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Abstract

Background: Listeria monocytogenes (LM) is a facultative intracellular pathogen that causes food-borne infections in humans and
animals. To invade and multiply within host cells, LM utilizes various strategies to precisely modulate its gene expression and to
adapt to the in vivo environment.
Objectives: To investigate the regulatory roles of Rli82 sRNA in themotility and pathogenicity of LM EGD-e.
Methods: The Rli82 gene knock-out mutant strain, LM-∆Rli82, and the complementation strain, LM-∆Rli82/Rli82, were constructed
using homologous recombination technology, and their motility and virulence, respectively, were determined. Moreover, the
potential target mRNA regulated by Rli82 was predicted using TargetRNA2 software, and then the interaction between the target
mRNA and Rli82was verified by the two-plasmid reporter system.
Results: The results showed that themotility of LM-∆Rli82was significantly increased at 25°C, facilitated by the production of more
flagella than LM EGD-e and LM-∆Rli82/Rli82. Furthermore, LD50 in LM-∆Rli82-infectedmicewas significantly increased as compared
to LM EGD-e and LM-∆Rli82/Rli82, suggesting that the virulence of LM was weakened when the Rli82 gene was deleted. In addition,
the mRNA level of flaA was not significantly elevated, but flaA protein was significantly higher in LM-∆Rli82 than in LM EGD-e and
LM-∆Rli82/Rli82, suggesting that Rli82mightmodulate the translation of flaAmRNA at the post-transcriptional level.
Conclusions: Taken together, our findings for the first time revealed that Rli82 sRNA might be involved in the modulation of the
expression of flaA protein, thereby influencing themobility and pathogenicity of LM.
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1. Background

Listeria monocytogenes (LM) is an intracellular
Gram-positive pathogen causing listeriosis in both
humans and various animal species (1). As a ubiquitous
food-borne bacterium, LM can infect the host through
contaminated food or drinking water. During the
process of invasion, LM can express and deploy a variety
of virulence factors, thereby breaking through the
blood-intestinal, blood-brain, or placental barriers to
cause meningitis, miscarriage, and sepsis in humans (2,
3). Since LM poses a great threat to food safety, it has
been classified as one of the most important food-borne
bacteria by the World Health Organization (WHO) (4).

Bacterial small RNA (sRNA) is a class of non-coding RNAs
that are usually transcribed within the intergenic region
of the bacterial chromosome but do not encode proteins
(5). In contrast to regulatory proteins, sRNA allows
bacteria to respond rapidly to various environmental
conditions during infection (6, 7).

In order to survive and proliferate in hosts, the
pathogen can perceive changes in the host’s internal
environment and regulate the expression of its virulence
genes accordingly through various modulators and
signaling cascades (8). Among regulatory repertoires,
sRNA is now considered an important gene expression
regulator at the post-transcriptional level. In recent years,
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many studies have reported that sRNA can be involved
in cellular metabolism (9), physiological growth, and
pathogenicity of bacteria through interacting with target
mRNAs, thereby modulating responses to a variety of
environmental stresses and facilitating survival in hosts
(5). In 2011, Mraheil et al. identified about 150 sRNAs in
LM (10) through sRNA transcriptomic analysis during
the growth of the bacterium in macrophages. Among
them, Rli82 was one of the identified sRNAs showing
significant differential expression. Meanwhile, Rli82
deletion alters the growth pattern of LM; however, the
regulatory function of Rli82 sRNA remains unknown so far.

2. Objectives

The main purpose of this study was to unveil the
role of Rli82 sRNA on the motility and pathogenicity of
LM and to further ascertain the potential regulatory
mechanism of this sRNA. To achieve this goal, overlap
extension PCR (SOE-PCR) and homologous recombination
techniques were employed to construct Rli82-deleted
and complementation LM strains. Then, the potential
target gene regulated by Rli82 was predicted and
verified to provide new insights into the mechanism
of sRNA-mediated control of flagellum-related genes in
LM.

3. Methods

3.1. Plasmids, Strains, and Culture Condition

The shuttle vectors of pKSV7 and pHT304 were used to
generate Rli82-deleted and complementation LM strains.
EGD-e strain was cultured in Brain Heart Infusion (BHI)
Broth (Difco, USA) at 37°C, whereas Escherichia coli DH5α
and BTH101 strains were cultured in LB (Difco, USA)
medium at 37°C.

3.2. Primer Design

The specific primers used in this study were designed
based on the LM EGD-e genome sequence deposited in
GenBank (accession number: AL591824) using Primer
Premier 5.0 software. Table 1 shows the detailed
information of the designed primers.

3.3. Generation of Rli82 Gene-Deleted and Complementation
Strains

Briefly, the LM EGD-e strain was cultured in BHI at 37°C
for 12 h. The genomic DNA of LM was extracted according
to the protocol of a bacterial genomic DNA extraction kit
(Omega, USA). The upstream and downstream homology
arms of the Rli82 gene were amplified using two pairs

of primers (F1 - F2 and F3 - F4). These fragments were
then used to generate Rli82-deletedmutant strain (∆Rli82)
by SOE-PCR. Then, the ∆Rli82 fragment was cloned into
a pMD19-T simple vector (TaKaRa, Japan) to generate
pMD19-T-∆Rli82. The pMD19-T-∆Rli82 and pKSV7 plasmids
were double digested with Kpn I and Hind III (TaKaRa,
Japan), and the target fragments were recovered and
ligated with T4 DNA ligase (TaKaRa, Japan) at 16°C to
produce the recombinant shuttle plasmid (pKSV7-∆Rli82).
After that, pKSV7-∆Rli82 was transformed into LM EGD-e
competent cells by electroporation (2500 V, 5.0 ms), and
positive cloneswere screened by PCR using F5 - F6 primers.

The positive clones were passaged in BHI medium
at a concentration of 10 µg/mL chloramphenicol for
15 generations at 42°C and in chloramphenicol-free
BHI liquid medium for 15 generations at 30°C. The
obtained recombinant LM-∆Rli82 was verified by
PCR and sequencing. For the generation of the
complementation strain, the Rli82 gene was amplified in
LM EGD-e using 82F-82R primers and cloned into pHT304
plasmid to generate pHT304-Rli82. Then, pHT304-Rli82
was transformed into LM-∆Rli82 competent cells by
electroporation, and the positive clones were screened on
plates containing solid BHI at a concentration of 5 ug/mL
of erythromycin. Positive clones were further verified
by sequencing to obtain the complementation strain
(LM-∆Rli82/Rli82) (11).

3.4. Determination of Motility

The motility of LM EGD-e, LM-∆Rli82, and
LM-∆Rli82/Rli82 strains was assayed in the BHI semi-solid
medium at 25°C. In brief, individual clones from these
strains were harvested and washed three times with 0.01
M PBS buffer (pH = 7.2), centrifuged, and subjected to
negative staining with 2% phosphotungstic acid solution
(Sigma, USA). The morphological characteristics of these
bacteria were observed using transmission electron
microscopy (TEM) (HT7700, HITACHI, Japan). The flagella
of 50 bacteria per strain were counted.

3.5. Determination of Pathogenicity

Mice were infected with LM EGD-e, LM-∆Rli82,
and LM-∆Rli82/Rli82 by intraperitoneal injections. To
determine LD50, bacterial concentration was adjusted to
the same level (approximately 109 cfu/mL) for all three
strains, from which a series of 10-fold dilutions to 105

CFU/mL were prepared. Then 6-8-week-old BALB/c mice
were divided into 5 groups, and each mouse was injected
intraperitoneally with 0.5 mL of the prepared bacterial
solution, and 0.01 M PBS (pH = 7.2) was used as the control.
After animal infection, mortality was monitored for
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Table 1. Primers Used in This Study

Primer Name Primer Sequence (5’→3’) Product Size (Bp)

F1 GGTACCAAGACACCAGTTCCGTTTA
495

F2 GTTCTGTTATACAGTATCTTTTTGATGACTAAAGTATATA

F3 TATATACTTTAGTCATCAAAAAGATACTGTATAACAGAAC
316

F4 AAGCTTCCTATTAGAAACACGAGCATTA

F5 TGCTGTCTTACCAGTAGGCTCA
1625

F6 AAGAAATCAGTGGAAGTAGCCC

82 F GGATCCATCCTCCTATAGGCACTTTTTAGTATCTA
70

82 R AAGCTTATATACCGTACAGAATAACAAGAAGGTAC

flaA-laczF AAGCTTTTTGGACAACTTTTCTGTTCA
251

flaA-lacz R GGTACCGTATTTACTTTCATTTGTGTTTCC

flaA F AACAAGCAACTGAAGCTATTGATGAATT
247

FlaA R TGCGGTGTTTGGTTTGCTTGA

16sRrna F CACTGGGACTGAGACACGG
243

16sRrna R GGACAACGCTTGCCACCTA

FlaA F GTCGGATCCATGAAAGTAAATACTAATAT
864

FlaA R CATCTCGAGTTAGCTGTTAATTAATTGAGT

GAPDH F CGGGATCCATGACAGTTAAAGTTGGTATTAA
1011

GAPDHR CCTCGAGTTATTTAGCGATTTTTGC

10 consecutive days in the study groups, and LD50 was
calculated by the Spearman-Kärber method. In parallel,
bacterial loads in the liver and spleen were determined
in infected mice, and histopathological changes in these
organs were observed after HE staining (11).

3.6. Target mRNA Prediction and Verification

The potential genes targeted by Rli82 were analyzed
using TargetRNA2 bioinformatics online software
(http://cs.wellesley.edu/∼btjaden/TargetRNA2/). To
verify the interaction between Rli82 and target genes,
the two-plasmid reporter system based on E.coli (BTH101
strain) was employed. Briefly, the recombinant plasmids
of pUT18C-Rli82 and pUT18C-∆Rli82 (Rli82 without the
base-pairing region) and pMR-LacZ-target (the 5’-UTR
region of flaA mRNA) vectors were constructed and
co-transformed into E. coli BTH101 competent cells. Then,
positive clones were cultured on LB agar containing X-gal
and IPTG (TaKaRa, Japan) at 37°C for 12 h. Color change in
the lawn solution was monitored, and the optical density
(OD450 nm) of the lawn solution rinsed from the plates
was determined.

3.7. Quantitative Real-time RT-PCR

Briefly, LM EGD-e, LM-∆Rli82, and LM-∆Rli82/Rli82
strains were incubated in the BHI medium at 25°C for

16 h, and total RNA was extracted using Trizol reagent
in compliance with the instructions of the provider
(Invitrogen, USA). Then, cDNA was synthesized using the
AMV Reverse Transcription Kit (TaKaRa, Japan) following
its instruction manual. Quantitative real-time RT-PCR
(qRT-PCR) was performed on Light Cycler 480 (Roche,
Switzerland) using a SYBR Premix Ex TaqTM kit (TaKaRa,
Japan). The relative transcription levels of the target genes
andRli82werecalculatedby the2-∆∆CTmethod(12). The 16s
rRNA gene was employed as an internal reference control.

3.8. Western Blot Analysis

Western blot was performed as previously described
(13). Briefly, bacterial protein was extracted using
the Bacterial Protein Extraction Kit (Sangon Biotech,
China) and analyzed by SDS-PAGE, followed by
Western blot analysis using mouse-specific primary
antibodies (1: 2000) and HRP-labeled rabbit anti-mouse
IgG (Sigma, USA) secondary antibodies (1: 5000).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was used as the reference protein. Image J software was
applied to quantify the protein bands.

3.9. Statistical Analysis

SPSS software (SPSS Inc., Chicago, IL, USA) was used
for the statistical analysis of the data. The data were
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presented in figures as mean values ± standard deviation
(SD) from three independent experiments. The analysis
of variance (ANOVA) was used to compare continuous
variables, while the chi-square test was employed to
analyze categorical variables. A P value < 0.05 was
considered to be statistically significant, while P values <

0.01 were considered extremely significant.

4. Results

4.1. Generation of Rli82 Gene-Deleted and Complementation
Strains

The deletion mutant (LM-∆Rli82) and
complementation (LM-∆Rli82/Rli82) strains were
successfully constructed and verified by PCR, restriction
enzyme digestion, and sequencing (Appendix 1, Appendix
2, and Appendix 3, respectively).

4.2. Effects of Rli82 Gene Deletion on LMMotility

The mean diameter of the colonies formed by
LM-∆Rli82 was significantly larger than that of LM
EGD-e in semi-solid plates (Figure 1A and B), indicating
that themotility of LM-∆Rli82was significantly increased.
Moreover, LM EGD-e bacteria carried 1.2 flagella per cell
on average, whereas 4.3 flagella were counted on average
for LM-∆Rli82, showing a significantly higher value in the
mutant than in the parental strain (Figure 2).

4.3. Effects of Rli82 Gene Deletion on LM Pathogenicity

The LD50 of LM-∆Rli82 was 107.00 CFU/mL, which was
significantly higher than that of LM EGD-e (105.56 CFU/mL)
and LM-∆Rli82/Rli82 (105.95 CFU/mL) (Appendix 4),
suggesting that thevirulenceof LMEGD-ewas significantly
decreased when the Rli82 gene was deleted. Moreover,
bacterial loads in the liver and spleenofmice infectedwith
LM-∆Rli82 were significantly lower than those of animals
infected with LM EGD-e and LM-∆Rli82/Rli82 (Figures 3A
and 4B). Histopathological changes in LM-infected mice
revealed distinct necrotic foci, central venous congestion,
and infiltration of inflammatory cells in the surrounding
obstructive tissue in the liver. Moreover, spleeny nodules
in the spleen were enlarged, and tissue congestion was
evident. However, these pathological changes were
significantly ameliorated in LM-∆Rli82 infected mice
as compared to LM EGD-e and LM-∆Rli82/Rli82 infected
animals (Figure 4A). LM-∆Rli82-infected mice survived
significantly longer andhad a significantly higher survival
rate compared to those infected with LM EGD-e and
LM-∆Rli82/Rli82 (Figure 4B), suggesting that sRNA Rli82
deficiency hampered the pathogenicity of LM.

4.4. Potential Target mRNAs Modulated by Rli82

Bioinformatic analyses revealed that Rli82 was
located at positions 910875 - 910944 on the genome
of LM EGD-e (accession number: AL591824) (Appendix
5A). Regarding its secondary structure, Rli82 depicted a
linear-shaped neck-loop structure with five loops and four
complementary double strands (Appendix 5B). Online
software, TargetRNA2, suggested flaAmRNA as a potential
target for Rli82 based on a base-complementary segment
(-22 ∼ - 8 bases) in the 5’-UTR of the mRNA that paired
with Rli82 (15∼1 bases), implying that flaAmRNA could be
potentially modulated by Rli82 at the post-transcriptional
level (Figure 5A).

4.5. Verification of Interaction Between Rli82 and the Target
mRNA

The two-plasmid reporter system based on E. coli
showed that the bacterial strain co-transformed by
pUT18C-Rli82 and pMR-LacZ-flaA formed deeper dark
green colonies compared to the strain co-transformed by
pUT18C and pMR-LacZ-flaA, accompanied by a significant
2-fold increase in the OD450nm of lawn’s flushing fluid.
Meanwhile, there was a significant difference between the
strain co-transformed by pUT18C-Rli82 and pMR-LacZ-flaA
and the strain co-transformed by pUT18C-∆Rli82 and
pMR-LacZ-flaA (Figure 5B andC). The results suggested that
there was a substantial interaction between Rli82 and flaA
mRNA.

4.6. FlaA Gene Expression Analysis

Compared with LM EGD-e and LM-∆Rli82/Rli82 strains,
the mRNA level of the flaA gene was not significantly
elevated in the LM-∆Rli82 strain (P > 0.05). Meanwhile,
there was no significant difference in the mRNA level
of Rli82 between LM EGD-e and LM-∆Rli82/Rli82 (Figure
6A). However, it was revealed that the expression level of
flaA protein was significantly higher in LM-∆Rli82 strain
compared to LM EGD-e and LM-∆Rli82/Rli82 strains (Figure
6BandC), implying thatRli82 couldnegatively regulate the
gene expression of flaA.

5. Discussion

So far, many studies have shown that sRNAs can
act on target mRNAs to affect their transcriptional and
translational levels (14, 15), whereby sRNAs can be involved
in the regulation of the metabolism and virulence of
bacteria (7, 9, 16). It is generally accepted that sRNAs
regulate target genes’ mRNAs in a variety of ways. First,
sRNA pairing at the Shine-Dalgarno (SD) region will
suppress the binding of ribosomes with the mRNA,
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Figure 1. Motility of LM EGD-e, LM-∆Rli82, and LM-∆Rli82/Rli82. Strains. (A) Colonies in BHI solid medium; (B) The diameter of bacterial colonies. ns; not significant, *; P <

0.05, **; P< 0.01

inhibiting the initiation of translation (17). In LM, sRNA
LhrA inhibits the translation of lmo0850 by binding
to its SD region (18). Second, sRNA can release the SD
region, which, under normal conditions, is sequestered
in a secondary structure, activating the translation of
the target mRNA by ribosomes. In E. coli, sRNA Mcas can
unlock the secondary structure of flhDC mRNA, thereby
releasing the SD sequence and facilitating the translation
process (19).

Alternatively, sRNAs may act on the far upstream of
the ribosome binding site (RBS) of the target mRNA at its
5’-UTR, which protects the target mRNA from degradation
by concealing its RNase E cleavage site. In this case,
sRNA may promote the stability of the target mRNA
and thus facilitate its translation (20). In Streptococcus,
sRNA FasX in streptococci can bind to ska mRNA and
prevent its degradation by RNase E, thereby stabilizing
this mRNA andmaintaining the translation of ska protein
(21). Moreover, sRNA can also bind to a sequence near
the ribosome binding site of the target mRNA, competing
with 30S ribosomes for this binding site, resulting in
the suppression of translation (22, 23). In Salmonella
typhimurium, sRNA RyhB binds to fhlAmRNA and interferes

with translation initiation (24). Herein, our experiments,
combined with bioinformatics analyses, demonstrated
that sRNA Rli82might bind to the SD region of flaAmRNA,
inhibiting the translation of FlaA protein, thus playing a
vital role in the control of motility and pathogenicity of
LM.

Previous studies have proven that the flagellum
is closely related to physiological processes such
as environmental stress tolerance, motility, and
pathogenicity in bacteria (13, 25, 26). Existing studies
have shown that the flagellum is composed of three parts,
namely the flagellar filament, consisting of the flagellar
subunit, hook, and basal body (27). Among these, the
flagellar subunit is composed of flaA and other proteins
(28). It has been shown that the deletion of the flaA
gene can impair flagellar formation and interfere with
the motility of LM (29). Here, target prediction analyses
revealed that Rli82was capable of complementary pairing
with bases at the positions -22 to - 8 in the 5’-UTR of
flaA mRNA, a site possibly representing the ribosomal
binding site (RBS). Furthermore, the motility of the
LM-∆Rli82 strain was significantly enhanced, which was
in agreement with the observation of more flagella in
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Figure 2. Themorphological characteristics of LM EGD-e and LM-∆Rli82 strains using transmission electronmicroscopy (Originalmagnification,× 5000). A and B: LM EGD-e
strain; C and D: LM-∆Rli82 strain

LM-∆Rli82 than in LM EGD-e. Collectively, combined with
the results of bioinformatic analyses, it can be noted
that Rli82 may negatively modulate the expression of flaA
mRNA by occupying its ribosomal binding site.

It hasbeenproven that the functioningof LM flagella is
restricted to temperatures below 37°Cdue to the opposing
activities of the MogR transcriptional repressor and the
GmaR anti-repressor (13, 30-32). Once LM enters the
host, however, the biosynthesis of flagella is suppressed
to help the bacterium evade the host’s immune system,
thereby facilitating its survival and proliferation in vivo
(31). Here, our results revealed that LM-∆Rli82 could
produce more flagella than LM EGD-e and LM-∆Rli82/Rli82
at 25°C, suggesting a role for sRNA Rli82 in flagellar
formation. Generally, LMmaintains strong motility in the
extracellular environment at temperatures below 37°C by
enhancing the production of flagella, thereby expediting
its chemotaxis, biofilm formation ability, and infectivity.

However, the underlying mechanisms through which
sRNA Rli82 can modulate flagella formation in LM need to
be further elucidated by transcriptomic analyses.

5.1. Conclusions

Taken together, this study demonstrated that sRNA
Rli82was involved in themotility and pathogenicity of LM
viamodulating flaAmRNAat thepost-transcriptional level.
This observation provides new insights into sRNA-based
modulation of the expression of flagella-related genes in
LM.

SupplementaryMaterial

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal
website and open PDF/HTML].
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Figure 3. Bacterial hepatic and splenic loads inmice infected by LM. (A) Bacterial load in the liver in LM-infectedmice; (B) Bacterial load in the spleen in LM-infectedmice. ns;
not significant, *; P< 0.05, **; P< 0.01
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Figure 4. Histopathological changes and survival curves in LM-infected mice. (A) Histopathological changes in the liver and spleen from LM-infected mice; (B) The survival
curve of LM-infectedmice.
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Figure 5. Prediction and verification of the target mRNA of Rli82. (A) The predicted target gene of Rli82; (B) Colonies of BTH101 (a): BTH101-pUT18C-Rli82/pMR-lacZ-flaA;
(b): BTH101-pUT18C/pMR-lacZ-flaA; (c): BTH101-pUT18C/pMR-lacZ; (d): BTH101-pUT18C-∆Rli82/pMR-lacZ-flaA); (C): Comparison of OD at 450 nm of the flushing fluid between
BTH101-pUT18C-Rli82/pMR-lacZ-flaA, BTH101-pUT18C/pMR-lacZ-flaA, and BTH101-pUT18C-∆Rli82/pMR-lacZ-flaA colonies

Jundishapur J Microbiol. 2023; 16(9):e139707. 9
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Figure 6. Determination of mRNA and protein level of the target gene regulated by Rli82. (A) Relative mRNA level of the flaA and Rli82 genes; (B) Protein expression levels of
flaA and GAPDH; (C) Quantitative analysis of flaA protein by ImageJ software. ns: not significant, *: P< 0.05, **: P< 0.01
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