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Abstract

Background: β-lactamases (BLs) are the leading cause of antimicrobial resistance in gram-negative bacteria. Metallo-β-lactamases
(MBL) play a critical role in hydrolyzing a wide range of β-lactam drugs, including carbapenems. Recent reports have highlighted
an increase in Pseudomonas aeruginosa abundance during acute SARS-CoV-2 infections, potentially complicating viral treatment.
Objectives: This study aims to present the discovery of novel inhibitors targeting P. aeruginosa Verona integrin-encoded (VIM)-2
MBL using a combination of computational and experimental methods.
Methods: A total of 61 953 natural compounds and captopril (used as a positive control) were screened as potential inhibitors.
Additionally, the 3D structure of the enzyme was obtained from the Protein Data Bank (PDB). The most promising compounds
were selected through molecular docking, and further analysis of conformational changes in the protein-inhibitor complex was
conducted using the GROMACS molecular dynamics package. Enzyme assays were performed to validate the results obtained
through molecular modeling.
Results: Two compounds, namely ZINC98363781 and indolebutyroyl aspartic acid (ZINC04090499), demonstrated strong inhibitory
potential with docking energies of -14.1 and -12.7 kcal mol-1, respectively. Captopril exhibited a docking energy of -10.684 kcal mol-1.
Molecular dynamics analysis indicated good stability and flexibility in the studied systems. According to the binding energies
calculated by mechanics-Poisson Boltzmann surface area (MM-PBSA), captopril, ZINC98363781, and ZINC04090499 displayed
binding energies of -29.39 ± 5.92 kcal mol-1, -79.74 ± 67.51 kcal mol-1, and -99.65 ± 26.52 kcal mol-1, respectively. Enzyme assays
confirmed that the IC50 value of ZINC04090499 against VIM-2 MBL was 25µM.
Conclusions: Our findings suggest that ZINC04090499 is a promising inhibitor of VIM-2 MBL and warrant further investigation in
laboratory studies.
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1. Background

The discovery of antibiotics marked the most
significant advancement in modern medicine. Antibiotics
continue to be the cornerstone of treatment for bacterial
infections. The clinical utilization of penicillin G,
the first β-lactam antibiotic, spurred the quest for
additional derivatives (1). β-lactam antibiotics such
as penicillins, carbapenems, and cephalosporins have
been extensively employed over recent decades (1).
These β-lactam antibiotics inhibit the final step in
peptidoglycan synthesis (2). Bacteria have developed an

effective mechanism to counteract these antibiotics by
hydrolyzing theβ-lactam ring usingβ-lactamase enzymes
(3). β-lactamases are categorized into four Ambler classes:
Classes A, C, and D (active-site serine β-lactamases) and
class B (metallo-β-lactamases or zinc-dependent) (4).

Pseudomonas aeruginosa has emerged as a serious
opportunistic pathogen over the past few decades, causing
conditions such as cystic fibrosis (CF), urinary tract
infections (UTIs), and burn infections (5). Pseudomonas
aeruginosa is considered a healthcare-associated infection
(HAI) and has been associated with higher fatality rates
compared to other bacteria in bloodstream infections
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(bacteremias) (6, 7). Recent reports have also indicated
coinfections of P. aeruginosa in COVID-19 patients (8).
Research by Rhoades et al. suggests a higher prevalence
of P. aeruginosa in the nasal passages of patients after
contracting SARS-CoV-2 (9).

The rise of extensively drug-resistant (XDR),
multidrug-resistant (MDR), and pandrug-resistant (PDR) P.
aeruginosa strains presents a significant health challenge,
leading to increased mortality rates in infections caused
by resistant strains (10). Globally, the mortality rate
for patients with carbapenem-resistant Pseudomonas
infections ranges from 33% to 71% (11). Carbapenem
resistance is mediated by various mechanisms,
including the production of β-lactamases such as serine
β-lactamases (SBLs) and metallo-β-lactamases (MBLs) (12).

Metallo-β-lactamases belong to group 3 of the
functional classification (Bush-Jacoby-Medeiros) and
class B of the molecular classification (Ambler) (13).
Metallo-β-lactamases are enzymes that require zinc
(Zn2+) as cofactors for activity and catalyze the hydrolysis
of carbapenems (14). The emergence of mobile MBL
genes, often carried by class 1 integrons along with other
resistance genes, has led to widespread drug resistance
(15). Key residues like Trp-87, Phe-61, and Tyr-67 near the
second Zn Verona integrin-encoded (VIM)-2 active site
create a hydrophobic zone (16). Recent studies have
reported interactions between inhibitors and residues
such as Arg228, Trp87, and Zn from the VIM-2 active site
(17).

The most commonly reported metallo-β-lactamases
include VIM, Sao Paulo metalloenzyme (SPM),
imipenemase (IMP), German imipenemase (GIM), and New
Delhi metallo β-lactamase (NDM) types (18, 19). Currently,
VIM is the most prevalent MBL in P. aeruginosa, with VIM-2
being the primary contributor to this predominance (20).
The World Health Organization (WHO) has prioritized the
discovery of antibiotics or the design of MBL inhibitors
to curb the spread of carbapenem-resistant P. aeruginosa
strains (21).

Chromosomal mutations are one of the causes of
carbapenem resistance in P. aeruginosa (22). Mutations
leading to damage in the outer membrane protein OprD
create a channel for imipenem penetration, reducing
susceptibility to imipenem and other carbapenems
(23). Chelating compounds, such as cyclic boronate,
ethylenediaminetetraacetic acid (EDTA), sulfamoyl
carboxylate, dipicolinic acid derivatives, and thiol
group-containing compounds, have demonstrated the
ability to inactivate MBLs. However, clinical use inhibitors
are yet to be identified (24-26). Overexpression of efflux
pump systems like MexAB-OprM, driven by regulatory area
mutations, contributes to the mutational derepression of

the chromosomal cephalosporinase AmpC, resulting in
resistance to meropenem (23).

In recent decades, captopril
((2S)-1-[(2S)-2-Methyl-3-sulfanylpropanoyl]
pyrrolidine-2-carboxylic acid; Appendix 1) has been
employed for controlling blood pressure. Some previous
studies have indicated that captopril can inhibit several
MBLs (27, 28). Therefore, captopril can serve as a positive
control in our molecular simulations. In 2022, our
research team identified ZINC517765 as a promising
candidate for inhibiting MBLs (29). Considering the small
size and symmetrical structure of ZINC517765, additional
efforts have been undertaken to develop and introduce
more potent inhibitors.

2. Objectives

This study aims to design a novel potent inhibitor
against VIM-2 MBLs of P. aeruginosa using a combination
of computer-aided drug design (CADD) and experimental
methods. Unlike previous studies, we employed natural
compounds and virtual screening alongside molecular
dynamics (MD) techniques to discover a potent inhibitor.
During the experimental phase, we conducted assays to
evaluate and directly compare the inhibitory effects of
ZINC04090499 and ZINC517765.

3. Methods

3.1. Molecular Docking

In this study, the 3D structure of VIM-2 MBL (crystal
structure, Protein Data Bank (PDB) code: 4C1E, resolution:
1.4 Å) served as the foundation (28). The water molecules
within the PDB structure were eliminated using ViewerLite
5.0 software (30). Following the determination of
bond ordering, missing hydrogen atoms were inserted.
Subsequently, the Gasteiger-Marsili method, a component
of the AutoDock Tools package, was employed to calculate
the partial atomic charges (31).

For ligand sources, two extensive natural compound
libraries, AnalytiCon Discovery NP and IBScreenNP,
were utilized. AnalytiCon Discovery NP and IBScreenNP
encompass 5154 and 56,799 natural products, respectively.
All docking procedures were executed with AutoDock
Vina (31), a freely available software facilitating molecular
docking and virtual screening. In our research, we adhered
to the default parameters of AutoDock Vina. A grid map
encompassing the entire active site was defined with
dimensions of 30 30 30 points and a grid-point spacing of
1 for all docking operations.
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To generate 2D representations of the molecules, we
utilized the web-based proteinsPlus program (32). Based
on the scoring function of the docking software, the top
two compounds (with the lowest docking energy) were
chosen for subsequent MD simulations.

3.2. ADMET Analysis

SwissADME was employed to decipher the
absorption, distribution, metabolism, and excretion
(ADME) characteristics of all previously selected
compounds. SwissADME, a web-based program,
predicts ADMET properties and enables the evaluation
of physicochemical characteristics, water solubility,
lipophilicity, drug-likeness, pharmacokinetics, and
medicinal chemistry (33). To compute absorption (ABS)
(%), Equation 1 was utilized (34, 35):

(1)
109− [TPSA (topological polar surfacearea)

× 0.345] = ABS (%)

3.3. Molecular Dynamics Method

Molecular dynamics is a computational technique
primarily used for simulating biological systems,
particularly for investigating the reconfigurations
of biological compounds and their intermolecular
interactions in an aqueous environment (36). We
conducted MD simulations for (1) unbound VIM-2 MBL; (2)
VIM-2 MBL bound to L-captopril (MBL-captopril); (3) VIM-2
MBL bound to ZINC04090499 (MBL-ZINC04090499); and
(4) VIM-2 MBL bound to ZINC98363781 (MBL-ZINC98363781),
employing the AMBER99SB force field within the
GROMACS simulation package (version 2021) (37).
Topology files for VIM-2 MBL and the ligands were
generated using the AMBER99SB force field and the
ACPYPE-Antechamber Python parser interface, respectively
(38). The free VIM-2 MBL or ligated VIM-2 MBL systems were
placed in cubic boxes and solvated with TIP3P water
molecules. Neutralization was achieved by adding 9 Na,
10 Na, 11 Na, and 11 Na ions to the free MBL, MBL-captopril,
MBL-ZINC04090499, and MBL-ZINC98363781 systems,
respectively. Additionally, all systems (4 simulation
runs) underwent energetic minimization until extreme
forces dropped below 1000 kJ mol-1 nm-1 on any atom.
To accomplish this, the conjugate gradient algorithm
followed the steepest descent integrator.

For the treatment of electrostatic and van der Waals
interactions (nonbonded and short-range), cutoffs of 0.9
nm and 1.4 nm, respectively, were applied. Long-range
electrostatic interactions were managed using the Particle
Mesh Ewald (PME) algorithm (39). A 2-fs time step was
used, and the linear constraint solver (LINCS) constrained

bond lengths. Equilibration of all systems was achieved
with a fixed volume ensemble (NVT) and a fixed pressure
ensemble (NPT), each for one nanosecond. Trajectory
analysis was conducted using VMD (40).

3.4. Principal Component Analysis and Free Energy Landscape

To scrutinize conformational changes, principal
component analysis (PCA) calculations were performed.
After removing translational and rotational movements,
a covariance matrix was constructed using the trajectory
data. The eigenvectors and eigenvalues projections were
computed using Gmx anaeig and Gmx covar (41). The PCA
analysis segregated the enzyme into two conformational
subspaces: A physically non-essential and an essential
subspace (42). The first two eigenvectors, EigeV1 and
EigeV2, were employed for free energy landscape (FEL)
analysis following the PCA analysis of the backbone atoms
(43).

3.5. Binding Free Energy Evaluation by Molecular
Mechanics-Poisson Boltzmann Surface Area

The binding free energy between the inhibitors and
the VIM-2 MBL active site was assessed using the free
program molecular mechanics-Poisson Boltzmann surface
area (MM-PBSA). Mechanics-Poisson Boltzmann surface
area is one of the most effective methods in drug design
(43). It calculates the binding free energy using Equation
2:

(2)Gbinding = Gcomplex – (Gprotein + Gligand)

Here, G ligand and G protein represent the ligand and
MBL total free energies in the solvent, respectively, while G
complex signifies the MBL-ligand energy (44, 45).

3.6. VIM-2 MBL Activity Assay

The MBL activity assay was conducted using a CECIL CE
9500 double-beam spectrophotometer equipped with a
thermostat cell holder. Pseudomonas aeruginosa PS679/00
was employed in the assay experiment. Chemicals were
sourced from Sigma–Aldrich, Fluka, and Merck, and
ZINC04090499 and ZINC517765 were obtained from
Molport. The cells were cultured in Trypticase soy broth
with a concentration of 0.5µg/mL of methicillin as a
beta-lactamase inducer, incubated at 37°C with shaking.
After harvesting the bacteria from the exponential growth
phase by centrifugation for 10 minutes at 5000×g,
followed by washing, the cells were suspended in 0.1 M
phosphate buffer. The buffer’s pH was adjusted to 7 and
contained 0.3 mM sucrose, 10 µM ZnCl2, and 7% glycerol as
enzyme protecting agents. Cell lysis was achieved through
sonication at a frequency of 20 kHz for 10 minutes at
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4°C, followed by removal of cellular debris through
centrifugation. The resulting supernatant was utilized to
assess MBL activity. For the assay, 10 µL of the prepared
MBL solution was mixed with an appropriate amount
of 0.1 M phosphate buffer and 50 µL of a 0.5 mM benzyl
penicillin solution, resulting in a total volume of 1 mL. The
beta-lactamase activity was determined by monitoring the
absorbance change at 240 nm at 37°C (46). Captopril was
employed as a positive control in the assay, and the initial
rate of hydrolysis was calculated as a percentage of the
benzyl penicillin hydrolysis. The IC50 value was defined as
the concentration of each tested compound that resulted
in a 50% reduction in this initial rate of hydrolysis (46).

4. Results and Discussion

4.1. Virtual Screening and ADME Investigations of Natural
Compounds

As previously mentioned, we gathered a total of 61,953
compounds from the ZINC database. The molecules
with the lowest docking energies are listed in Appendix
2. Theoretical ADME calculations were also conducted.
SwissADME was utilized to calculate ADME features for
each of the selected compounds, and these are presented
in Appendix 3. SwissADME provides various computational
filters, including Lipinski, Ghose et al. (47), Veber et al. (48),
Egan et al. (49), and Muegge et al. (50) rules. None of
the listed natural compounds have a synthetic availability
rating exceeding ten, making their synthesis relatively
straightforward.

For each of the suggested compounds, the estimated
octanol/water partition coefficient (log Po/w), a standard
indicator of lipophilicity, was accurately determined. The
optimal range for log Po/w falls between -0.4 to +5.6 (51,
52). The permissible range for the topological polar surface
area (TPSA) is 20 to 130 Å2, and predicting absorption and
brain access relies on TPSA (52). Each chemical in our study
falls within an appropriate TPSA range. The calculated ABS
values for the designed compounds are within acceptable
limits. Notably, the docking energy for ZINC98363781 and
ZINC04090499 was -14.1 and -12.7 kcal mol-1, respectively,
while the positive control, captopril, exhibited an energy
of -10.8 kcal mol-1. Based on the docking energies and ADME
features, ZINC98363781 and ZINC04090499 were selected
as the most promising molecules.

4.2. Investigation of the Active Site of VIM-2MBLAfterMolecular
Docking

Appendix 4 displays 2D schematics of the selected
hits. In Appendix 4A, a single hydrogen bond (H-bond) is
observed between captopril and Zn2+. VIM-2 MBL forms

four H-bonds with ZINC98363781, involving residues
Val211, Asn210, and Zn2+ (Appendix 4B). Notably, in
contrast to captopril, ZINC98363781 engages in two
H-bond interactions with Zn2+ ions. Appendix 4C reveals
three H-bonds between Zn2+ ions and ZINC04090499.
Additionally, ZINC04090499 forms four H-bonds,
including two with His179 and two with Arg205. Zn2+

ions play a pivotal role in MBL catalysis, initiating catalysis
through their binding to the β-lactam ring. For MBL
catalysis, it is well-established that the β-lactam molecule
bonds with Zn1 via the carbonyl oxygen and the carboxyl
group on the 5- or 6-membered fused ring bonds to Zn2
(53). Consequently, strong inhibitor binding to Zn2+ ions
can significantly impede MBL activity. The two designed
drugs in our study interact with Zn2+ ions through two or
more H-bonds, providing an advantage over the positive
control drug, captopril.

4.3. Stability of Studied Systems During MD Simulation

One of the most crucial aspects to evaluate post-MD
simulations is the stability of the system. This stability
assessment primarily relies on the root mean square
deviation (RMSD) value. Figure 1A displays the RMSD
values for all the studied systems. As depicted, in the free
MBL system, the RMSD value increased to 2.11 Å at 13,940
ps upon the initiation of the simulation. Subsequently,
it reached 1.1 Å at 23,880 ps, followed by a temporary
surge to 2.36 Å at 38,200 ps. Afterward, a sharp decline
occurred, bringing the RMSD value down to 1.21 Å, only to
rise again to 2.43 Å at 43,400 ps into the MD simulation.
These fluctuations persisted until 70,000 ps, at which
point the system attained a relative equilibrium (Figure
1A, black line). In contrast, the MBL-captopril system
exhibited higher fluctuations in RMSD values compared
to the free MBL system (Figure 1A). It gradually increased
from the beginning of the MD simulation until 37,360 ps
(2.77 Å), which marked the highest RMSD value in this
system. Subsequently, a decrement in the RMSD value was
observed, reaching 1.29 Å at 56,050 ps. The next peak in
RMSD occurred at 61,590 ps (2.68 Å), followed by a final
significant change, resulting in an RMSD value of 1.25 Å at
69,360 ps. Finally, relative equilibrium was established in
the MBL-captopril system from 70,000 ps of MD simulation
time (Figure 1A, blue line).

Root mean square deviation fluctuations in both
MBL-ZINC98363781 and MBL-ZINC04090499 complexes
were lower compared to the free MBL and MBL-captopril
systems (Figure 1A). In the MBL-ZINC98363781 complex,
the RMSD score reached 2.28 Å at 11,720 ps, after which no
significant shifts were observed, indicating equilibrium
(Figure 1A, red line). The MBL-ZINC04090499 system had
an RMSD value of 1.86 Å at 6,250 ps. After decreasing to
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Figure 1. The root mean square deviation value (A); calculated Rg values (B); computed solvent-accessible surface area (SASA) values (C); the root mean square fluctuation
value (D) for free metallo-β-lactamases (MBL) (black line), MBL-captopril (blue line), MBL-ZINC98363781 (red line), and MBL-ZINC04090499 (yellow line) systems

1.01 Å, it remained relatively stable until 23,780 ps, when
it increased to 1.97 Å at 26,880 ps. Subsequently, a few
fluctuations led to the highest RMSD value of 2.37 Å at
42,550 ps for MBL-ZINC04090499. Following this, a minor
reduction in RMSD occurred, establishing reasonable
stability from 50,000 ps until the end of the simulation
(Figure 1A, yellow line).

The average RMSD values for free MBL, MBL-captopril,
MBL-ZINC98363781, and MBL-ZINC04090499 were 1.69 ±
0.019, 1.73 ± 0.032, 1.83 ± 0.022, and 1.62 ± 0.023 Å,
respectively. Consequently, MBL-ZINC04090499 displayed
the lowest RMSD value, indicating the highest stability
among all systems. While the average RMSD of the
MBL-ZINC98363781 complex was higher than that of the
MBL-captopril complex, the fewer RMSD fluctuations in the
former indicated a more stable equilibrium compared to
MBL-captopril.

Another valuable analysis for assessing system stability
is the radius of gyration (Rg), which measures the RMSD
between the atoms of an intrinsically disordered protein
(IDP) and its center of mass (54, 55). Figure 1B illustrates

the comparative Rg values for free MBL and ligated MBL
systems. The average Rg values were 16.4 Å (free MBL),
16.22 Å (MBL-captopril), 16.43 Å (MBL-ZINC98363781), and
16.27 Å (MBL-ZINC04090499). The average Rg values
suggest that the overall structure of VIM-2 MBL remained
stable upon binding with captopril and ZINC04090499
molecules. However, the Rg value fluctuations in the
MBL-ZINC04090499 complex were less pronounced than
those in the MBL-captopril complex. Overall, the Rg values
indicate stability across all studied systems. Additionally,
the Rg value serves as a feature restricting the energy of the
conformational space accessible to the bound molecules.

This perspective is based on the fundamental
principle that increasing a protein’s buried surface area
is necessary for high binding affinity, often achieved
by expanding the bound ligand (56). Therefore, a
decrease in solvent-accessible surface area (SASA) may
correlate with a decrease in Rg value within a system.
For further investigation, the computed SASA values
for all studied systems are depicted in Figure 1C. The
average SASA values were 107.37 nm2 (free MBL), 105.4
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nm2 (MBL-captopril), 106.38 nm2 (MBL-ZINC98363781),
and 104.16 nm2 (MBL-ZINC04090499). Based on the SASA
analysis, the SASA value closely correlates with the Rg
value.

Furthermore, a decrease in SASA suggests enhanced
protein packing and greater stability (56). Thus, the
SASA data indicate that the MBL-ZINC04090499 complex
exhibits the highest stability in this study. Appendix 5
displays the crystal structure of MBL-ZINC98363781 and
MBL-ZINC04090499 during the MD simulation for further
examination.

4.4. Flexibility of Studied Systems During MD Simulation

Residue flexibility was investigated using the root
mean square fluctuation (RMSF) for each residue. The P.
aeruginosa VIM-2 MBL enzyme (PDB ID: 4C1E) comprises
231 residues, and the RMSF values for all residues are
illustrated in Figure 1D. In MD simulations, residues with
higher RMSF values exhibit greater flexibility, whereas
those with lower values demonstrate reduced motion (57).
Each system exhibits five distinct regions in the RMSF plot,
each with varying RMSF values.

The first region encompasses residues 34 - 43, where
the MBL-ZINC98363781 complex demonstrates the highest
RMSF value. Notably, Glu38 exhibits the highest flexibility
in the MBL-ZINC98363781 complex with a value of 3.07
Å. The second region encompasses residues 58 - 69,
which form the β-hairpin motif. In this region, the
MBL-ZINC04090499 system displays the highest RMSF
value. Specifically, Asp63 exhibits the highest RMSF value
in the MBL-ZINC04090499 complex at 5.27 Å. Interestingly,
the RMSF values for Tyr67 in the free MBL and MBL-captopril
systems were higher than in the two designed drugs from
this study. The next region comprises residues 139 - 150,
forming an α-helix.

Ligand binding increases the flexibility of these
residues compared to unbound MBL. The fourth region
is a loop consisting of residues 158 - 164. Flexibility in
this region decreases upon binding of captopril and
ZINC04090499 compared to free MBL. However, the
binding of ZINC98363781 does not reduce the RMSF value
compared to free MBL; in fact, an increase in RMSF is
observed in Ser128. Another loop comprises residues
205 - 217, often playing a crucial role in defining protein
structure and ligand binding (58). This loop contains some
active site residues (Arg205, Asn210, Ala212, and Asp213).

In this loop, the RMSF value shows the greatest
reduction after ZINC04090499 binding compared to
ZINC98363781 and captopril. This decrease in flexibility in
the active site residues can be attributed to the stronger
binding of ZINC04090499 to the MBL active site. The
number of hydrogen bonds formed by ZINC04090499

within the active site cavity is higher than the other two
ligands (Figure 2). The hydrogen bond count further
supports the stronger binding of the ZINC04090499
compound to the MBL active site, resulting in reduced
RMSF values for active site residues.

4.5. Intramolecular and Intermolecular Hydrogen Bond
Calculation

Proteins typically form numerous intramolecular
hydrogen bonds between residues, with an average of
1.1 intramolecular hydrogen bonds per residue. Previous
studies have shown that intramolecular hydrogen
bonds contribute to stabilizing protein structures (59,
60). The intramolecular and intermolecular hydrogen
bonds are depicted in Figure 2. The average number
of intramolecular hydrogen bonds was 172.33, 166.39,
170.8, and 169.65 for the free MBL, MBL-captopril,
MBL-ZINC98363781, and MBL-ZINC04090499 systems,
respectively. Consequently, more intramolecular
hydrogen bonds were observed in the MBL-ZINC98363781
and MBL-ZINC04090499 systems compared to the
MBL-captopril complex (Figure 2D). The presence of
additional intramolecular hydrogen bonds suggests
enhanced stability in the complexes.

Intermolecular hydrogen bonds formed between the
protein and ligands were calculated as intermolecular
hydrogen bonds. These hydrogen bonds are crucial for
various protein functions, including enzyme catalysis,
protein-ligand binding strength, and protein folding
(61-63). Figure 2A, B, and C reveal that the number
of hydrogen bonds between our designed drugs
(ZINC04090499 and ZINC98363781) and VIM-2 MBL
active site residues is significantly higher than with
captopril. Additionally, the number of hydrogen bonds
for ZINC04090499 exceeds that of ZINC98363781. The
increased quantity of hydrogen bonds indicates greater
affinity between ZINC04090499 and ZINC98363781 for
VIM-2 MBL compared to captopril.

4.6. PCA

Enzymes derive their specific functions from collective
atomic movements, making the evaluation of enzyme
stability essential. Principal component analysis was
employed to identify motion patterns in the studied
systems. By computing the eigenvectors from an MD
simulation covariance matrix, it is possible to determine
the dominant motions during an MD simulation. Often, a
few low-frequency eigenvectors can capture a significant
portion of the overall macromolecule fluctuation with
large eigenvalues (64). In Figure 3, the Cα atom is projected
along eigenvectors 1 and 2 to visualize the conformational
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Figure 2. Intermolecular H-bond for metallo-β-lactamases (MBL)-captopril (A); MBL-ZINC98363781 (B); MBL-ZINC04090499 (C); and intramolecular H-bond for four studied
systems (D)

sampling of unbound and bound MBL in the relevant
subspace. The results indicate that MBL binding with
ZINC98363781 and ZINC04090499 exhibits different
conformational fluctuations compared to captopril
binding (Figure 3).

The occupied conformational space of the
MBL-ZINC98363781 and MBL-ZINC04090499 complexes
is reduced, indicating greater stability than the
MBL-captopril complex. The abrupt change in the
occupied conformational space of the MBL-captopril
complex may explain the observed high RMSD for
MBL-captopril (Figure 1A, blue line).

4.7. FEL

The FEL plot for PC1 and PC2, generated by gmx anaeig,
is presented in Figure 4. For free MBL, MBL-captopril,
MBL-ZINC98363781, and MBL-ZINC04090499, the Gibbs
energy values vary from 0 to 12.7, 0 to 12.3, 0 to 12.4, and 0
to 13.5, respectively. A shallow and narrow energy basin
indicates low system stability (60, 65). In the case of
MBL-ZINC98363781 and MBL-ZINC04090499, three distinct
deep and broad valleys are observed, while the MBL and

MBL-captopril systems display a cluster of three energy
basins close to each other. MBL-ZINC98363781 exhibits
energy levels similar to the MBL-captopril complex,
suggesting that these complexes undergo energetically
favorable transitions between structures. The binding
of ZINC98363781 and captopril to VIM-2 MBL leads to an
increase in the global minima (low-energy basins) of VIM-2
MBL during MD simulations, indicating that these systems
are thermodynamically more favorable than free MBL and
the MBL-ZINC04090499 complexes.

4.8. Free Binding Energy Computed by MM-PBSAMethod

Following the simulations, MM-PBSA was utilized to
calculate the binding free energy of the compounds (Table
1). The results indicate that the binding free energies
of captopril, ZINC98363781, and ZINC04090499 are,
respectively, -29.39 ± 5.92 kcal mol-1, -79.74 ± 67.51 kcal mol-1,
and -99.65 ± 26.52 kcal mol-1 (Table 1). Consequently, the
MBL-ZINC04090499 complex exhibits the lowest binding
free energy. Additionally, only the MBL-ZINC04090499
complex has a solvent-accessible surface area energy
greater than the MBL-captopril complex. In comparison
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to the MBL-captopril complex, the MBL-ZINC04090499
complex displays lower electrostatic energy. Furthermore,
ZINC98363781 also exhibits lower free binding energy than
captopril.

4.9. VIM-2 MBL Inhibition by ZINC04090499

To assess and compare the inhibitory potency of
ZINC04090499 with our previously identified compound,
ZINC517765 (29), assays were conducted to determine the
IC50 values of both compounds. Experimental assays
revealed that ZINC04090499 has an IC50 value of 25
µM, indicating a stronger inhibitory effect on VIM-2
MBL compared to ZINC517765, which has an IC50 value
exceeding 100 µM. This significant difference underscores
ZINC04090499’s enhanced efficiency in reducing the
enzyme’s activity by 50%, emphasizing its potential as
a potent therapeutic agent. ZINC04090499 contains
an indole group linked to butyroyl aspartic acid. The
indole moiety’s stable, planar structure facilitates strong
π-π interactions and hydrogen bonding. The aspartic
acid component adds a carboxylic acid functional group,
forming strong ionic interactions and hydrogen bonds

crucial for binding to metal ions in metalloenzymes like
MBLs. In contrast, ZINC517765 consists of two furan rings
connected by a methylene bridge, with each furan ring
bearing a carboxylic acid group. Furan rings are smaller
and less planar than indole, potentially leading to weaker
π-π interactions.

4.10. Conclusions

The development of BLs inhibitors represents a
potent strategy to safeguard β-lactam antibiotics from
BLs. Recently, reports have indicated an increased
presence of P. aeruginosa in the bodies of COVID-19
patients. Furthermore, it has been demonstrated that
ciprofloxacin-resistant P. aeruginosa in lung abscesses
of COVID-19 patients complicates their treatment (66).
In this context, we propose a potent inhibitor targeting
P. aeruginosa VIM-2 MBL through a combination of
computational and experimental studies.

In our study, two compounds, namely ZINC98363781
and ZINC04090499, were selected based on molecular
docking studies, and further investigations were
conducted on both molecules. Ultimately, we recommend
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Table 1. The Energy Component of Metallo-β-Lactamases-Captopril, Metallo-β-Lactamases-ZINC98363781, and Metallo-β-Lactamases-ZINC04090499 Complexes Computed by
Mechanics-Poisson Boltzmann Surface Area

Energy (kcal mol-1) MBL-Captopril MBL-ZINC98363781 MBL-ZINC04090499

∆Evdw
a -155.39 ± 4.81 -77.62 ± 48.81 -199.58 ± 53.09

∆Eelect
b -64.77 ± 7.35 -58.08 ± 44.18 -68.06 ± 18.46

∆Esolv
c 210.69 ± 15.17 64.05 ± 57.68 180.17 ± 52.46

∆ESASA
d -19.92 ± 0.27 -8.09 ± 5.10 -12.18 ± 5.72

∆Gbinding -29.39 ± 5.92 -79.74 ± 67.51 -99.65 ± 26.52

a Solvent-accessible surface area energy.
b Polar solvation energy.
c Electrostatic energy.
d Van der Waal energy.

ZINC04090499, a natural substance, as a VIM-2 MBL
inhibitor based on the results of MD simulations. The
docking energy of ZINC04090499 when binding to the
VIM-2 MBL active site is lower (-12.7 kcal mol-1) compared
to the positive control (-10.8 kcal mol-1). Furthermore,
in comparison to the captopril complex, the suggested
inhibitor complex exhibits a reduced RMSD value.

Enzyme assays were conducted to compare the
inhibitory effects of ZINC04090499 and ZINC517765. The
experimental results align with the predictions of our
computational simulations. ZINC04090499, with its
larger and more complex structure featuring an indole
ring and aspartic acid, may confer stronger and more
specific interactions with MBLs, thereby leading to more
effective inhibition compared to ZINC517765, which is
smaller and based on a furan structure.

According to the MD data, the presence of
ZINC04090499 in the VIM-2 MBL active cavity results
in a reduction in Rg. This decrease may be attributed to
the enhancement of intramolecular H-bonds within the
protein following ZINC04090499 binding. In contrast
to the unbound MBL and the MBL-captopril complex, the
RMSF decreases following ZINC04090499 binding.

Moreover, the number of H-bonds formed between
VIM-2 MBL and ZINC04090499 is higher than that with
captopril, indicating a strong binding of ZINC04090499
to the active site. The atomic motions were evaluated
using the PCA method. Based on the PCA data, the
MBL-ZINC04090499 system exhibits reasonable stability
compared to the MBL-captopril system. In conclusion, the
binding free energy determined by MM-PBSA highlights
ZINC04090499’s potential to inhibit VIM-2 MBL activity.
Nevertheless, further in vitro and in vivo tests are required
to evaluate its suggested therapeutic utility fully.
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