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Abstract

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) strains have been listed as one of the major clinical concerns.
Objectives: We investigated CPKP isolates from non-tertiary hospitals to find disseminated clones and analyze extensive phenotypic
and genetic diversity in this study.
Methods: In this cohort study, a total of 49 CRKP isolates from 3 hospitals in the same region were collected in 2021. The prevalence
and antimicrobial susceptibility patterns were analyzed. Clinical data were retrieved from electronic medical record systems. The
molecular types, antimicrobial resistance (AMR) profiles, plasmid replicons, and virulence factors were analyzed. The maximum-
likelihood phylogenetic tree and transmission networks were constructed using single-nucleotide polymorphisms (SNPs).
Results: The median age of patients (N = 49) was 66.0 years, and 85.7% were male. The most common CRKP infection was nosocomial
pneumonia (75.5%), followed by bacteremia (10.2%). More than 53% of isolates were resistant to ceftazidime-avibactam (CAZ/AVI).
Forty-five isolates were successfully sequenced; the predominant carbapenem-resistant gene was blaKPC-2 (93.3%). The 30-day mor-
tality in our cohort was 24.5%. The most dominant sequence type (ST) was ST11 (60.0%), followed by ST15 (13.3%). Whole genome
sequencing (WGS) analysis exhibited dissemination of ST11 strain clones, ST420, and ST15 clones, both within and outside the given
hospital.
Conclusions: In this surveillance study, several dissemination chains of CRKP were discovered in the hospital and the region, as
ST11 was the main epidemic clone. Our findings suggest that effective infection control practices and antimicrobial stewardship are
needed in non-tertiary hospitals in China.
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Structure, China

1. Background

Klebsiella pneumoniae, as a frequently reported
gram-negative pathogen, causes different types of in-
fections, such as pneumonia, intra-abdominal infection,
and bloodstream infection (1, 2). Since the first case of
carbapenemase-producing K. pneumoniae infection was
described in the United States in 2001 (3), sporadic cases
and the outbreak of carbapenem-resistant K. pneumoniae
(CRKP) have been reported worldwide (4, 5). The mecha-
nism of antimicrobial resistance (AMR) to carbapenems
includes enzyme production, efflux pumps, and porin
mutations, all of which cause carbapenem resistance (6,

7), while the production of carbapenemase enzymes is
the major mechanism in CRKP (8). In China, the reported
isolation rate of CRKP was 19.6% in 2019 (9).

In previous studies, the same sequence type (ST) K.
pneumoniae strains were isolated from multiple patients
(10-12). Similarly, among all clinical K. pneumoniae iso-
lates from specific wards during a 1-year period, 8 - 20% of
STs were isolated from > 1 patient (13, 14). It is not sur-
prising that multidrug-resistant (MDR) K. pneumoniae is
more likely to cause nosocomial infections than suscep-
tible strains (14, 15). Furthermore, MDR K. pneumoniae,
such as CRKP, leads to significant adverse public health
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due to less effective antibiotics. The production of class
A β-lactamases (such as K. pneumoniae carbapenemase
[KPC]), which are capable of hydrolyzing carbapenems,
is the major carbapenem resistance mechanism of CRKP,
while blaKPC-2 is the main carbapenemase gene in China
(16). Whole genome sequencing (WGS) is an effective tool
to investigate the epidemiology of pathogen infection by
affording a comprehensive population genetic structure
of pathogen and strain relatedness (14, 17). Furthermore,
K. pneumoniae occupies distinct niches, including host-
associated and non-host–associated environments, and ex-
hibits phenotypic and genetic divergence (18).

There is considerable variability in the prevalence of
CRKP among countries, regions, and even among different
medical institutions (19, 20). In a previous study, the hos-
pital level was found to be associated with the prevalence
of CRKP (9). As the majority of the Chinese population
is served by non-tertiary hospitals, in-depth characteriza-
tion of the clinical and genomic epidemiology of CRKP in
non-tertiary hospitals can help inform future AMR control
programs. Furthermore, few studies have investigated the
spread of CRKP isolates in non-tertiary hospitals in main-
land China.

2. Objectives

We combined clinical and whole genomic data to an-
alyze the clinical outcomes, antibiotic resistance profiles,
and virulent factors of CRKP infection during a 1-year pe-
riod. Another aim of this study was to find the dissemi-
nated clones of CPKP in our hospital and nearby hospitals.

3. Methods

3.1. Study Population, Disease Definitions, and Data Collection

Patients hospitalized at Huzhou Central Hospital be-
tween 1 January 2021 and 31 December 2021 were eligi-
ble for this cohort study. The inclusion criterion was pa-
tients above 18 years who were diagnosed with an infec-
tion caused by CRKP (including bacteremia, pneumonia,
wound infection, abdominal infection, and so on). The di-
agnoses of these infections were based on the diagnostic
criteria of the European Society of Clinical Microbiology
and Infectious Diseases (ESCMID) (21). Clinical data were
obtained from the hospital’s electronic medical record sys-
tem, while the microbiology labs in the region provided
the antimicrobial susceptibility results. The clinical data of
each patient included 3 broad components: (1) basic infor-
mation (such as age, sex, and comorbidity), (2) antibiotic
prescriptions within 30 days of infection with K. pneumo-
niae, and (3) hospitalization and patient outcomes.

3.2. Definition

Nosocomially acquired infection was defined as in-
fectious diseases acquired 48 hours after hospitalization
(22). CRKP was defined as K. pneumoniae that was resis-
tant to ertapenem, meropenem, and/or imipenem (23). To
distinguish between CRKP infection and colonization, pa-
tients diagnosed with pneumoniae should have a temper-
ature above 38.5°C, white blood cell (WBC) count ≥ 12000
WBC/mm3 or < 4000 WBC/mm3, and one of the following
3 features: (1) new purulent sputum or changes in sputum
properties and (2) K. pneumoniae isolated from sputum (3)
without other recognized cause.

3.3. Bacterial Isolates

Clinical non-duplicated K. pneumoniae isolates were
collected from our hospital from 1 January to 31 December
2021; some isolates were randomly collected from other
2 hospitals (Hospital B and Hospital C) in the same re-
gion during the same time period. All K. pneumoniae
strains were identified by VITEK 2 GN cards (bioMérieux SA,
Marcy-l’Etoile, France) and confirmed by matrix-assisted
laser desorption ionization time-of-flight mass spectrom-
etry (MALDI-TOF MS; Bruker Microflex LT, Bruker Daltonik
GmbH, Bremen, Germany). The isolates exhibiting resis-
tance to one of the carbapenems were retained for further
research.

3.4. Antibiotic Susceptibility Test

The minimal inhibitory concentrations (MICs) of 16
antibiotics were determined by the agar dilution method
or broth dilution method. Piperacillin, cefoperazone, cef-
triaxone, ceftazidime, cefoxitin, moxalactam, aztreonam,
amikacin, gentamicin, ciprofloxacin, levofloxacin, tige-
cycline, trimethoprim/sulfamethoxazole, minocycline,
tazobactam, sulbactam, and avibactam were purchased
from Dalian Meilun Biotech (Dalian, China). Polymyxin
B and glucose-6-phosphate (G-6-P) were obtained from
Sigma-Aldrich (St Louis, MO, USA). The results of MICs
were interpreted according to the Clinical and Laboratory
Standards Institute (CLSI; M100 ED32) criteria or Euro-
pean Committee on Antimicrobial Susceptibility Testing
(https://www.eucast.org). The MIC breakpoints of tigecy-
cline were issued by the US Food and Drug Administration
(susceptible, ≤ 2µg/mL; resistant, ≥ 8 µg/mL). Escherichia
coli ATCC25922, K. pneumoniae ATCC BAA1705, and K.
pneumoniae ATCC 27853 were used as quality control.

3.5. DNA Extraction, WGS, and Data Analysis

All CRKP isolates were cultured in Luria-Bertani broth
at 37°C overnight; DNA extraction was performed as de-
scribed previously (24). The WGS of strains was performed
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using an Illumina HiSeq PE150 platform (Novogene Bioin-
formatics Technology Co, Ltd, Beijing, China). The whole
genome sequences of the isolates were analyzed using
Kleborate version 2.1.0 (25), and the STs and K (capsule)
serotype prediction were analyzed by the Kaptive option
(26). The AMR profile, plasmid replicons, and multilocus
ST (MLST) were carried out using ResFinder version 4.1 in
the Center for Genomic Epidemiology database (27). The
virulence genes were screened using the Virulence Fac-
tor Database (http://www.mgc.ac.cn/VFs/). The sequencing
data for CRKP isolates were deposited in GenBank under ac-
cession number PRJNA876055.

3.6. Transmission Analysis

For transmission analysis, we considered that isolates
with 0 to 10 single-nucleotide polymorphisms (SNPs) were
genetically linked. Patients were considered to have ward
contact who shared time in the same ward (CRKP isolated
within 4 weeks). Patients were considered to have possible
ward contamination who were admitted to the same ward
up to 4 weeks apart. Patients were considered to have hos-
pital contact in the same hospital at the same time but not
in the same ward.

3.7. Statistical Analysis

Antimicrobial susceptibility data were analyzed us-
ing the WHONET version 5.6 (WHO, Geneva, Switzerland).
Among patient characteristics, categorical variables were
expressed as proportions, while continuous variables were
expressed as mean ± SD or median and interquartile range
(IQR).

4. Results

4.1. Clinical Features of Patients with CRKP Infection

Forty-nine patients aged > 18 years with a positive
carbapenem-resistant K. pneumoniae culture and a clin-
ically established infection were enrolled in the study;
these included 33 patients from Huzhou Central Hospital,
13 from Hospital B, and 3 from Hospital C in the same city.
The median age of patients was 66.0 years, and 85.7% were
male (Table 1). More than 75% of patients had hospital-
acquired pneumonia caused by the organism (Table 1).
CRKP isolates were obtained from patients in Huzhou Cen-
tral Hospital, mostly from the intensive care unit (ICU;
39.4%, 13/33). Three-fourths of patients were hospitalized
for more than 2 weeks. All patients received antibiotic
treatment; 77.6% (38/49) received antibiotic monotherapy,
while 10.2% (5/49) received a combination of more than 3
classes of antibiotics. β-Lactam and β-lactamase inhibitor
combinations (BLBLICs) were the most common therapy

(55.1%, 27/49), while 14.3% (7/49) of the patients were treated
with carbapenems. The 30-day mortality was 24.5% (12/49).

4.2. Antimicrobial Resistance Phenotypes and Determinants of
CRKP

Antimicrobial susceptibility rates of 49 CRKP isolates
are shown in Figure 1. Twenty-one (42.8%) out of 49
CRKP isolates were susceptible to ceftazidime-avibactam
(CAZ/AVI) in vitro, while 89.8% (44/49) of strains were sus-
ceptible to both tigecycline and polymyxin B. According to
the 45 strains that were successfully sequenced, the pre-
dominant carbapenem-resistant gene was blaKPC-2 (n = 42;
93.3%), followed by blaIMP-4 (n = 3; 6.6%), blaNDM-1 (n = 2; 4.4%),
blaNDM-5 (n = 2; 4.4%), and blaOXA-181 (n = 1; 2.2%). Two iso-
lates co-producing IMP-4 and NDM-1 were discovered. The
distribution patterns of resistance genes in these strains
are shown in Figure 2. We identified the blaCTX-M-65 group
as common β-lactamase genes. Furthermore, 100% resis-
tance genes were found in fosfomycin (n = 45), followed
by 97.8% in fluoroquinolone (n = 44), 75.6% in amino-
glycoside (n = 34), 68.9% in sulfonamide (n = 31), and
64.4% in phenicol (n = 29). Antimicrobial resistance genes,
such as fosA-like (associated with fosfomycin resistance),
qnrS-like, oqxB-like (associated with fluoroquinolone resis-
tance), and aadA2, rmtB-like (associated with aminoglyco-
side resistance), were predominant across these strains.

4.3. Sequence Types, Capsular Serotypes, Plasmid Profiling, and
Virulent Profiles of CRKP Isolates

Among the 45 CRKP isolates, 10 different STs were iden-
tified. Approximately 60.0% of these belonged to ST11 (n =
27), followed by ST15 (n = 6; 13.3%) and ST420 (n = 5; 11.1%).
Other clinical strains were comprised of individual STs,
ST34, ST37, ST107, ST147, ST397, ST519, and ST741. ST11 strains
were most commonly isolated from ICU, while most ST420
strains were isolated from the neurosurgery department
(Figure 3). The majority of strains belonged to KL64 (n =
23) in this study; the other strains were identified as KL119
(n = 6), KL20 (n = 5), KL47 (n = 2), KL21 (n = 1), KL24 (n = 1),
KL55 (n = 1), KL81 (n = 1), KL102 (n = 1), KL155 (n = 1), KL158 (n =
1), KL183 (n = 1), and 1 isolate with unknown K type. All KL64
isolates belonged to ST11, while all KL20 belonged to ST420.

To understand whether the AMR determinant was
transmitted through the plasmid, we then investigated the
types of plasmids. In this regard, 21 plasmid replicon types
were found in 45 isolates. From the metadata, the esti-
mated number of plasmids per strain ranged from 1 to 7,
and 46.7% (n = 20) of isolates harbored at least 6 plasmids.
These 21 plasmid replicon types are classified as incompati-
bility plasmids (Inc) and mobilizable colicin plasmid (Col)
groups. In Inc groups, the plasmid IncF group was the most
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Figure 1. Susceptibility and resistance of 49 isolates of carbapenem-resistant Klebsiella pneumoniae to antimicrobial agents

frequent type, similar to previous reports (Appendix 1 in
Supplementary File) (28, 29). The ColRNAI plasmid was the
most prevalent plasmid of Col-type.

Different virulence factors in each isolate are shown in
Figure 2. The 3 most important siderophore systems in K.
pneumoniae strains (ie, enterobactin [entB], yersiniabactin
[irp1 and irp2], and aerobactin [iucABCD]) were analyzed.
The entB gene was observed in all strains, irp1 and irp2 were
detected in 91.1% (41/45), and iucABCD genes were detected
in 77.8% (35/45). Most isolates of ST11 and all of ST420 were
detected by iutA and rmpA, which are considered to be the
main virulence factors (30, 31). Co-occurrence of iutA, rmpA,
and iroBCDE genes was observed in KL20 serotypes belong-
ing to ST420.

4.4. Phylogenetic Analysis and Genetic Diversity of CRKP Iso-
lates

Comparative genomics of microbial genomes helped
to characterize the spread of CRKP strains in the setting
during the study period; other CRKP strains obtained from
the same region were also sequenced. Based on core
genome SNPs, a maximum-likelihood phylogenetic tree
was reconstructed, and 45 CRKP strains were partitioned
into 2 major clades and further delineated into many clus-
ters (Figure 2). Clade 1 was comprised of only 2 strains
(ST519 and ST741), while clade 2 was comprised of other
strains. Clade 2 was partitioned into 2 subclades; ST420
and ST15 were in subclade 2-1, and ST11 was in subclade
2-2. To elucidate the relationship between the 45 CRKP
strains, 10 SNPs were set as the threshold for the genetic
linkages between each case. The phylogenetic analysis of

CRKP showed that some of these clones were related while
others were not. Up to 56.8% (25/44) of case pairs were
genetically linked to the genetically related previous case
(SNPs ≤10), while 20.5% (9/44) of the isolates were geneti-
cally completely unrelated to all previous isolates (SNPs ≥

100; Figure 4).

4.5. Nosocomial Transmission of CRKP Isolates

One of the major routes for pathogen transmission
is the nosocomial transmission. Strains belonging to the
same clade were considered to have a transmission rela-
tionship. As ST11 was the most common ST, 27 ST11 isolates
were clustered into 3 major subclades, including subclade
1, subclade 2, and subclade 3, with 2, 2, and 23 strains in
each subclade, respectively (Figure 5). Based on SNPs ≤ 10,
a total of 4 outbreak clusters were classified, of which the
largest cluster was comprised of 20 isolates of ST11 (Figure
6). According to the transmission networks, strain 9, iso-
lated from patient 9 (P9) admitted to the neurosurgery de-
partment, was the center of the largest cluster. Two sources
of this clone were discovered, one from P30 admitted to
the ICU, and another from P2 admitted to the abdominal
surgery department. Then, this clone was disseminated to
other departments in the hospital and even to other hospi-
tals (strains 43 and 35) in the same region. For another 5 pa-
tients, ST420 isolates were detected, indicating a transmis-
sion from 21 January 2021 to 26 July 2021. For this transmis-
sion, the first isolate was discovered in the ICU and then cir-
culated mainly in the neurosurgery department. ST11 iso-
lates were detected in P11 and P14, indicating a transmis-
sion chain caused by another ST11 clone. In Hospital B, the
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Figure 2. The phylogenomic tree of 32 carbapenem-resistant Klebsiella pneumoniae strains isolated in 2021, with 13 isolates sequenced from other 2 hospitals (10 isolates from
Hospital B and 3 from Hospital C) in the same region, based on single-nucleotide polymorphism detection.

Jundishapur J Microbiol. 2023; 16(1):e133210. 5



Shen C et al.

14

12

10

8

6

4

2

0

N
u

m
b

er
 o

f i
so

la
te

s

Abdom
in

al s
urg

ery departm
ent

Gastr
oente

ro
lo

gy departm
ent

Geria
tri

cs d
epartm

ent

In
fe

ctio
us d

ise
ase

 departm
ent

Neuro
su

rg
ery departm

ent

Orth
opaedic departm

ent

Resp
ira

to
ry departm

ent
IC

U

ST11

ST15

ST37

ST147

ST397

ST420

ST519

Figure 3. Spatial distribution of carbapenem-resistant Klebsiella pneumoniae isolates in the hospital during the study period according to sequence types (STs).

same clones of ST15 were isolated from P41 and P48, indi-
cating a small chain of transmission. These results showed
that some CRKP clones, especially ST11, were transmitted
between different wards in the same hospital and even be-
tween different hospitals in the same region.

5. Discussion

The emergence of CRKP has increased worldwide over
the last decades (32). In mainland China, the first reported
CRKP case dates back to 2004, and it was associated with
the K. pneumoniae strain carrying blaKPC-2 (33). Here, we
report the molecular epidemiological characteristics of
CRKP and identify several outbreaks caused by the organ-
ism in a non-tertiary hospital in China during 1-year CRKP
surveillance. Despite many advances in infection control
measures, nosocomial pneumonia ranks second with an
incidence of 5 - 20 cases per 1000 admissions (34). In our
study, most patients with CRKP infection had nosocomial
pneumonia, which was different from other Chinese CRKP
studies focusing on bloodstream infection (35).

It has been reported that mucosal barrier damage can
result in CRKP colonizing the respiratory tract and caus-
ing infection because of the frequent use of invasive proce-
dures (36). Due to the lack of effective antimicrobial treat-
ment, morbidity and mortality rates have shown a dispro-
portionate increase compared to infections caused by non-
carbapenem–resistant K. pneumoniae (37). In this study, the

30-day mortality was 24.5%, which was higher than that in
previous reports (38). As ICU admission, mechanical venti-
lation, and central venous catheterization have been con-
sidered independent risk factors for CRKP (39), the high
mortality is not surprising as most of the patients in our
study were high-risk patients. Another possible explana-
tion is that the patients in our cohort are elderly, which has
been found to be associated with 30-day mortality (40).

Previous carbapenem exposure has been identified as
an independent risk factor for CRKP (41); however, only a
few patients in our cohort were treated with carbapenems
before CRKP infection. Intensive care unit patients face
a significant risk of CRKP infection because of the ability
of CRKP to maintain infectivity over the hospital environ-
ment, which makes transmission in the environment and
between ICU staff members and patients (42), as CRKP was
mainly detected in ICU, neurosurgery, and respiratory de-
partments, which was similar with other reports (43-45).
According to these results, a stay in the ICU or surgery
wards may be a risk factor for infection with CRKP.

Consistent with previous reports in China (46, 47),
most CRKP isolates in this study were KPC-2 producing,
and most CRKP isolates were susceptible to tigecycline and
polymyxin B, suggesting a therapeutic option (48). How-
ever, a previous study conducted in 2018 found a tigecy-
cline resistance rate of 13.1% among CRKP isolates; more-
over, treatment failure of polymyxin monotherapy for
CRKP infections and colistin-resistant CRKP has recently
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Figure 5. Unrooted phylogenetic analysis of 27 Klebsiella pneumoniae clinical isolates
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Figure 6. Transmission networks of carbapenem-resistant Klebsiella pneumoniae inpatients based on single-nucleotide polymorphisms

been reported (49). Ceftazidime-avibactam is a novel
BLBLIC with good antibacterial activity against CRKP pro-
ducing class A and C and some class D carbapenemases, but
not metallo–β-lactamases (MBLs) (50). Five of the CAZ/AVI-
resistant isolates produced MBL (NDM-1, NDM-5, and IMP-
4), of which 3 produced both MBLs and KPC-2. However, the
rate of resistance to CAZ/AVI was higher in our study than
in other reports (51). Resistance to CAZ/AVI has been linked
to specific mutations in the blaKPC gene (52) or blaCTX-M-14

gene (53), while another study has attributed the high ex-
pression of blaKPC to low-level CAZ/AVI resistance (54). Our
results were in line with this, as the MIC for nearly all
CAZ/AVI-resistant strains was below 32 µg/mL.

Plasmids belonging to IncF-type and carrying genes
(which encode extended-spectrum β-lactamases [ESBL],
carbapenemases, and other genes associated with amino-
glycoside and fluoroquinolone) are the most common
type. In a previous study, blaKPC-2 genes were frequently
found in the IncFII/IncR plasmid replicons (46). Our re-
search also observed a similar phenomenon, as these
plasmids were the most frequently discovered. Numer-
ous factors increase K. pneumoniae virulence, such as
siderophores (scavenge essential iron), lipopolysaccharide
(providing serum resistance), and extracellular polysac-
charide capsules (for evasion and inhibition of phagocy-
tosis) (55). While K64 was the dominant K type, no K1 or
K2 strains were detected, which are often associated with
a highly virulent strain (56). RKP K64, mainly ST11, has been
reported to be highly virulent when the strains acquire vir-
ulence plasmids (57, 58). We found that the CRKP K64 strain

carried rmpA2 and iucA genes in this study. Therefore, ac-
quiring these virulent isolates in our hospital is of clinical
concern as dissemination in the ICU is a distinct possibility.
Continuous monitoring of these clones may help control
their spread.

With the increasing use of carbapenems in clinical set-
tings worldwide, the cloning spread of CRKP in health care
settings poses a major clinical concern. ST11 is the dom-
inant ST of CRKP both in Asia and China (46), which has
led to a global epidemic since its emergence (59). In this 1-
year surveillance study, ST11 was the main epidemic clone,
and clonal dissemination was identified mostly in the ICU
and neurology departments, which is in line with previous
studies (60). CRKP isolates tend to spread rapidly in the
neurology wards and ICU due to exposure to more antibi-
otics and invasive therapy; thus, active surveillance should
be taken in these high-risk departments. As CRKP com-
monly contaminates the environment, such as ventilator-
and sink-related sites and bedside tables, the implementa-
tion of disinfection should be strengthened (61).

ST11 strains were observed to be transmitted between
patients in the same ward, hospital, and region. Two ST11
clones caused 2 transmissions, which is similar to a previ-
ous study in which ST11 clones caused an outbreak in a sin-
gle hospital (62). Our research also showed that ST11 was
grouped into 3 subclades, indicating that the ST11 lineage is
the clone complex. Furthermore, we also found potential
dissemination of the ST420 clone, indicating that ST420
may be another major high-risk clone in our region besides
ST11. Several studies have demonstrated that genes, such as
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Table 1. Demographic Characteristics of 49 Patients with Positive Culture for
Carbapenem-Resistant Klebsiella pneumoniaea

Variables Values

Age, y 66.0 ± 16.4

≤ 50 9 (18.4)

51 – 60 9 (18.4)

61 – 70 8 (16.3)

71 – 80 15 (30.6)

≥ 81 8 (16.3)

Sex

Male 42 (85.7)

Female 7 (14.3)

Baseline comorbidities

Heart disease 3 (6.1)

Cerebral vascular accident 6 (12.2)

Chronic kidney disease 1 (2.0)

Dementia 1 (2.0)

COPD 16 (32.7)

Liver disease 5 (10.2)

Diabetes mellitus 11 (22.5)

Non-hematological
malignancy

1 (2.0)

Hematological malignancy 1 (2.0)

Hypertension 14 (28.6)

Infection caused by the organism

Lower respiratory tract
infection

37 (75.5)

Bloodstream infection 5 (10.2)

Urinary tract infection 3 (6.1)

Surgical wound infection 4 (8.2)

Antibiotics application before
CRKP infection

Second-generation
cephalosporins

4 (8.2)

Third-generation
cephalosporins

7 (14.3)

BLBLICs 27 (55.1)

Carbapenems 7 (14.3)

Fluoroquinolones 9 (18.4)

Amikacin 1 (2.0)

Polymyxin B 1 (2.0)

Cefoxitin 1 (2.0)

Fluconazole 4 (8.2)

Using more than 3 antibiotic
classes

5 (10.2)

Clinical outcomes

Cure 37 (75.5)

Death 12 (24.5)

Hospital stay

< 14 12 (24.5)

≥ 14 37 (75.5)

Abbreviations: COPD, chronic obstructive pulmonary disease; CRKP,
carbapenem-resistant Klebsiella pneumoniae; BLBLICs, β-lactam, and β-
lactamase inhibitor combinations.
a Values are expressed as mean ± SD or No. (%).

rmpA, iucABCD, iutA, and iroBCDN, are associated with hy-
pervirulent K. pneumoniae (63, 64), and all these genes were
detected in ST420 isolates of this study.

This study has some limitations. First, we did not per-
form active surveillance during the study period, and only
a small proportion of isolates in the same region were col-
lected. Moreover, hospital environment samples (such as
basin, surface, and sewage) and patients’ screen samples
were not included in our study, which would have pro-
vided more information on clonal dissemination. How-
ever, our findings provide valuable information for under-
standing the molecular epidemiology of CRKP in a non-
tertiary hospital in China. Of note, most surveillance
studies were performed in tertiary hospitals in mainland
China. This study highlights the need for improvement
of infection control practices in non-tertiary hospitals, as
well as indicates the importance of performing regional re-
sistance surveillance.

5.1. Conclusions

CRKP strains were mainly isolated from ICU and neuro-
surgery departments. Several chains of dissemination of
CRKP were discovered in the hospital and region, as ST11
was the main epidemic clone. Multiple carbapenemase
genes were detected, with blaKPC-2 being the most frequent.
The resistance rate of CRKP strains to CAZ/AVI was higher
in our study than in previous studies. Our findings high-
light the need for more effective antimicrobial steward-
ship and infection control practices in non-tertiary hospi-
tals in China.
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