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Abstract

Background: Bacterial biofilm is a major barrier to chronic wound healing. Therefore, the prevention of biofilm formation has an
effective role in accelerating the healing of these wounds. Today, probiotics’ anti-biofilm and antibacterial activity have been proven,
and bacteriotherapy by probiotics is a new strategy for treating chronic ulcer infections.
Objectives: The present study aimed to investigate the synergistic effects of L. delbrueckii and L. lactis on biofilms of bacterial agents
isolated from these ulcers in the human plasma biofilm model (hpBIOM).
Methods: This study examined 82 specimens of chronic ulcer biofilms and identified bacterial isolates using phenotypic and molec-
ular methods. After preparing the hpBIOM, 50 µL of each probiotic (109 CFU/mL) was added in two doses separately and simultane-
ously. After 24 hours, 1 mL of bromelain (0.1 g/mL) was added to the complex and incubated at 37°C for two hours. Then, the surviving
bacterial cells were counted by serial dilutions.
Results: Among 119 bacterial isolates, Staphylococcus aureus (19%), Escherichia coli (17.0%), and Pseudomonas aeruginosa (14%) were the
most common bacterial isolates. Lactobacillus delbrueckii showed anti-biofilm activity against multiple-drug resistance pathogens,
Staphylococcus, P. aeruginosa, and Klebsiella pneumoniae. Although L. lactis had anti-biofilm activity against these three pathogens,
its effect was less than that of L. delbrueckii. The two probiotics did not have any synergistic effect on the biofilms of the isolates.
Conclusions: The results of the present study emphasized the potential of probiotics in destroying biofilms of isolates with
multiple-drug resistance; however, their simultaneous use for this purpose requires further investigation.
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1. Background

Chronic ulcers do not improve within 1 - 3 months (1).
In such ulcers, several factors usually delay the ulcer heal-
ing process. These factors include endocrine disorders (di-
abetes), vascular problems, immune system dysfunction,
infection, and bacterial biofilm formation (2). The most
important chronic ulcers encompass diabetic foot ulcers,
venous leg ulcers, pressure ulcers, and surgical site infec-
tions (3). Ulcer healing has four successive stages, includ-
ing homeostasis, inflammation, proliferation, and regen-
eration, and chronic ulcers often remain in the inflamma-
tion stage (4). Studies indicate that 70% of chronic ulcers
have biofilms, while only 6% of acute ulcers, which have
timely healing, form biofilms (5). Bacterial resistance to
antimicrobials in the biofilm phase is a major global is-
sue (6, 7). By providing special conditions, biofilms en-

able the horizontal transfer of antibiotic-resistance genes
and virulence factors among bacteria, thereby minimizing
the effectiveness of antibiotics and antiseptics and caus-
ing the overuse of antibiotics and the spread of multiple-
antibiotic resistance. Hence, reducing the bacterial load is
a key parameter in the ulcer healing path (8).

Many studies have examined the antimicrobial activ-
ity of probiotics through the production of bacteriocins,
lactic acid, hydrogen peroxide, and other antimicrobial
molecules (9). In this regard, Lactobacillus lactis has a
special place due to the production of nisin bacteriocin,
and several studies have demonstrated its antibacterial
function (10). Lactobacillus delbrueckii also competes with
pathogenic bacteria by producing lactic acid and propi-
onic acid and decreasing pH, thus inhibiting their growth
(11). It is worth noting that bacteria in the biofilm ex-
hibit high resistance to antimicrobial agents compared to
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the planktonic form; hence, it is necessary to consider the
physiological status of the ulcer and the presence of bacte-
ria in the biofilm to evaluate the inhibitory effect of pro-
biotics. Besser et al. overcame this challenge by design-
ing a novel in vivo like human plasma biofilm model (hp-
BIOM) and studied the anti-biofilm activity of L. plantarum,
Bifidobacterium lactis, and Saccharomyces cerevisiae on clin-
ically isolated biofilms (12). The hpBIOM-aided evaluation
of the anti-biofilm potential of other probiotics provides
valuable information for the biofilm treatment of chronic
ulcers by bacteriotherapy.

2. Objectives

Since there was no information about the effects of two
probiotics, L. lactis, and L. delbrueckii, on inhibiting and de-
stroying biofilms of chronic ulcers separately and simulta-
neously, the present study examined the simultaneous ef-
fects of the two probiotics on the inhibition of pathogens
isolated from chronic ulcer biofilms with multiple-drug re-
sistance (MDR) in hpBIOM.

3. Methods

3.1. Specimen Collection

From July 2020 to February 2021, 82 specimens of
chronic ulcer biofilms were collected from patients who
visited the Khanevadeh and Al-Zahra Hospitals in Isfahan.
Inclusion criteria were as follows: The presence of chronic
ulcers lacking timely healing, the presence of biofilm in
the ulcer, and consumption of at least a period of antibi-
otics. Ulcers were first cleaned with sterile normal saline;
then, biopsy specimens were obtained from ulcer biofilms
with forceps and transferred to a laboratory in a nutrient
transfer medium for microbial examination.

3.2. Isolation and Identification of Bacterial Isolates

The specimens were cultured on MacConkey and blood
agar (QuE-Lab, Italy) and incubated at 37°C for 24 hours. Af-
ter isolation, the isolates were identified using Gram stain-
ing and conventional diagnostic tests. Finally, a universal
primer was used to amplify the 16S rRNA gene for molecu-
lar identification, and the PCR product was sent to Zist Exir
Company for sequencing (13).

3.3. Antibiotic Susceptibility of Isolates

The antibiotic resistance pattern of the isolates was
determined using the Kirby-Bauer method according to
CLSI standards for the following antibiotics: Imipenem (10
µg), amoxicillin-clavulanic acid (10/20 µg), ciprofloxacin
(5 µg), cefoxitin (30 µg), ceftriaxone (30 µg), cefepime

(30 µg), cefotaxime (30 µg), Co-trimoxazole (1.25/23.75 µg),
penicillin (10 µg), clindamycin (2 µg), gentamicin (10 µg),
and ampicillin (10 µg) (BD BBL, Canada). The suscepti-
bility of the isolates to colistin and vancomycin was ex-
amined using E-test, and the corresponding minimum in-
hibitory concentration (MIC) values were determined. Af-
ter determining the antibiotic resistance pattern, three
isolates, namely Pseudomonas aeruginosa, Staphylococcus
aureus, and Klebsiella pneumoniae, with multiple-antibiotic
resistance, were selected for further analysis.

3.4. Preparation of Probiotics

Two probiotics, L. lactis, and L. delbrueckii, were isolated
from the industrial yogurt starter of Hansen Company. Af-
ter confirmation of phenotypic identity using biochemical
tests, the probiotics were separately cultured in MRS broth
at 37°C and 100 - 150 rpm in a shaker incubator for 48 hours.

3.5. Human Plasma Biofilm Model (hpBIOM) Preparation

The hpBIOM was prepared based on the method pro-
posed by Besser et al. (14). Plasma and buffy coats were col-
lected from donors. First, the buffy coat was centrifuged
at room temperature and 3,000 rpm for 30 minutes to re-
move residual red blood cells. The platelet-rich plasma and
buffer coat were then fused and shaken continuously in a
test tube at 100 rpm at 22°C. For 1 mL of plasma, 1 mL of the
bacterial isolate was added at a concentration of 0.5 McFar-
land (1.5*108), and then 18.27 µL of CaCl2 was added, mixed
well, and quickly transferred to 12-well culture plates. The
plates were incubated for two hours at 37°C and 50 rpm to
form polymerized plasma and disks of bacterial biofilm.
After preparing the biofilm disk, 100 µL of suspension of
each probiotic with a turbidity of 109 CFU was added to the
top of the disk, and the second dose of probiotic was added
with the same amount and turbidity after two hours and
was then incubated at 37°C. To investigate the simultane-
ous effects of L. lactis and L. delbrueckii on the biofilms of
isolates, 50µL of each probiotic with a turbidity of 109 CFU
was added to the disk in two doses with an interval of two
hours.

3.6. Biofilm Dissolution and Bacterial Growth Count

For enzymatic digestion of plasma, 1 mL of bromelain
(b4882 Sigma-Aldrich) at a concentration of 0.1 g/mL in PBS
was added to the wells two and 24 hours after adding the
second dose of probiotic, followed by incubation at 37°C
for two hours. To count the surviving pathogenic bacterial
cells, serial dilutions were prepared from 100 µL of solu-
tion of each well and inoculated on MRS TSA agar. Then,
the plates were incubated at 37°C overnight. Finally, colony
counting was performed.
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3.7. Field Emission-Scanning Electron Microscopy (FE-SEM)

In the present study, the interaction of L. delbrueckii
probiotic with P. aeruginosa isolates and the simultane-
ous interaction of L. delbrueckii and L. lactis with P. aerugi-
nosa after 24 hours were investigated using field emission-
scanning electron microscopy (FE-SEM).

3.8. Statistical Analysis

Data were expressed as mean ± SD. The experiments
were performed in triplicate to evaluate the anti-biofilm
activity of probiotics for each plasma donor. The Mann-
Whitney test was used to compare the results between
treatment and control groups, and P < 0.05 was consid-
ered significant. GraphPad PrismTM software version 9
was used.

4. Results

The present descriptive cross-sectional study exam-
ined 82 patients, including 56 (68.3%) men and 26 (31.7%)
women with chronic ulcers who visited Khandevadeh and
Al-Zahra Hospitals in Isfahan. Among them, the frequency
of bedsores was 18.3%, diabetic ulcers 63.4%, arterial ulcers
6.1%, and venous ulcers 12.2%. Most patients (41.5%) were in
the age range of 61 - 70 years. The duration of ulcer involve-
ment was two to three months in most patients (31.7%). Ac-
cording to Fisher’s exact test results, the frequency distri-
bution of the cause of ulcers was not statistically different
between different age groups (P = 0.986).

4.1. Bacterial Isolates

Among 82 biofilm specimens, 47 (57.3%) and 35 (42.7%)
were monomicrobial and polymicrobial, respectively.
There were 33 specimens containing two bacteria, and two
specimens had three bacteria. The frequency of Gram-
negative and Gram-positive isolates was 65.5% and 34.5%,
respectively. Among Gram-negative bacteria, Escherichia
coli (17%), P. aeruginosa (14%), Proteus mirabilis (10%), K.
pneumoniae (8%), and Acinetobacter baumannii (6%) were
predominant. Staphylococcus species (80.5%) were the
predominant pathogen among Gram-positive bacteria.
Staphylococcus aureus (19%) and coagulase-negative staphy-
lococci (9%) were the predominant pathogens among
Gram-positive bacteria (Figure 1).

4.2. Antibiotic Resistance Patterns of Isolates

Table 1 presents the antimicrobial resistance patterns
of Gram-positive and Gram-negative isolates. All staphy-
lococcal isolates were resistant to penicillin, of which 27%
were methicillin-resistant S. aureus (MRSA), and resistance
to ciprofloxacin was 63.6%; also, vancomycin was the most

effective antibiotic against Gram-positive bacteria. The
highest resistance to imipenem was observed in E. coli iso-
lates (75.0%). The percentage of colistin resistance was 29.5
% in P. aeruginosa. Among Gram-negative isolates, K. pneu-
moniae had high resistance to cefotaxime (66.6%), ceftriax-
one (55.5%), colistin (33.3 %), and co-trimoxazole (77.7%). On
the contrary, the most effective antibiotics against Gram-
negative bacteria were cefepime and cefoxitin. In gen-
eral, 59.9% of the isolates were MDR. The MDR percentages
among Gram-positive and Gram-negative isolates were 61%
and 59%, respectively.

4.3. Interaction of Lactobacillus delbrueckii with Biofilms of
MDR Isolates

The study of the anti-biofilm activity of L. delbrueckii
against three MDR pathogens, S. aureus, P. aeruginosa, and
K. pneumoniae, indicated the significant effect of this probi-
otic against all three pathogens, but L. delbrueckii could not
completely remove pathogenic isolates. However, it signif-
icantly inhibited bacterial growth in plasma biofilm over
four hours against three pathogens in donor 1 (P < 0.05)
(Figure 2A-C). In donors 1 and 2, significant anti-biofilm ac-
tivity was observed against S. aureus during 24 hours, and
it was accompanied by an average log10 reduction of 2.36
CFU/mL. The same result was also observed for P. aerugi-
nosa, and a log10 reduction of 1.43 CFU/mL was detected
within 24 hours (Figure 2A and B). In donor 3, no decrease
in K. pneumoniae biofilm was observed by L. delbrueckii;
however, there was a significant decrease in donor 1, af-
ter four and 24 hours, compared to the control group (P <
0.05). The antibacterial activity of L. delbrueckii was higher
in donor 1 than in the other two donors (Figure 2C).

4.4. Interaction of Lactobacillus lactis with the Biofilm of
Pathogenic Isolates

Lactobacillus lactis resulted in a significant reduction
in the growth of the three pathogens after 24 hours of in-
cubation in donor 1. The antimicrobial activity of L. lactis
against S. aureus and P. aeruginosa had the same pattern.
That means no change was observed in hpBIOMs in donors
2 and 3, and a log10 reduction of 0.74 - 0.88 CFU/mL was de-
tected in the biofilm of pathogens in donor 1. In the case
of K. pneumoniae, a log10 reduction of 0.47 CFU/mL was ob-
served in all three donors after 24 hours (Figure 3D-F).

4.5. Simultaneous Effects of Lactobacillus lactis and Lactobacil-
lus delbrueckii on Biofilm in hpBIOM

The present study examined the simultaneous interac-
tion of two probiotics, L. lactis, and L. delbrueckii, against
three MDR isolated from clinical specimens using donor
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Figure 1. Frequencies of bacterial isolates from biofilms of chronic ulcers; CON, coagulase-negative.

Table 1. Antibiotic Resistance Patterns of the Most Frequent Bacterial Isolates from Chronic Ulcer Biofilm a

Type of
Antibiotic

S. aureus, N = 22 CON
Staphylococci,

N = 11

E. coli, N = 20 P. aeruginosa, N
= 17

P. mirabilis, N =
12

K. pneumonia,
N = 9

A. baumannii, N
= 7

PEN 22 (100.0) 11 (100.0) NT NT NT NT NT

CLI 13 (59) 7 (63.6) NT NT NT NT NT

VAN (0.0) (0.0) NT NT NT NT NT

AMC 5 (23) 4 (36.3) 3 (15.0) 5 (29.5) 2 (16.6) 2 (22.2) 2 (28.5)

FEP NT NT 3 (15.0) 1 (5.8) 2 (16.6) 2 (22.2) 1 (14.3)

CTX NT NT 7 (35.0) NT 5 (41.6) 6 (66.6) NT

FOX 6 (27) 3 (27) 3 (15.0) NT 1 (8.3 ) 1( 11.1) NT

CRO NT NT 7 (35.0) 9 (53.0) 6 (50.0) 5 (55.5) 3 (43.0)

CIP 14 (63.6) 7 (63.6) 14 (70) 11 (64.7) 9 (75.0) 7 (77.7) 5 (71.4)

CST NT NT 4 (20.0) 5 (29.5 ) 2 (16.6 ) 3 (33.3 ) 1 (14.3)

GEN 5 (23) 2 (18.2) 6 (30.0) 11 (64.7) 6 (50.0) 5 (55.5) 3 (43.0 )

IPM NT NT 15 (75.0) 13 (76.4) 8 (66.6) 8 (88.8) 5 (71.4 )

SXT 4 (18.2) 3 (27) 12 (60.0) 10 (59.0) 8 (66.6) 7 (77.7) 3 (43.0 )

AMP NT NT 13 (65.0) NT 8 (66.6) 6 (66.6) NT

Abbreviations: CON staphylococci, coagulase-negative staphylococci; PEN, penicillin; SXT, trimethoprim-sulfamethoxazole; VAN, vancomycin; AMC, amoxicillin-
clavulanic acid; FEP, cefepime; CTX, cefotaxime; FOX, cefoxitin; CRO, ceftriaxone; CIP, ciprofloxacin; CLI, clindamycin; CST, colistin; GEN, gentamicin; IPM, imipenem;
NT, not tested.
a Values are expressed as No. (%).

plasma, with better antibiofilm activity. Two probiotics si-
multaneously prevented the formation of biofilms by all
three pathogens within 24 hours compared to the control
group (P < 0.05) (Figure 2). The highest anti-biofilm ac-
tivity of two probiotics was simultaneously observed on P.
aeruginosa with a log10 reduction at 1.47 CFU/mL and 0.83
CFU/mL in the first and second donors, respectively. How-
ever, comparing the inhibitory effects of the two probiotics

simultaneously and alone demonstrated that they did not
synergize the antibiofilm activity of each other.

4.6. Findings of FE-SEM

Field emission-scanning electron microscopy (FE-SEM)
was used for a more accurate analysis of the anti-biofilm ac-
tivity of L. delbrueckii on P. aeruginosa. A comparison of con-
trol and treatment images revealed the influence of L. del-
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Figure 2. Simultaneous interaction of Lactobacillus delbrueckii and L. lactis against three MDR isolated from clinical specimens. All tests were repeated three times (*: P < 0.05).

brueckii on hpBIOM. The number of P. aeruginosa cells was
significantly reduced, and the matrix was covered largely
by L. delbrueckii (Figure 4A and B). The FE-SEM image of the
simultaneous interaction of two probiotics indicated the
formation of exopolysaccharides by L. delbrueckii, among
which L. lactis was obvious and replaced P. aeruginosa cells
(Figure 4C).

5. Discussion

Chronic ulcers have become a major challenge world-
wide by increasing economic costs and impacting pa-
tients’ quality of life (15). In the present study, similar to

other studies, the most common bacteria isolated from
chronic wounds were Gram-negative bacteria belonging to
the Enterobacteriaceae family (16). Among them, E. coli was
the most common Gram-negative bacterium. In contrast,
Wong et al. reported P. aeruginosa as the most common
Gram-negative bacterium in chronic wounds (17). The fre-
quency of MRSA strains in our study was consistent with
Ralph’s findings (18). In the present study, like Silva et
al., the frequency of MDR bacterial isolates was high (19).
Based on the findings of this study, the resistance of Gram-
negative isolates to fluoroquinolones (ciprofloxacin) and
carbapenem (imipenem) was increasing.

The biofilm formation by bacteria is a non-endogenous
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Figure 3. Antimicrobial activity of Lactobacillus delbrueckii and L. lactis in hpBIOM. A, B and C, L. delbrueckii significantly inhibited the growth of Staphylococcus aureus and
Pseudomonas aeruginosa in all three donors within 24 hours but did not affect Klebsiella pneumoniae biofilm in the third donor. L. delbrueckii showed the best anti-biofilm
activity in the first donor plasma; D, E and F, antimicrobial activity of L. lactis against S. aureus and P. aeruginosa, except for K. pneumoniae, was donor-plasma dependent. All
tests were repeated three times (*: P < 0.05).

reason making chronic ulcer healing difficult. Bacteria
in polysaccharides of the biofilm matrix have phenotypic
resistance compared to the planktonic form and geneti-
cally acquire their resistance to antimicrobials by horizon-
tal transfer of resistance genes in the biofilm (20). This
study examined the anti-biofilm activity of two probiotics,
L. lactis, and L. delbrueckii, on three MDR pathogens isolated
from chronic ulcers in hpBIOM. This study used this model
since hpBIOM largely mimics the human ulcer biofilm. In
the present study, L. delbrueckii showed significant anti-
biofilm activity against the three pathogens during 24

hours of incubation. Lactobacillus supernatant contains ex-
opolysaccharides and biosurfactants that inhibit bacterial
biofilms (21, 22). Kim et al. reported that L. acidophilus ex-
opolysaccharides could inhibit E. coli enterohemorrhagic
biofilm in the microplate. It was also reported that the bio-
surfactants produced by Lactobacillus RC-14 considerably
reduced S. aureus attachment to surgical implants (23).

The cell-free supernatant and whole-cell of L. del-
brueckii had stronger antimicrobial activity on S. aureus
than on P. aeruginosa and K. pneumoniae. Gram-negative
bacteria are more resistant to antimicrobial compounds

6 Jundishapur J Microbiol. 2022; 15(9):e127085.
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Figure 4. FE-SEM images of simultaneous effects of Lactobacillus lactis and L. delbrueckii on the growth of Pseudomonas aeruginosa in hpBIOM: A, P. aeruginosa biofilm after
24 hours that is associated with high production of exopolysaccharide; B, P. aeruginosa after exposure to L. delbrueckii, the surface of which is covered with microcolonies
containing probiotics and a very small number of P. aeruginosa (arrow); C, P. aeruginosa biofilm in simultaneous exposure to L. lactis and L. delbrueckii, where a high density of
two probiotics was visible.

in supernatants due to an outer membrane in their wall
(24). Furthermore, P. aeruginosa can develop resistance
to antimicrobial agents in the cell-free supernatant. Pseu-
domonas aeruginosa can form a dense biofilm that in-
creases its resistance to antimicrobials in the supernatant.
In the present study, L. lactis exhibited a lower antimicro-
bial effect than L. delbrueckii. Nisin bacteriocin is an an-
timicrobial compound produced by L. lactis and has strong
antimicrobial effects against Gram-positive bacteria (25).
However, nisin-like bacteriocins are also produced by some
L. lactis strains that affect Gram-negative pathogens, in-
cluding Salmonella typhimurium. Kuwano et al. reported
that nisin Z made the cytoplasmic membrane of Gram-
negative and Gram-positive bacteria permeable (26). The
low anti-biofilm activity of L. lactis in this study was prob-
ably due to a lack of optimal production of nisin since its
production was influenced by environmental factors, such
as pH, incubation temperature, and carbon source (27, 28).

Unlike Besser’s study, none of the probiotics could
eliminate the pathogens (12). The difference was proba-
bly due to the types of probiotics used and the MDR of
pathogens. The MDR bacteria use resistance mechanisms
like efflux pumps that play a crucial role in their resis-
tance to antimicrobial agents in the supernatant (29). The
results of FE-SEM studies indicated that probiotics in hp-
BIOM in competition with pathogenic species prevented
the biofilm formation by pathogenic bacteria through
competitive removal, spatial inhibition, and colonization.
Chan et al. found that the lipoteichoic acid (LTA) in
the cell wall of Lactobacillus prevented the binding of
uropathogenic bacteria to epithelial cells (29).

For the first time, this study examined the simulta-

neous effect of the two probiotics on the biofilm of MDR
pathogens in hpBIOM. The results demonstrated the non-
synergistic effects of L. lactis and L. delbrueckii bacteria on
the biofilm of pathogens. The anti-biofilm activity de-
creased compared to the situation in which only a probi-
otic was used. According to studies, synergistic interac-
tions often occur between probiotics when there is a com-
mon metabolite between the two probiotics. Somkuti and
Steinberg investigated the synergistic effect on pediocin
production by L. delbrueckii. Lactobacillus delbrueckii me-
tabolizes lactose to glucose and galactose by producing β-
galactosidase in the medium and provides the substrate
for Pediococcus acidilactici (30).

Another study indicated a synergistic interaction be-
tween lactic acid bacteria (LAB) and Saccharomyces cere-
visiae. Yeast increased the growth of L. sanfranciscensis by
producing the growth factor and carbon dioxide in the
dough, but the growth of L. delbrueckii by yeast depended
on the carbon source in the dough. In the present study,
the reduction of anti-biofilm activity in the simultaneous
presence of two probiotics was probably due to the com-
petition between the two types of probiotics for food and,
consequently, a decrease in the production of antimicro-
bial agents. The donor-specific antibacterial activity of pro-
biotics was a significant finding of the present study, which
was consistent with Besser’s study. The finding highlights
the need to investigate donors’ immunological character-
istics and their effect on the anti-biofilm activity of LAB in
future studies.
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5.1. Conclusions

This study showed that L. delbrueckii and L. lactis have
antibacterial activity against the biofilms of MDR isolates
from chronic wound infection. However, their synergistic
effects on these isolates’ biofilm were insignificant. There-
fore, more research is necessary to find probiotics with sig-
nificant synergistic effects. Since the anti-biofilm activity
of probiotics in this model was affected by donor plasma,
conducting detailed immunological studies in this field in-
dicates the prospect of using probiotics in vivo.
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