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Abstract

Background: The spread of Staphylococcus aureus and the types of infection caused by S. aureus are closely related to the secretion
of a variety of adhesion proteins, which could be controlled by a variety of regulatory systems. However, for the newly discovered
adhesion protein SasX, the regulatory mechanism is not completely clear.
Objectives: The current study aimed at investigating the regulation of Staphylococcal accessory gene regulator A (agrA), Staphylo-
coccal accessory regulator A (sarA), and two-component signal transduction system (saeRS) on the adhesion protein SasX.
Methods: In this research, a saeRS mutant strain, a sarA mutant strain, and a agrA mutant strain were constructed by allelic replace-
ment. In this study mRNA and protein expression levels of sasX in wild-type HS770 and knockout strains were studied to investigate
the effects of regulatory factor saeRS, agrA, and sarA on adhesion protein SasX.
Results: In contrast with the wild strain HS770, the transcriptional expression of sasX was highest at on the sixth hour time point in
HS770∆agrA and at nine and twelve hours in HS770∆sarA. However, the sasX transcription level in HS770∆saeRS mutant strains had
little change at different time points. Western-blot results suggested that the sasX expression level of wild strains was the highest at
6 hours; HS770∆saeRS mutation strains had no expression peak at 6 hours. The expression level of HS770∆agrA mutant strains de-
creased at 6 hours of expression, however, increased at 9 hours and 12 hours; the expression level of HS770∆sarA mutation knockout
increased at three, six, nine, and twelve hours.
Conclusions: All the results showed that agrA and sarA have negative regulation on sasX, but saeRS may not regulate sasX.
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1. Background

Staphylococcus aureus is a major global source of mor-
bidity and mortality (1), and methicillin resistant Staphy-
lococcus aureus (MRSA) have shown high virulence and
carry multiple resistance genes, and could cause hos-
pital acquired infections (HA-MRSA) and community ac-
quired infections (CA-MRSA), and even lead to outbreaks of
nosocomial infections (2). The HA-MRSA global epidemi-
ological survey showed that in European countries, the
prevalence of HA-MRSA had stabilized, yet in eastern Asia,
the prevalence rate was still high, especially in Sri Lanka
(86.5%), South Korea (77.6%), Taiwan China (65%), Hong
Kong (56.8%), and Chinese Mainland, close to 50% (2, 3).

Staphylococcus aureus, which were regarded as impor-

tant pathogenic bacteria could become a threat to human
health; there are two main factors in this regard as fol-
lows: 1, It can continuously evolve new clones by horizon-
tal transfer of genes, which are more virulent and more
resistant than the previous ones; 2, Staphylococcus aureus
parasites on human skin and nasal mucosa can express a
variety of adhesion proteins and virulence factors, and se-
vere infections would occur in case of immune system dys-
function. The spread of S. aureus and the types of infection
caused by S. aureus are closely related to the secretion of a
variety of adhesion proteins. These adhesion proteins can
also promote the formation of biofilms in bacteria, thereby
forming chronic infections and helping bacteria escape an-
tibiotic killing.

The predominant lineage causing hospital-associated
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infections in Asia is sequence type 239 (ST239) lineage of
MRSA isolates (4). In 2010, Holden et al. isolated a strain of
ST239 in hospital S. aureus infection outbreak in the United
Kingdom during year 2008, and sequencing and analysis
showed that it contained a new protein of unknown func-
tion; the analysis results showed that the C-terminal of
the protein contained an LPXTG surface anchoring motif
sequence, named sasX (2, 3, 5). Research on its function
showed that the SasX protein could enhance the adhesion
of S. aureus, immune escape ability, and virulence, making
it easier for bacteria to colonize in the human nasal area,
more likely to cause infection (4, 6). It has been suggested
that the adhesion protein SasX is associated with the preva-
lence of ST239 MRSA at the hospital (6). The epidemiology
and function of major adhesion genes has been reported,
however, the specific regulatory mechanisms are not fully
understood. Previous studies have shown that S. aureus
has two major regulatory systems: 1, DNA binding proteins,
such as the SarA family; and 2, Two-component signal trans-
duction systems (TCSs). Among them, saeRS, agrAC, and
sarA mainly regulate the expression of a variety of secreted
proteins, including adhesion and virulence proteins.

2. Objectives

This study aimed at clarifying the regulatory mecha-
nism of saeRS, agrA, and sarA on adhesion genes sasX of S.
aureus, and provides a theoretical basis for the prevention
and treatment of S.aureus infection.

3. Methods

3.1. Bacterial Strains, Plasmids and Growth Conditions

The bacterial strains and plasmids used in this study
are listed in Table 1. Staphylococcus aureus clinical isolates
(HS770) was offered by Li Min, from Renji hospital, affil-
iated to Shanghai Jiao Tong University; it had been iden-
tified as S.aureus by automatic microorganism analyzer,
Gram staining, and the coagulase test. Furthermore, the
sasX, sarA, saeRS, and agrA gene were confirmed positive by
the polymerase chain reaction (PCR) and gene sequencing
(Sangon Biotech, China). Escherichia coli strains were cul-
tured in Luria-Bertani medium, and S. aureus strains were
grown in Tryptic Soy Broth (TSB, BD, USA) medium at 37°C
with shaking at 220 rpm, overnight.

3.2. DNA Manipulations

Genomic DNA extraction from S. aureus strains was
performed, according to the manufacturer’s instructions
(TIANGEN, Beijing, China). Plasmid DNA extracted from E.

coli strains and S. aureus strains were performed accord-
ing to the guidelines with slightly modification (Axygen,
Union City, CA, USA).

3.3. Construction of Staphylococcus aureus agrA, saeRS, and
sarA Mutant Strains by Allelic Replacement

The upstream and downstream fragments of saeRS,
agrA, and sarA gene were amplified, respectively, by PCR
with the genomic DNA of S. aureus as the template (the
primers listed in Table 2). Polymerase Chain Reaction pro-
duction was purified, then digested with KpnI (Thermo,
USA) and ligated with T4 DNA ligase (Thermo, USA) to
yield an upstream and downstream homologous arm frag-
ment, with saeRS, agrA, and sarA gene deletion. As the up-
stream and downstream homologous arm fragment with
the attB sites at the 5’ and 3’ ends, then recombined with
temperature-sensitive shuttle plasmid pKOR1 to generate
recombinant plasmid, resulting in the plasmid pKsaeRS,
pKsarA and pKagrA. The recombinant plasmid was trans-
ferred first to E. coli DH5A and then to E. coli DC10B for mod-
ification, then electroporated to S. aureus HS770. The mu-
tant strains were selected via changing temperature and
anhydrotetracycline (ATc) induction expressing ccdB and
antisense secY RNA, and evaluated with PCR, RT-PCR, and
gene sequencing.

3.4. Construction of Complemented Strains

The agrA and sarA genes and their own upstream pro-
moter and ribosome binding region were amplified by PCR
with Iproof High-Fidelity DNA polymerase (the primers
listed in Table 2). The PCR products were digested with
BamHI (Thermo, USA) and KpnI, and the fragments were
ligated to shuttle plasmid pRB473 by the T4 DNA ligase
to generate plasmid pRBsarA and pRBagrA, respectively.
These recombination plasmids were transferred to Es-
cherichia coli DH5α firstly, and then transferred to DC10B
for modification, and finally electroporated to mutant
strains HS770∆sarA and HS770∆agrA, respectively. These
complemented strains were confirmed by restriction map-
ping and sequencing of PCR fragments. The saeRS gene-
complemented strains was not constructed due to no reg-
ulation on sasX.

3.5. Growth Curve

Staphylococcus aureus wild type strain HS770, mutant
strains HS770∆saeRS, HS770∆sarA, and HS770∆agrA were
incubated overnight in 5 mL of TSB at 37°C with shaking at
220 rpm. The cultures were diluted in 50 mL of TSB at a pro-
portion of 1:200 to obtain the same starting optical density
(OD) at 600 nm. The growth condition of each strain was
detected by Microplate Manager 6 (Bio-Rad, USA) software
at one-hour intervals for 12 hours.
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Table 1. Bacterial Strains and Plasmids Used in This Study

Strains and Plasmids Description Source

Strains

S. aureus HS770 Wild type, MRSA, ST239 Donated by Limin professor

HS770∆sarA Isogenic sarA deletion mutant in HS770 In the study

HS770∆sarA-C sarA mutant complemented with pRBsarA In the study

HS770∆agrA Isogenic agrA deletion mutant in HS770 In the study

HS770∆agrA-C agrA mutant complemented with pRBagrA In the study

HS770∆saeRS Isogenic saeRS deletion mutant in HS770 In the study

E. coli

DH5α Clone host strain Laboratory stock

DC10B dam+1dcm-∆hsdRMS endA1 recA1; clone host strain Laboratory stock

Plasmids

pKOR1 Shuttle cloning vector, temp sensitive (CmrAmpr)a Laboratory stock

pKsarA pKOR1 containing fragments 1000-bp, upstream and 1000-bp downstream of sarA gene, for sarA
mutagenesis, (CmrAmpr )

In the study

pKagrA pKOR1 containing fragments 1000-bp, upstream and 1000-bp downstream of agrA gene, for agrA
mutagenesis, (CmrAmpr)

In the study

pKsaeRS pKOR1 containing fragments 1000-bp, upstream and 1000-bp downstream of saeRS gene, for saeR
mutagenesis, (CmrAmpr)

In the study

pRB473 Shuttle cloning vector (Cmr) Laboratory stock

pRBsarA pRB473 with sarA and its promoter (Cmr) In the study

pRBagrA pRB473 with agrA and its promoter (Cmr) In the study

aCmrAmpr , chloramphenicol and ampicillin resistance.

Table 2. Primers Used in This Study

Primer Primer Sequence (5’ - 3’) Noteb

sarA us-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTTGAAGGTAAAGGGGATCC attB1

sarA us-R GGGGTACCGAACTATAATTTTGTTTAGCG KpnI

sarA ds-F GGGGTACCAATTGCCATGTTTAAAACCTC KpnI

sarA ds-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTATTATGTATTTTGACAGGCA attB2

agrA us-F GGGGACAAGTTTGTACAAAAAAGCAGGCTATAACAATTTCACACAGCGT attB1

agrA us-R GGGGTACCATTCACATCCTTATGGCTAG KpnI

agrA ds-F GGGGTACCTAAGATAATAAAGTCAGTTAACG KpnI

agrA ds-R GGGGACCACTTTGTACAAGAAAGCTGGGTAAGCGGGCGAGCGAGATT attB2

saeRS us-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTATAAAAACAAAACACCTAACAGGT attB1

saeRS us-R GGGGTACC GTGGGTCATCTATTTTTTCA KpnI

saeRS ds-F GGGGTACCACGTCATAATCCGATTTATTTA KpnI

saeRS ds-R GGGGACCACTTTGTACAAGAAAGCTGGGTACATTCAAAATCTTTTAAATAAAAAG attB2

agrA-C-F CGCGGATCCCTACTAAAGGTGAAGGTCGT BamHI

agrA-C-R GGGGTACCTTATCTTGTTAAAATCCAACAAG KpnI

sarA-C-F CGCGGATCCTTGCGCTAAATCGTTTCATTAA BamHI

sarA-C-R GGGGTACCATCTATCAAACTTCACCAAATTG KpnI

gyrB-F ACATTACAGCAGCGTATTAG

gyrB-R CTCATAGTGATAGGAGTCTTCT

sasX-RT-F GCTGCTAATAATACTGAAG

sasX-RT-R TGCTACAACTGATAACAA

bRestriction endonuclease site and attB sequence.

3.6. RNA Extraction, cDNA Synthesis and Quantitative Reverse
Transcription-PCR (qRT-PCR)

The quantitative Real-Time PCR was performed accord-
ing to the MIQE guidelines. For RNA isolation, S. aureus

strains were incubated overnight in 5 mL of TSB at 37°C
with shaking at 220 rpm, then the cultures were diluted at
1:200 in TSB and grown to post-exponential phase at 37°C
with shaking at 220 rpm. RNA Extraction (Qiagen, USA),
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cDNA synthesis (Takara, Japan), and Quantitative Reverse
Transcription-PCR (Takara, Japan) were performed as de-
scribed previously (7) (the primers listed in Table 2).

3.7. Western Blotting

Analysis of the SasX protein products was by Western
blotting, as previously described (8). The overnight
cultures of HS770, HS770∆saeRS, HS770∆sarA, and
HS770∆agrA were inoculated to 8-mL TSB with 37°C,
220 rmp. The cells of different bacterial cultures were
harvested by centrifugation at three, six, nine, and twelve
hours, respectively. Then the cells were washed two times
with PBS buffer, suspended within 500 uL PBS buffer, and
20 uL lysostaphin (1 mg/mL) was added to lytic bacteria,
followed by incubation for one hour at 37°C. Then, the cells
were fractured by sonication with the samples on ice. The
supernatant obtained by centrifugation was considered
as bacterial protein samples. The obtained proteins were
electrophoretically separated on a 12-% sodium dodecyl
sulphate polyacrylamide gel and subsequently transferred
onto a PVDF membrane. The primary antibody (1:1000 di-
lution of rabbit anti-SasX polyclonal antibodies in TTBS)
was added to the membranes, which were left overnight,
followed by horseradish peroxidase-conjugated anti-
rabbit IgGs as secondary antibodies (1:2000 dilution) for
two hours. Finally, the presence of SasX was visualized us-
ing ECL Western blotting detection kit (GE Healthcare) in
combination with a Chemi-Doc™ XRS + System (Bio-Rad).

3.8. Statistical Analysis

Relative expression levels resulting from qRT-PCR were
analyzed using GraphPad Prism 5.0 software. Results were
considered statistically significant if P values were < 0.05.

4. Results

4.1. Deletion of sarA, saeRS and agrA in Staphylococcus aureus
HS770

The agarose gel electrophoresis of PCR products
showed that the bands size of mutant strains was shorter
than those of wild plants, which were the exact the
corresponding gene size. Fluorescent quantitative PCR
results reflected the relative expression of saeRS, sarA, and
agrA in mutant strains HS770∆saeRS, HS770∆sarA, and
HS770∆agrA, and were dramatically decreased compared
to that of wild type HS770 (Figure 1).
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Figure 1. Transcript levels of saeRS, sarA, agrA genes in S. aureus HS770, HS770∆saeRS,
HS770∆sarA, HS770∆agrA deletion mutant. The total RNA samples were extracted
from 6 h cultures of HS770, HS770∆saeRS, HS770∆sarA and HS770∆agrA deletion
mutant. The housekeeping gene gyrB was used as the reference gene. The expression
of saeRS, sarA and agrA in S. aureus HS770 was regarded as 1, respectively. Transcript
levels of saeRS in HS770∆saeRS and sarA in HS770∆sarA and agrA in HS770∆agrA
deletion mutant were detected by qRT-PCR.

4.2. Growth Curve Analysis

In order to eliminate the influence of gene knockout
on the growth rate of bacteria, the growth curve of HS770,
HS770∆saeRS, HS770∆sarA, and HS770∆agrA was drawn.
The sterile TSB medium was used as a blank control. There
were no significant changes in the growth curve of the bac-
teria under the same inoculation and growth conditions.
The growth of HS770∆agrA mutant strains was higher
than that of other strains in the late stage of platform. The
following experiments were carried out on the basis of no
obvious effect on bacterial growth (Figure 2).
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Figure 2. Growth curve of HS770 and HS770∆saeRS, HS770∆sarA, HS770∆agrA dele-
tion mutants. Bacterial growth was monitored by measuring the OD600nm at one-
hour intervals for twelve hours. Measurements were made in three independent
experiments and the representative result was shown.
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4.3. Transcript Level of sasX in Wild-Type and Knockout Strains

The total RNA of wild strain, mutant knockout strains,
and the complementary expression strains were extracted
at three, six, nine, and twelve hours, and were reverse tran-
scribed into cDNA, respectively. The effect of sarA, agrA,
and saeRS on expression of sasX was assessed by qRT-PCR.
Here, the gyrB was used as an internal control. In con-
trast with the wild strain HS770, the sasX transcription
level in HS770∆agrA knockout strains were increased by
five folds, seven folds, two folds, and two folds at three, six,
nine, and twelve hours, respectively (Figure 3A); the sasX
gene transcription level in HS770∆sarA mutant strains was
increased by five, three, seven, and seven folds at three,
six, nine, and twelve hours, respectively (Figure 3B). The
difference in expression level of sasX gene between wild
strain HS770 and mutant strains was statistically signifi-
cant (P < 0.05). However, the sasX transcription level in
HS770∆saeRS mutant strains had little change at each of
the time points (Figure 3C). The complementary expres-
sion strains restored to the expression level of wild strain.
All the results showed that agrA and sarA had negative reg-
ulation on sasX, yet saeRS may not regulate sasX.

4.4. Detection of sasX Expression

The SasX protein is one of the cell wall surface pro-
teins, thus, the researchers collected the cells of wild
type strain HS770 and these mutant strains (HS770∆saeRS,
HS770∆sarA and HS770∆agrA) at three, six, nine, and
twelve hours. The bacteria were broken by the lysostaphin
and ultrasonic, and subsequently, bacterial protein was ex-
tracted. After measuring the protein concentration, the
same concentration of protein was carried out for 12%
sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE). The expression of SasX protein was detected
by Western-blot. It was suggested that the sasX expres-
sion level of wild strains was the highest at six hours;
HS770∆saeRS mutation strains had no expression peak at
six hours. The expression level of HS770∆agrA mutant
strains decreased at six hours of expression, however, in-
creased at nine and twelve hours; the expression level of
HS770∆sarA mutation knockout all increased at three, six,
nine, and twelve hours (Figure 4).

5. Discussion

Limiting the virulence factors is critical for treating
bacterial infections. The targets can be the virulence genes
or the regulation genes of virulence. Limiting SasX expres-
sion and secretion is a particularly challenging task for S.
aureus. This is because SasX facilitates bacterial aggregates
and biofilm formation. It is also a virulence factor during
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Figure 3. Transcript levels of sasX genes in S. aureus HS770, HS770∆saeRS,
HS770∆sarA and HS770∆agrA deletion mutant. The total RNA samples were ex-
tracted from 3 hours, 6 hours, 9 hours, 12 hours cultures of HS770. Transcript levels of
sasX in S. aureus HS770, HS770∆saeRS, HS770∆sarA and HS770∆agrA deletion mu-
tant were detected by qRT-PCR, and the housekeeping gene gyrB was used as an in-
ternal control. Error bars indicate standard errors for data from three experiments.

S. aureus skin and lung infection models (9). Anti-SasX IgG
reduced S. aureus colonization and infection (10). However,
the regulation mechanism of sasX is not clear.

The expression of adhesion and virulence factors is a
complex process during different stages of infection. This
is controlled by global regulatory elements including two
component regulatory systems, and the SarA protein fam-
ily (11, 12). Furthermore, AgrAC is a density-dependent
TCS. The agr locus is activated in post-exponential growth.
Activated agr locus has down-regulative adhesion factors
and up-regulative virulence factors, such as the Panton-
Valentine Leukocidin (PVL), enterotoxins, and encoding
alpha-hemolysin (Hla). SarA controls regulation of certain
virulence factors directly, such as protein A (Spa), Hla, and

Jundishapur J Microbiol. 2018; 11(6):e13821. 5

http://jjmicrobiol.com


Shang Y et al.

Figure 4. Expression of sasX in S. aureus clinical isolates and deletion mutant. sasX
gene expression in S. aureus HS770, HS770∆saeRS, HS770∆sarA and HS770∆agrA
deletion mutant in different growth time points was detected using Western blot
with anti- sasX antibody (1:1000).

agr. Furthermore, SarA also binding to agr promoter ele-
ments indirectly regulates virulence factors (13). The two-
component system SaeRS activates several virulence fac-
tors, such as serine protease (SspA), thermonuclease (Nuc),
coagulase (Coa), Hla, beta-hemolysin (Hlb), and Spa (11).

The researchers constructed the agrA, saeRS, and sarA
gene knockout strains and the corresponding complemen-
tary expression strains. The growth curve showed that
saeRS and sarA mutation did not affect the growth of S.
aureus, and agrA mutation was slightly faster than that of
the wild strain at the station phase, which were consis-
tent with the reports (2, 14). This suggests the regulation
of sasX by agr, saeRS, and sarA has nothing to do with the
growth. This study found that agr and sarA negatively reg-
ulates sasX from the results of qRT-PCR and Western-blot,
however, saeRS may not regulate sasX. Since agr and sarA
have the interaction effects, the specific regulation mech-
anism of agr and sarA is unknown. This potential mecha-
nism needs to be further explored in detail.

6. Conclusions

In conclusion, the current study showed that agr and
sarA negatively regulate sasX. The antimicrobial drugs tar-
geting agr Quorum Sensing or SarA protein also limit sasX,
which is critical for bacterial infections (15, 16).
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