00 (1H, dd, J = 4.8, 13.6
Hz, H-10b), 2.78 (1H, t, J = 8.5 Hz, H-6), 2.23 (1H, m, H-7a), and
1.92 (1H,m, H-7b); 13C NMR (CD3OD) δ: 170.98 (C-5), 167.70 (C-
2),136.78 (C-11), 131.20 (C-12 and C-16), 129.70 (C-13 and C-15),
128.53 (C-14), 68.47 (C-8), 59.61 (C-3), 57.20 (C-6), 53.99 (C-9),
40.86 (C-10), and 38.0 (C-7).

4.2. Biological Assay

The antimicrobial activity of ZM-1 and ZM-2 was mea-
sured according to a previously reported method. The bio-
logical activities of ZM-1 and ZM-2 towards a wide variety
of bacterial and fungal plant pathogens were evaluated,
giving the following results. The inhibitory effects of ZM-
1 against bacteria are listed in Table 1. Antibacterial activi-
ties were measured by the micro-broth dilution method in
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Figure 2. X -Ray Crystal Structure and Chemical Structure of the Compound ZM-1 and ZM-2

96-well culture plates, with Ampicillin as a positive control,
to evaluate the biological activities of the compound ZM-1
against the tested bacteria at different concentrations. For
most of the tested strains, the minimum inhibitory con-
centration of the compound ZM-1 was 0.39µg/mL, which is
less than that of the positive control ampicillin. Especially
for the P. syringae pv. Actinidiae and the R. solanacearum,
the value of MIC of the positive control was 160 times more
than that of the compound ZM-1, which shows that the an-
tibacterial ability of the compound ZM-1 is strong.

The inhibitory effects of ZM-1 against spore germina-
tion are listed in Table 2. Spore germination inhibition as-
say was utilized to investigate the biological activities of
ZM-1. The compound ZM-1 exhibited a high degree of activ-
ity against the tested pathogenic fungi. The antimicrobial
activity was enhanced with the increase of concentration
of the compound ZM-1. However, ZM-2 was not effective
against the tested bacterial and fungal plant pathogens.

The compounds ZM-1 and ZM-2 were isolated from the
extract of the fermented broth of S. parvus 33 by bioassay-
guided fractionation. The compound ZM-1 was isolated in
the form of a clear single crystal for the first time, and iden-
tified as holomycin via X-ray crystallography. Streptomyces
parvus 33 is a newly discovered producer of holomycin. ZM-
1 showed a strong antibacterial activity against the tested
bacteria, such as B. cereus, B. subtilis, E. coli, S. aureus, and
P. syringaepv. actinidiae, and its value of MIC was greater
than that of the positive control ampicillin. The compound
ZM-1 exhibited a high degree of activity against F. oxyspo-
rumf. sp. vasinfectum, C. lunata, C. orbiculare, and C. gloes-
porioides. The antimicrobial activities were enhanced with
the increased concentration of the compound ZM-1. How-

ever, ZM-2 was not effective against the tested bacterial and
fungal plant pathogens. In general, the compound ZM-1 is
a valuable lead compound for the development of agricul-
tural fungicides while acts against bacteria, as well.
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Table 1. Minimum Inhibitory Concentration of the Compound ZM-1

Tested Bacteria Minimum Inhibitory ConcentrationMIC (µg/mL)

ZM-1 Ampicillin

Bacillus cereus 0.78 3.13

Bacillus subtilis 0.39 12.5

Staphylococcus aureus 0.39 6.25

Escherichia coil 0.39 25

Pseudomonas aeruginosa > 50 25

Pseuomonassyringaepv. Actinidiae 0.39 > 50

Ralstoniasolanacearum 0.39 > 50

Table 2. Inhibitory Effects of the Compound ZM-1 Against Plant Pathogenic Fungi

Tested Pathogenic Fungi Inhibition Rate of Spore Germination (%)

6.25µg/mL 12.5µg/mL 25µg/mL

Fusariumoxysporum f sp. vasinfectum 25.93 ± 0.17 69.14 ± 0.34 93.98 ± 0.54

Curvularialunata 24.44 ± 1.39 39.87 ± 0.80 94.97 ± 1.17

Colletotrichumorbiculare 23.36 ± 0.73 55.64 ± 1.05 96.19 ± 0.45

Colletotrichumgloesporioides 37.81 ± 0.56 65.73 ± 1.09 89.85 ± 1.21
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