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Abstract

Background: Escherichia coli is one of the most common causes of different infections. Biofilm structure allows the strains to persist
on the biotic and abiotic surfaces for a long time and impairs eradication. Surface colonization of E. coli could be done with several
extracellular appendages, which are effective productive events leading to biofilm maturity.
Objectives: In this study, the possible relationship between the presence of fimA (encoding large subunit of Type I fimbriae) and
csgA (encoding curli fimbriae) genes with biofilm formation in extraintestinal pathogen E. coli isolates was evaluated.
Methods: For this study, 35 isolates of E. coli were collected from human urine samples of those referred to oil big hospital. After
isolating and identifying E. coli strains by common biochemical tests, we examined the biofilm formation of isolates in brain heart
infusion broth, which contained 3% sucrose, using microtiter plate crystal violet method. Presence of the 2 studied genes in the
isolates was evaluated using multiplex polymerase chain reaction (m-PCR) assay.
Results: In the present study, 27 strains from 35 isolates were expressed in the 2 studied attachment- associated factors, but 5 and
2 strains were expressed by csgA and fimA, respectively. Except 2 strains that could not produce biofilm, 1 strain was detected as a
moderate biofilm producer, and the 32 remaining strains were detected as weak biofilm producers.
Conclusions: All the positive and the 2 negative biofilm producer strains could be expressed in the 2 studied genes. The correlation
between the presence of studied genes and biofilm production ability was suspected, but because of the high percentage of biofilm
production in the studied strains, the need to use good hygiene practices is highly recommended.
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1. Background

Exointestinal pathogenic Escherichia coli (EPEC) strains
can cause urinary tract infections, bacteremia, or neonate
meningitides (1). Exointestinal pathogenic strains harbor
factors that are important in effective attachment. These
bacteria are the primary cause of community-acquired uri-
nary tract infections (UTI) (70% - 95%) and a large portion
of nosocomial UTIs (50%), accounting for substantial med-
ical costs and morbidity worldwide (2). Uropathogenic Es-
cherichia coli (UPEC) strains take an advantage of the host
behavior and can employ a diverse repertoire of virulence
factors to colonize the urinary tract (3). In some cases, UPEC
isolates may be disseminated by contaminated food or sex-
ually activity. Due to variation in virulence genotypes of
uropathogenic strains of E. coli based on geographical re-
gions (4), conducting surveys on isolates characteristics in
every region is of great importance.

Biofilm is a bacterial community with structural and
physiological changes compared to planktonic bacteria,
which have novel properties. These changes are related to
enhancing bacterial surveillance because of disinfectant

and antibiotic resistance. Identifying key biofilm deter-
minants in several bacteria is required to achieve preven-
tative strategies in initial bacterial adhesion, maturation
of biofilm, or enhancement of antibiotic susceptibility of
bacterial community in biofilm (5, 6). In the differentiated
superficial umbrella cells that line the lumen of the blad-
der, UPEC are able to break into the host cell cytosol and
rapidly multiply, forming large intracellular biofilm-like
communities that can contain several thousand bacteria.

Biofilm development could be stopped by removing
any of the followings: microbes, slime- exopolysaccha-
rides, and surface (7). Different superficial appendices of
organisms are related to the first stage of biofilm forma-
tion and attachment to eukaryotic host cells such as flag-
ella, fimbriae, autotransporter proteins, curli, F conjuga-
tive pilus, and exopolysaccharide production (8). At the
first stage of biofilm formation, superficial appendages
such as flagella are synthesized to lose attachment of bac-
teria, which is a determinant of biofilm architecture. Then,
for tight attachment, which is important in biofilm for-
mation, the synthesis of flagella suppresses, and various
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organelles such as curli fimbriae and Type I fimbriae, en-
coded by csgA and FimA genes, increase (9, 10). Curli is a
thin, wiry long protein fiber on a surface of some cells (11).
An increased ability to bind to abiotic surfaces such as cov-
erslips, glass, and polystyrene or biotic surface (such as in-
testinal cells) by some curli-producing E. coli was reported
compared to non-curli-producing strains (12). Several stud-
ies have reported that the association of some attachment
factor expressions such as curli biofilm formation by ex-
traintestinal E. coli can be associated with the biofilm pro-
duction (13). Biofilm is formed by numerous species of mi-
croorganisms and favored under different environmental
conditions.

2. Objectives

Because of the important role of biofilm in chronic
UTI, in this study, we aimed at focusing on human
uropathogenic E. coli biofilm formation by microtiter plate
crystal violet and its relation to csgA and FimA genes.

3. Methods

3.1. Isolation of Pathogenic Escherichia coli

The studied E. coli in this research were isolated from
the urinary infections cases of humans in Ahvaz oil big hos-
pital. For this purpose, collected samples were cultured in
blood agar (Merck, Germany) and incubated for 24 hours
in 37 centigrade degree. Then, suspicious colonies were col-
lected and streaked on blood agar again and detected by
catalase, oxidase, gram stain, and biochemical tests includ-
ing Triple Sugar Iron Agar (Merck, Germany), MacConkey
(Merck, Germany), Sulfur-Indole-Motility (Biolab, India),
Ureas (liofilchem, USA), Simmon Citrate (HiMedia, India),
Lysine Iron Agar (Merck, Germany), Phenylalanin Deami-
nase (Merck, Germany), and Methyl Red-Vogues Prosquer
(HiMedia, India).

3.2. Biofilm Formation Assay

The isolates biofilm production ability was assessed by
modified technique of polystyrene microtiter plate, which
was described by Stepanovic et al. Escherichia coli (ATCC
25922) standard was used as biofilm positive control. The
isolates were grown on brain heart infusion (BHI) broth,
supplemented with 3% sucrose (Merck, Germany), and in-
cubated at 37°C for 24 hours. Then, 100 µL of overnight
culture was transferred to 900 µL of fresh BHI broth, with
3% sucrose until observing MacFarland scale of 0.5. Then,
in triplicate, 200 microliter of each isolate suspension was
put in each well of microplate (Maxwell, China) and incu-
bated at 37°C for 24 hours. Non-inoculated supplemented

BHI was used as negative control in triplicate. After incu-
bation of the plate for 24 hours in 37°C, the bacterial sus-
pension was aspirated and washed by sterile physiological
saline 3 times. After drying the plate at room temperature,
200 µL of methanol per well was added for fixation. Af-
ter 15 minutes, the plate was aspirated and dried at room
temperature, then, it was stained by 200 µL of 2% solution
of Hucker’s crystal violet. After 5 minutes, the plate was
washed by distilled water and dried at room temperature.
After addition of 200 µL of discoloring solution (ethanol-
aceton) for 15 minutes, absorbance was read using an ELISA
plate reader (Biotek SX2, USA) at 600 nanometer.

The optical density (ODs) of each strain was obtained
by the arithmetic mean of the absorbance of 3 wells, and
this value was compared with the mean absorbance of
negative controls (ODnc). The following classification was
used to determine biofilm formation: no biofilm produc-
tion (ODs < ODnc), weak biofilm production (ODnc < ODs
< 2.ODnc), moderate biofilm production (2.ODnc < ODs
< 4.ODnc), and strong biofilm production (4.ODnc < ODs)
(14, 15).

3.3. Multiplex PCR Assay

To identify the studied genes (csgA and fimA) in the
isolated E. coli, PCR assays were performed according to
Oliveira Silva, et al. (16). At first, DNA was extracted from
each strain by boiling bacterial suspension of each iso-
late in TE buffer (Tris- EDTA), containing 2 Mercapthethanol
(2%). Supernatant of boiling bacterial suspension after cen-
trifugation was collected as a source of DNA. csgA and fimA
genes specific primers were designed by Oliveira Silva (Ta-
ble 1). Total volume of PCR reaction was 25 µL, which con-
tained 12.5 µL of 2x PCR Master Mix (Ampliqon, Denmark),
1 µL (10 pmol/L) of each primer (forward and reverse), 5 µL
of bacterial DNA, and 3.5µL of nuclease-free water. PCR pro-
tocol was as follows: 1 cycle at 94°C for 4 minutes; 30 cycles
at 94°C for 30 seconds, 60°C for 30 seconds, and 72°C for 30
sseconds, followed by final extension step at 72°C for 4 min-
utes in a thermal cycler (Eppendorf, Germany). Escherichia
coli (ATCC 25922) DNA and nuclease-free water were used as
the positive and negative control, respectively. PCR prod-
ucts were electrophoresed and visualized in 1% agarose gel
(Max Pure, Spain), and stained with safe stain (1X) (Cina-
clon) using the UV transilluminator (UVtech- Germany).

4. Results

In this study, after collecting 35 E. coli isolates by cultiva-
tion of 140 human urine samples, we evaluated the biofilm
production ability of isolates by modified microtiter plates
techniques described by Stepanovic et al. (15). Based on
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Table 1. Forward and Reverse Primers Used in csgA and fimA Genes Detection (16)

Gene Primer Length

csgA
5’-ATCTGACCCAACGTGGCTTCG-3’

178 bp
5’-GATGAGCGGTCGCGTTGTTACC-3’

fimA
5’-CTCTGGCAATCGTTGTTCTGTCG-3’

119 bp
5’-GCAAGCGGCGTTAACAACTTCC-3’

the results, 32 isolates (91.4%) were weak biofilm producers
in BHI, containing 3% sucrose and only 1 isolate (2.8%) was
moderate biofilm producer. In addition, 2 non- producing
biofilm isolates (5.7%) in BHI medium were detected. None
of the isolates was able to produce a strong level of biofilm
in BHI, containing 3% sucrose medium. By PCR, 33 isolates
(94.3%) were carriers for csgA gene, and 30 isolates (85.7%)
were fimA gene carriers. Moreover, 5 and 2 samples were
carriers for csgA and fimA genes, respectively (Figure 1). In
this research, a correlation between presence of csgA and
fimA genes and biofilm production ability was suspected
because most of the isolates with and without biofilm pro-
duction ability had csgA and fimA genes.

5. Discussion

Biofilm producer bacteria can cause a wide range of
infections in humans and animals. Antibiotic and disin-
fectant agents’ resistance is 500 to 5000 times higher in
biofilm producing bacteria than their planktonic form (17).
Bacteria could be protected by expression of specific re-
sistance genes in addition to production of large amount
of exopolysaccharides under slow growing condition of
biofilm production (18). The planktonic form of bacteria
should be dispersed for colonization and biofilm produc-
tion in new locations (19). The genotype of exointestinal
E. coli strains could reflect the attachment ability of these
strains to eukaryotic cells.

Several virulence factors presentations could help the
organisms to adhere, colonize, or invade host cells, and fa-
cilitate a biofilm formation and create chronic illness. Ad-
hesive organelles are commonly elaborated by UPEC, F1C, S,
P, and Type I pili, encoded by the foc, sfa, pap, and fim oper-
ons, respectively (20). Type 1 and P pili, encoded by many
UPEC strains, are the most studied adhesive organelles. P
pili are often expressed in pyelonephritic UPEC isolates (21).
The Fim H, which could mediate both invasion and bac-
terial adherence to host cells, contributes to intracellular
bacterial biofilms formation by UPEC (22).

A variety of superficial and extracellular appendices
such as flagella, Type I pili, and curli fimbriae are involved

in biofilm formation of E. coli strains (23, 24). These superfi-
cial molecules could be detected by phenotypic and geno-
typic investigation. In fact, the biofilm synthesis regula-
tion is highly complex, but little information is available
on different species. Biofilm producing ability and correla-
tion of different attachment factors were evaluated in sev-
eral bacterial strains such as pathogenic Staphylococcus au-
reus (25) and E. coli (26-28).

Among different quantification methods for examin-
ing biofilm production ability in bacteria, polystyrene mi-
crotiter plate crystal violet system has been widely used
(15, 29, 30) and biofilm production ability of different bac-
terial species has been investigated by this quantification
method (14, 29, 31). In the present study, biofilm forma-
tion of 35 human urinary pathogen E. coli isolates were
evaluated by microtiter plate crystal violet in BHI, contain-
ing 3% sucrose, and the correlation of presence of Type I
fimbria and curli fimbria genes and biofilm ability in iso-
lates were investigated using BHI containing 3% sucrose.
In microtiter plate system, 94.3% of isolates were detected
as biofilm producer, which is a significant percentage. In
this medium, most of isolates (91.4%) were able to pro-
duce weak biofilm, and 2 isolates (5.7%) were not able to
produce biofilm. In several studies, the effects of enrich-
ment medium type in biofilm assay have been investi-
gated. Samet et al. (32) and Stepanovic et al. (15) in separate
studies introduced BHI medium better than others.

Samet et al. (32) in their study, used BHI containing
1% sucrose in biofilm production. In addition, because of
the studied genes presence in most of isolates, with dif-
ferent ability in biofilm production (from moderate to no
producing), no association was observed between biofilm
producing ability and presence of csgA and fimA genes in
uropathogenic E. coli strains. In Rijavec et al. (33) study,
no association was observed between usp, papC, and sfa/foc
virulence genes and biofilm production in pathogenic E.
coli. However, higher frequency of papC, papG, sfa/foc, focG,
hlyA and cnf1 genes in biofilm strong producer strains of
E. coli were demonstrated by Naves et al. (34). Finally, due
to the biofilm production by variable environmental fac-
tors, as same as type and species of bacteria, the diversity
of UPEC-associated attachment factors with high levels of
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Figure 1. Multiplex PCR Results; Left to Right: Positive Control with Two Genes(119 and 178 bp), Negative Control, 4 Positive Samples with Two Genes, one fimA Gene Positive
Sample; Ladder 100 bp, one csgA Positive Sample, 6 Positive Samples with Two Genes

genetic similarity among nonpathogenic and pathogenic
extraintestinal E. coli isolates makes it difficult to attribute
biofilm producing ability to specially attachment factors.
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