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Abstract

Background: Vancomycin-resistant enterococci (VRE) are recognized as nosocomial pathogens with increased importance in re-
cent years. These bacteria are frequently isolated from patients admitted to intensive care units (ICUs). Enterococcal pathogenicity
is enhanced by different antibiotic resistance and virulence determinants.
Objectives: The present study aimed to assess the prevalence of genes encoding resistance to antibiotics and virulence factors in
intestinal VRE isolates from ICU patients.
Methods: In this study, 23 VREs were investigated. Minimum inhibitory concentrations (MICs) to nine antimicrobial agents
were examined using E-test. Genes encoding vancomycin resistance (vanABCDMN), aminoglycoside-modifying enzymes (aac(6’)-Ie-
aph(2")-Ia, aph(2")-Ib, aph(2")-Ic, aph(2")-Id, aph(3’)-IIIa, ant(3’)-Ia, ant(4’)-Ia, ant(6’)-Ia), together with genes for various virulence factor
(ace/acm, asa1, cylA, efaA, esp, gelE and hyl), were detected using multiplex PCR.
Results: The species distribution of the tested VRE was as follows: Nine Enterococcus casseliflavus, seven E. gallinarum, and seven E.
faecium. The vanA gene was found in all E. faecium, in six of which the classical VanA phenotype was observed. The vancomycin (vanC)
phenotype was associated with the presence of vanC1 gene in E. gallinarum and the vanC2 gene in E. casseliflavus isolates. The aac(6’)-
Ie-aph(2")-Ia gene was encoding high-level gentamicin resistance (HLGR) in the studied VRE. All E. faecium were positive for acm and
esp, while acm in combination with esp or hyl was detected in 2 vanC enterococci.
Conclusions: According to the findings, there was a correlation between the phenotype and the genotype of glycopeptide resis-
tance in the tested VRE. HLGR was more prevalent in E. faecium because of the presence of aac(6’)-Ie-aph(2")-Ia. The higher prevalence
of virulence determinants was confirmed in vanA isolates compared to the studied vanC-carrying enterococci.
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1. Background

The distinctive characteristic of enterococci is intrin-
sic resistance to β-lactams, aminoglycosides, and several
other classes of antibiotics. Moreover, these microorgan-
isms can acquire resistance to quinolones, tetracyclines,
oxazolidinones, aminoglycosides, and glycopeptides
(e.g., vancomycin) via transposons or plasmids (1-3).
High-level aminoglycoside resistance (HLAR) is mediated
by modifying either aminoglycoside aminoglycoside-
modifying enzymes (AMEs) or ribosomal attachment sites.
Because of AMEs encoded by mobile genetic elements,
HLAR enterococci are becoming more prevalent (4). The

most commonly spread AME is the bifunctional enzyme
AAC (6′)-APH (2′′), which confers resistance to a broad
spectrum of aminoglycosides. This enzyme is encoded
by the aac(6′)-Ie-aph(2′′)-Ia gene (5, 6). Other AMEs, in-
cluding 2’-O-phosphotransferase, 6’-O-adenyltransferase,
3’-O-phosphotransferase, 4-O-adenyltransferase, and 3’-
O-adenyltransferase are also encoded by genes located
on mobile genetic elements. Furthermore, enterococci
produce many virulence factors, including gelatinase,
hyaluronidase, aggregation substance, endocarditis
antigen, enterococcal surface protein, collagen-binding
protein, and cytolysin (7-9).
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The cumulative effect of different genes encoding vir-
ulence determinants and antibiotic resistance contributes
to the pathogenesis of enterococcal infections and intesti-
nal colonization with multidrug-resistant enterococci.
Over recent years, vancomycin-resistant enterococci (VRE)
have been identified as significant pathogens in hospitals,
which can hinder efficient anti-infective therapy. More-
over, the prevalence of VRE colonization in critically-ill pa-
tients is significantly high, especially in those hospitalized
in intensive care units (ICUs) (10, 11). It is well documented
that the colonized patients are major reservoirs for trans-
mitting VRE to other patients. Accordingly, VREs with vanA
and vanB genotypes are of paramount importance for clin-
ical practice (12). According to the data presented in several
scientific papers, those two genes are most commonly ex-
pressed by Enterococcus faecium and E. faecalis (12-16). Over
the last few years, evidence has suggested that other ente-
rococcal species can acquire vanA, vanB, or both (17, 18).

2. Objectives

This study aimed to assess the correlation between the
phenotype of glycopeptide resistance and the associated
genotype to determine the prevalence of genes encoding
aminoglycoside resistance and virulence factors among in-
testinal VR strains isolated from patients admitted to ICUs.

3. Methods

3.1. Bacterial Isolates

The present study was performed on 23 VREs isolated
from 91 patients admitted to ICUs at Pleven University Hos-
pital, Bulgaria, who were screened for intestinal coloniza-
tion with VRE from December 2018 to May 2019. The proto-
col for isolating intestinal VRE is previously described (19).
VITEK 2 Compact system (bioMérieux, France) was used to
detect the enterococcal isolates. Additional tests, such as
motility and pigment production, were also performed.
Species identification was confirmed by the detection of
species-specific ddl genes (20).

3.2. Antimicrobial Susceptibility Testing

Minimum inhibitory concentrations (MICs) to ampi-
cillin, gentamicin, vancomycin, teicoplanin, ciprofloxacin,
tigecycline, linezolid quinupristin/dalfopristin, and dap-
tomycin were examined using the E-test (Liofilchem, Italy).
The results were interpreted according to the EUCAST, ver-
sion 11.0, 2021 (eucast.org/clinical_breakpoints/). The clin-
ical and laboratory standards institute (CLSI) guidelines,
2021 (clsi.org/standards/), were used to interpret MICs for
daptomycin.

3.3. Amplification of Species Identification, Antibiotic Resis-
tance, and Virulence Genes

Template DNA was extracted by incubating bacterial
suspensions at 95°C in Chelex 100 (Bio-Rad, Canada), fol-
lowed by centrifugation at 14 000 rpm for 10 min. Su-
pernatants served as the template for PCR. The genes
used for the species-specific identification (ddlE. faecium,
ddlE. faecalis, ddlE. gallinarum, ddlE. casseliflavus/flavescens, ddlE. durans,
ddlE. hirae, ddlE. raffinosus, ddlE. avium), as well as genes for van-
comycin resistance (vanA, vanB, vanC, vanD, vanM, vanN),
AMEs (aac(6’)-Ie-aph(2")-Ia, aph(2")-Ib, aph(2")-Ic, aph(2")-Id,
aph(3’)-IIIa, ant(3’)-Ia, ant(4’)-Ia, ant(6’)-Ia) and virulence fac-
tors (ace/acm, asa1, cylA, efaA, esp, gelE and hyl) were de-
tected by multiplex PCR using primers sequences (6, 20, 21)
and the PCR protocols, as previously described (6, 20).

Briefly, a modified PCR mix (20 µL) for the detection of
the investigated genes was applied, which contained 10 ng
DNA template, 0.4 µM forward and reverse primers, 200
µM dNTPs (Canvax, Spain), 1X reaction buffer (Canvax), 2.5
mM MgCl2 (Canvax), and 1 U of Taq (Canvax). The PCR pro-
tocol for the detection of genes encoding AMEs was as fol-
lows: Initial denaturation at 94°C for 4 min; 35 cycles at
94°C for 40 s; 55°C for 40 s; 72°C for 45 s, and final exten-
sion at 72°C for 5 min. The PCR thermal conditions for the
detection of genes for virulence factors were as follows: Ini-
tial denaturation at 95°C for 4 min; 34 cycles at 96°C for 20
s; 53°C for 25 s; 72°C for 30 s and final extension at 72°C for
3 min.

The PCR amplification protocol to detect van genes
and ddl genes was as follows: Initial denaturation at 94°C
for 4 min; 30 cycles at 94°C for 30 s; 62°C for 35 s; 68°C
for 1 min and final extension at 68°C for 7 min. Cap-
illary electrophoresis was used to analyze the amplified
PCR products. The following control strains were used to
confirm the PCR results for the genes encoding species-
specific identification, vancomycin, and aminoglycoside
resistance: ATCC® 700221™ E. faecium (vanA), ATCC® 51299™
E. faecalis (vanB, aac(6’)-Ie-aph(2")-Ia), ATCC® 49608™ E. gal-
linarum (vanC1), ATCC® 700668™ E. casseliflavus (vanC2/3).
Sanger sequencing was used to confirm the correct se-
quence of the PCR fragments of acm, esp, hyl virulence
genes.

4. Results

Among the 23 isolated VREs, there were nine cases of E.
casseliflavus, seven cases of E. gallinarum, and seven cases
of E. faecium. Eighteen VREs were successfully identified
using the Vitek 2 compact system, whereas discrepant re-
sults were obtained in five intrinsically resistant to the
low levels of vancomycin (vanC) enterococci, which re-
quired further testing with motility and pigment tests. The

2 Jundishapur J Microbiol. 2022; 15(9):e128003.

http://www.eucast.org/clinical_breakpoints/
https://clsi.org/standards/


Hristova PM et al.

identification of all enterococcal isolates was confirmed
using multiplex PCR. Table 1 shows antimicrobial suscep-
tibility profiles and van genes in E. faecium. All isolates
were highly resistant to ampicillin (MIC ≥ 256 µg/mL)
and ciprofloxacin (MIC ≥ 32 µg/mL) and susceptible to
linezolid, tigecycline, quinupristin/dalfopristin, and dap-
tomycin. High-level gentamicin resistance (HLGR) with
MICs ≥ 1024µg/mL was detected in six of these cases; how-
ever, one isolate demonstrated MIC = 12µg/mL. The MICs of
glycopeptides revealed high-level vancomycin resistance
(MIC ≥ 256 µg/mL) and various teicoplanin MICs (6 to 256
µg/mL). The studied E. faecium were divided into three phe-
notypic subgroups regarding teicoplanin MICs: Three iso-
lates with high-level teicoplanin resistance (MICs: 128 - 256
µg/mL), three isolates with moderate resistance (MICs: 24 -
48 µg/mL), and one isolate with a low MIC level (6 µg/mL).
Regardless of the differences in teicoplanin MICs, the PCR
analysis determined the vanA gene in all E. faecium isolates.

Table 2 presents MIC ranges and vanC subtypes in vanC
enterococci, among which 14 cases (8 E. casseliflavus and
6 E. gallinarum) expressed a similar antibiotic resistance
pattern: Low-level vancomycin resistance (MICs: 2 - 6
µg/mL) and susceptibility to all tested agents, including te-
icoplanin (MICs: 0.5 - 1 µg/mL). Only two strains demon-
strated different patterns: One E. gallinarum had high resis-
tance to ampicillin (MIC ≥ 256 µg/mL), ciprofloxacin (MIC
≥ 32µg/mL), and gentamicin (MIC ≥ 1024µg/mL), and one
E. casseliflavus was highly resistant to ciprofloxacin (MIC
≥ 32 µg/mL) and moderately resistant to gentamicin (MIC
= 64 µg/mL). The vanC1 gene was identified in all E. galli-
narum, whereas all E. casseliflavus carried the vanC2 gene.
Nine VREs with gentamicin MICs: 12 - ≥ 1024 µg/mL were
positive for the following AME genes: aac(6’)-Ie-aph(2")-
Ia, aph(3’)-IIIa and ant(3’)-Ia (Table 3). However, the other
tested genes were not identified. The aac(6’)-Ie-aph(2")-Ia
was the most frequently detected gene in all VREs with
HLGR (6 E. faecium and 1 E. gallinarum) and also in one E.
faecium with the gentamicin MIC of 12 µg/mL. One E. cas-
seliflavus was positive for the ant (3’)-Ia gene.

The presence of genes for virulence factors was ob-
served in nine VREs , including seven E. faecium and two
E. gallinarum. Figure 1 demonstrates the PCR results. The
most frequently detected genes were acm (9/9), followed by
esp (8/9) and hyl (2/9). In all E. faecium acm and esp genes
were confirmed, one of which had additional hyl. In all
E. gallinarum isolates, the following combinations of viru-
lence genes were identified: acm and esp; acm and hyl. All
studied enterococci were negative for gelE, asa1, efaA, ace,
and cylA.

5. Discussion

The present study presents data on intestinal VRE iso-
lated from ICU patients, their antimicrobial susceptibility,
and the prevalence of genes encoding antimicrobial re-
sistance and virulence factors. It is well recognized that
the glycopeptide resistance in enterococci is associated
with nine different phenotypes, among which eight cases
(VanA, VanB, VanD, VanE, VanG, VanL, VanM, VanN) are the
results of acquired resistance. However, VanC is a naturally
resistant type. The last one is characterized by low-level
vancomycin resistance (MICs 2 - 32µg/mL) and susceptibil-
ity to teicoplanin (MICs 0.5 - 1.0 µg /mL) and is encoded by
the vanC gene. Among the phenotypes with acquired gly-
copeptide resistance, the most commonly spread one of
which is VanA, which demonstrated HLGR (MICs 64 - 1000
µg/mL) and teicoplanin (MICs 16 - 512 µg/mL), encoded by
the vanA gene and VanB displaying variable resistance to
vancomycin (MICs 8 - 512 µg/mL) and susceptibility to te-
icoplanin (MICs 0.5 - 1.0 µg/mL), carried by the vanB gene
(22).

Our data for glycopeptide resistance in E. faecium re-
vealed high-level vancomycin resistance and widely varied
teicoplanin MICs. In the six isolates, the glycopeptide MIC
values completely corresponded to the VanA phenotype,
whereas one strain (64 ICU/19) expressed a VanD-like phe-
notype. However, vanA gene was confirmed in all E. fae-
cium. The VanD phenotype is defined by moderate to high-
level vancomycin resistance (MICs 64 - 128 µg/mL) and sus-
ceptibility or resistance to teicoplanin (MICs 4 - 64 µg/mL)
and is encoded by the vanD gene. Song et al. (23) investi-
gated 20 VR VanD-vanA E. faecium, isolated in the intestinal
screening of the ICU patients, and estimated that these iso-
lates were heterogeneous and unstable bacterial popula-
tions. Following their exposure to glycopeptides, they can
acquire the VanA phenotype; hence, teicoplanin would not
be effective for treating infections induced by VanD-vanA
enterococci.

The studied vanC enterococci demonstrated intrinsic
resistance to vancomycin (MICs 2 - 6 µg/mL) and most of
them remained susceptible to all tested antibiotics. Only
one E. casseliflavus and one E. gallinarum showed resistance
to penicillins, aminoglycosides, and fluoroquinolones. In
all vanC enterococci, there was a correlation between the
phenotype of glycopeptide resistance, determined by the
MIC values, and the involved genotype. Batistao et al.
(24) considered the VanC phenotype in E. gallinarum and
E. casseliflavus isolates on the base of the estimated low-
level vancomycin resistance (MICs 2 - 32µg/mL). In another
study, the antimicrobial susceptibility profiles of vanC en-
terococci were used as an indicator of the vanC genotype
(25).
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Table 1. Antimicrobial Susceptibility Profiles and van Genes in Enterococcus faecium Isolates

Isolate No van Genes
MICs (µg/mL)

AMP GEN VAN TEC CIP Q/D LZD TGC DAP

3 ICU/19 vanA ≥ 256 ≥ 1024 ≥ 256 ≥ 256 ≥ 32 0.50 2 0.032 0.38

4 ICU/19 vanA ≥ 256 ≥ 1024 ≥ 256 128 ≥ 32 3 3 0.064 0.75

5 ICU/19 vanA ≥ 256 ≥ 1024 ≥ 256 48 ≥ 32 0.50 3 0.125 0.50

6 ICU/19 vanA ≥ 256 ≥ 1024 ≥ 256 24 ≥ 32 0.75 2 0.094 1

10 ICU/19 vanA ≥ 256 ≥ 1024 ≥ 256 24 ≥ 32 0.50 2 0.125 1

26 ICU/19 vanA ≥ 256 12 ≥ 256 ≥ 256 ≥ 32 0.75 2 0.094 0.75

64 ICU/19 vanA ≥ 256 ≥ 1024 ≥ 256 6 ≥ 32 0.25 2 0.094 1

Abbreviations: AMP, ampicillin; GEN, gentamicin; VAN, vancomycin; TEC, teicoplanin; CIP, ciprofloxacin; LZD, linezolid; TGC, tigecycline; Q-D, quinupristin/dalfopristin;
DAP, daptomycin.

Table 2. Antimicrobial Susceptibility Profiles and vanC Subtypes in vanC Enterococci

Species No of Isolates
van

Genes

MIC Ranges or MICs (µg/mL)

AMP GEN VAN TEC CIP LZD TGC DAP

Enterococcus casseliflavus 8 vanC2 0.75 - 2 2 - 4 2 - 6 0.5 - 1 1 - 2 1 - 2 0.032 - 0.094 0.38 - 1

E. casseliflavus 1 vanC2 0.38 64 2 0.75 ≥32 2 0.125 0.75

E. gallinarum 6 vanC1 0.75 - 2 1 - 6 2 - 6 0.5 - 1 1 - 2 1 - 2 0.032 - 0.125 0.038 - 1

E. gallinarum 1 vanC1 ≥ 256 ≥ 1024 2 1 ≥ 32 1 0.064 1

Abbreviations: AMP, ampicillin; GEN, gentamicin; VAN, vancomycin; TEC, teicoplanin; CIP, ciprofloxacin; LZD, linezolid; TGC, tigecycline; DAP, daptomycin.

Table 3. Prevalence of AME Genes Among Vancomycin-Resistant Enterococci

Species No of Isolates
GEN MICs
(µg/mL)

AME Genes

aac(6’)-Ie-aph(2")-Ia aph(3’)-IIIa ant(3’)-Ia

Enterococcus faecium 5 ≥ 1024 + - -

E. faecium 1 ≥ 1024 + + -

E. faecium 1 12 + - -

E. gallinarum 1 ≥ 1024 + - -

E. casseliflavus 1 64 - - +

Abbreviations: GEN, gentamicin; AME genes, aminoglycoside-modifying enzyme genes.

There are three known classes of AMEs:
Aminoglycoside-N-acetyltransferases (AACs), catalyzing
the acetylation of the amino group; aminoglycoside-
O-phosphotransferases (APHs), catalyzing the phos-
phorylation of the hydroxyl group; aminoglycoside-
nucleotidyltransferases (ANTs), and the catalyst nucleoti-
dation of hydroxyl groups. The APHs are of particular
importance for clinical practice and lead to higher lev-
els of aminoglycoside resistance compared to the other
two groups of enzymes. The AAC(6′)-APH(2′′) enzyme,
produced by enterococci, is associated with high-level
resistance to gentamycin (MIC ≥ 500 µg/mL) and strep-
tomycin (MIC ≥ 2000 µg/mL). This enzyme is a product

of the aac(6’)-Ie-aph(2")-Ia gene, i.e., the most commonly
detected in E. faecium, E. faecalis; however, it also exists in E.
avium, E. durans, E. gallinarum, E. hirae, and E. casseliflavus
(26-28).

We detected the aac(6’)-Ie-aph(2")-Ia in all VRE reveal-
ing HLGR (MIC ≥ 1024µg/mL) and also in one E. faecium ex-
hibiting gentamicin MIC = 12 µg/mL. In 2021, for the first
time, Chen et al. (29) described 15 E. faecium and two E. fae-
calis strains with non-HLGR phenotype, in which aac(6’)-Ie-
aph(2")-Ia was detected. These findings demonstrated the
ability of E. faecium to acquire the HLGR phenotype. We
found one E. casseliflavus isolate with a moderate level of
gentamicin resistance, which was probably conferred by
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Figure 1. Detection of acm, esp, and hyl genes in seven E. faecium and two E. gallinarum isolates using multiplex PCR. Lane 1 - No 4 ICU; Lane 2 - No 5 ICU; Lane 3 - No 6 ICU; Lane
4 - No 10 ICU; Lane 5 - No 26 ICU; Lane 6 - No 64 ICU; Lane 7 - No 3 ICU; Lane 8 - No 66 ICU (E. gallinarum); Lane 9 - No 79 ICU (E. gallinarum); Lane 10 - GeneRuler 50 bp DNA Ladder
(TermoFisher Scientific, USA).

intrinsic mechanisms. Moreover, the ant(3’)-Ia gene, me-
diating high-level streptomycin resistance (30), was con-
firmed in that strain.

The enterococcal pathogenicity is enhanced by the
presence of different virulence factors associated with
them. We found at least two virulence determinants in
the present study in nine intestinal VREs. The acm and esp
genes were identified in all E. faecium isolates. Our data cor-
respond with a Korean study (23), in which the esp gene was
confirmed in all 40 investigated VR E. faecium. Similarly,
Cakirlar et al. (31) described the prevalence of the esp gene
in 87 out of 100 VR E. faecium isolates. Strateva et al. (32)
confirmed the acm gene in 72.8% of the tested E. faecium,
whereas only 4.3% of the isolates were positive for esp. In

contrast, Shokoohizadeh et al. (33) reported that the asa1
and gelE genes were most commonly detected among E.
faecium.

We observed the low prevalence of virulence determi-
nants in the studied vanC enterococci. Only two E. gal-
linarum were harboring virulence genes and none of the
tested genes was present in the E. casseliflavus isolates.
Our findings were consistent with those reported by Dwor-
niczek et al. (34, 35), who revealed the lack of virulence fac-
tors in E. gallinarum and E. casseliflavus isolated from uri-
nary catheters and other clinical specimens. To the best
of our knowledge, there is limited evidence on the preva-
lence of genes encoding aminoglycoside resistance and
virulence factors in intestinal isolates of E. casseliflavus and
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E. gallinarum.

5.1. Conclusions

In summary, a correlation exists between the esti-
mated phenotype of glycopeptide resistance and the in-
volved genotype in almost all VREs. Moreover, the aac(6’)-
Ie-aph(2")-Ia was responsible for HLGR in the enterococcal
isolates. The prevalence of genes encoding virulence fac-
tors was higher in E. faecium isolates compared to vanC en-
terococci, and the most frequent genes were acm and esp.
The presence of multiple virulence determinants among
VREs would significantly increase their colonization abil-
ity and potentially contribute to the development of infec-
tions in ICU patients.
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