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Abstract

Background: Drug-resistant hospital-acquired infections (HAIs) are a growing concern in modern medicine throughout the world.
Klebsiella pneumoniae is one of the most prominent causative agents of multidrug-resistant nosocomial infections. It is also widely
recognized for having a high resistance level to many antibiotic classes, particularly beta-lactams. Carbapenemase-producing K.
pneumoniae has been identified as a major global cause of HAIs with adverse clinical outcomes. Therefore, it is of the utmost
importance to have an in-depth understanding of the antimicrobial resistance (AMR) genetic determinants of this bacterium to
stop the spread of highly resistant K. pneumoniae in healthcare facilities and the resulting patient morbidity and mortality.
Objectives: This study aimed to investigate the AMR pattern of K. pneumoniae isolates obtained from intensive care units (ICUs),
with a focus on extended-spectrum beta-lactamases (ESBLs) genes blaCTX-M, blaGES, and blaIMP.
Methods: A total of 105 K. pneumoniae isolates obtained from the sputum samples of ICU patients were identified and confirmed
using standard microbiological tests and 16S rRNA polymerase chain reaction (PCR). The antibiotic susceptibility test was performed
for all the isolates. The presence of ESBL genes was determined phenotypically and by PCR.
Results: The highest level of resistance was observed against ceftazidime (100%), cefotaxime (99%), and imipenem (93.3%).
Approximately 87.6% and 39% of the isolates were sensitive to colistin and gentamicin, respectively. Phenotypic ESBL production
was observed in 16 isolates, and the prevalence of blaCTX-M was 86.7%. No blaGES and blaIMP genes were detected.
Conclusions: Periodic investigation of AMR-mediating genes is essential due to the high prevalence of ESBL genes in HAIs. The
presence of other ESBL genes needs to be investigated for a more accurate understanding of the AMR status of K. pneumoniae in
healthcare settings.
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1. Background

Klebsiella pneumoniae is a Gram-negative,
oxidase-negative, non-spore-forming, facultatively
anaerobic, and non-motile bacillus. It is enveloped
by a characteristically thick polysaccharide capsule,
which increases its resistance against many host defense
mechanisms (1). Klebsiella pneumoniae isolates are
abundantly found in nature and colonize the soil, surface
waters, sewage, plant surfaces, and mucous surfaces of
mammals. About one-third of the healthy population
are intestinal carriers of this bacterium, making it

the most common pathogenic species of Klebsiella (2).
Klebsiella species are the third most common cause of
hospital-acquired infections (HAIs) after Staphylococcus
aureus and Clostridium difficile. Klebsiella pneumoniae
is an opportunistic pathogen widely found in hospital
environments and on medical devices. This bacterium
mainly affects hospitalized patients with compromised
immune systems. It has been isolated from various
infections, such as pneumonia, sepsis, bacteremia,
meningitis, urinary tract infections, and purulent
abscesses in various organs, especially the liver (2).
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Hospital-acquired pneumonia caused by K.
pneumoniae may occur within 48 hours after hospital
admission (3). The mortality rates of K. pneumoniae
infections have been reported at 15% - 79%, higher than
Escherichia coli (5% - 22%) (4). Klebsiella species are the third
cause of ventilator-associated pneumonia among patients
admitted to intensive care units (ICUs) and account for 83%
of HAI cases (3, 5). Klebsiella pneumoniae is also well known
for its high resistance to different antibiotic classes,
especially beta-lactams. Carbapenemase-producing K.
pneumoniae has been established as a major cause of HAIs
worldwide, with severe clinical outcomes. Therefore, a
more comprehensive understanding of its antimicrobial
resistance (AMR) genetic determinants is critical to
combat the spread of highly resistant K. pneumoniae in
medical care centers and the associated morbidity and
mortality (6).

Beta-lactamases are enzymes produced by bacteria
that break down the beta-lactam ring in beta-lactam
antibiotics, such as penicillins, cephalosporins,
carbapenems, and monobactams (7). All four
beta-lactamase enzyme classes (A-D) have been reported in
association with K. pneumoniae (8). Gene blaCTX-M is a class
A extended-spectrum beta-lactamase (ESBL) gene, which
is carried on and transferred by integrons and plasmids.
Therefore, it can spread from resistant to non-resistant
strains during outbreaks, making it an important target
for surveillance. Similarly, blaGES is present on mobile
genetic elements (MGEs) and can induce partial resistance
to carbapenems (9).

Metallo-beta-lactamase (MBL) genes have also been
established as important pathogenesis factors, as their
products confer significant resistance to most beta-lactam
antibiotics (including carbapenems) and resistance to
beta-lactamase inhibitors. One of these genes is blaIMP,
which encodes a class B beta-lactamase (10). It is, therefore,
essential to gain as much knowledge as possible about
the prevalence of these genes to guide decisions about
antibiotic administration and infection control efforts in
healthcare settings, especially ICUs.

2. Objectives

This study aimed to investigate the AMR pattern of K.
pneumoniae clinical isolates obtained from the sputum of
patients hospitalized in ICUs of Rasool-e-Akram Hospital,
Tehran, Iran, and to determine the presence of two
ESBLs genes, i.e., blaCTX-M and blaGES, as well as the blaIMP

metallo-beta-lactamase gene.

3. Methods

3.1. Clinical Samples, Bacterial Isolates, and Antibiotic
Susceptibility Testing

Sputum samples were obtained from 105 patients
hospitalized at ICU (1) respiratory ICU 1; and (2) emergency
ICU, neurology ICU, cardiac care unit, medical ICU, and
ICU 4 wards of Rasool-e-Akram General Hospital Complex
in Tehran, Iran, during February 2020-February 2021.
The samples were then immediately transferred to the
research laboratory in a sterile container containing 10
mL of normal saline for further investigations. Klebsiella
pneumoniae isolates were identified using standard
microbiological and biochemical tests. All media used
were purchased from Merck, Germany.

Identification was confirmed by species-specific 16S
rRNA sequence amplification using the primers presented
in Table 1. Briefly, 3 µL of each sample was mixed with
10 µL Taq PreMix, 1 µL water, and 1 µL of each forward
and reverse primers. The polymerase chain reaction (PCR)
reaction included an initial denaturation of 1 min at 94°C,
35 denaturation cycles of 1 min at 94°C, annealing for 1 min
at 58°C, extension for 1 min at 72°C, and a final extension of
7 min at 72°C. All PCRs were conducted using an Eppendorf
mastercycler gradient (Eppendorf AG, Germany).

Table 1. Primers Sets Used to Detect the 16S rRNA, blaCTX-M , blaGES , and blaIMP Genes

Gene Primers Product
Length

(bp)

Reference

16S rRNA
F- ATTTGAAGAGGTTGCAAACGAT

130 (11)
R- TTCACTCTGAAGTTTTCTTGTGTTC

blaCTX -M

F- ACCGCCGATAATTCGCAGAT
588 (12)

R- GATATCGTTGGTGGTATAA

blaGES

F- GTTTTGCAATGTGCTCAACG
371 (13)

R- TGCCATAGCAATAGGCGTAG

blaIMP

F- GTTTATGTTCATACATCG
440 (14)

R- GGTTTAACAAAACAACCAC

Antibiotic susceptibility testing (AST) was performed
for all K. pneumoniae isolates using the Kirby-Bauer
disk diffusion method according to the Clinical and
Laboratory Standards Institute (CLSI) 2021 guidelines
(15). All antibiotic disks were procured from Padtan
Teb, Iran. The following antibiotic disks were used as
described before (16): Piperacillin-tazobactam (100/10
µg), ampicilin-sulbactam (10/10 µg), ciprofloxacin (5 µg),
cefotaxime (30 µg), ceftazidime (30 µg), gentamicin (10
µg), amikacin (30 µg), trimethoprim-sulfamethoxazole
(1.25/23.75µg), imipenem (10µg), meropenem (10µg), and
colistin (10 µg).
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3.2. Phenotypic Identification of ESBLs

In order to determine phenotypic ESBL production,
the double disk synergy test was used according to the
CLSI 2021 guidelines (15). For this purpose, the cefotaxime
disk (Padtan Teb, Iran) was placed at a distance of 20 - 30
mm from the cefotaxime/clavulanic acid disks. Similarly,
the ceftazidime disk was placed at a distance of 20 -
30 mm from the ceftazidime/clavulanic acid disk. Clear
areas (non-growth) between the two disks indicated ESBL
production.

3.3. Molecular Identification of the 16S rRNA, blaCTX-M, blaGES,
and blaIMP Genes

Polymerase chain reaction was performed using the
primers provided in Table 1 and thermal cycling programs
and PCR mixtures (2X Taq PreMix, Parstous, Iran) based
on previously described methods (11-14) to detect the K.
pneumoniae16S rRNA gene as well as the blaCTX-M, blaGES, and
blaIMP genes. The PCR setting for each gene was as follows:
(A) initial denaturation: 1 min at 94°C for all genes; (B) 35
cycles of denaturation (45 sec at 94°C, 30 sec at 95°C, and 30
sec at 95°C forCTX-M,GES, and IMP, respectively ), annealing
(45 sec at 54°C, 30 sec at 60°C, and 30 sec at 50°C for CTX-M,
GES, and IMP, respectively) and extension (1 min at 72°C for
all genes); and (C) final extension: 10 min at 72°C for all
genes. Polymerase chain reaction products were then run
on a 1% agarose gel electrophoresis for confirmation.

3.4. Statistical Analysis

Data are demonstrated as mean ± standard deviation
or number (percentage) based on the nature of the datum.
All graphs used in this manuscript were created using the
GraphPad Prism 9 software (GraphPad, USA).

4. Results

4.1. Clinical Samples and Bacterial Isolates

A total of 105 K. pneumoniae clinical isolates were
collected from different ICUs, as demonstrated in Figure
1B. Of these, 58 (55.2%) studied patients were male and
47 (44.8%) were female. The mean age of the patients
was 57.10 ± 20.03 years. About 19.04% and 17.14% of the
patients were in the age ranges of 70 - 80 and 60 - 70
years, respectively (see Figure 1A). As demonstrated in Table
2, the most frequent comorbidities among patients were
peripheral vascular disease (23/105, 21.9%), diabetes (22/105,
21%), and bone fracture (21/105, 20%).

Table 2. Demographic Information of the Study Population

Values a

Age 57.10 ± 20.03

Gender

Male 58 (55.2)

Female 47 (44.8)

Comorbidities

Diabetes 22 (21)

Cancer 12 (11.4)

Renal failure 14 (13.3)

Lung disease 3 (2.9)

Peripheral vascular disease 23 (21.9)

Bone fracture 21 (20)

Alzheimer 10 (9.5)

a Values are expressed as No. (%) unless otherwise indicated.

4.2. Antimicrobial Resistance Patterns

The results of AST for K. pneumoniae isolates are
presented in Figure 2. The highest resistance was observed
for ceftazidime (100%), cefotaxime (99%), and imipenem
(93.3%), while resistance to colistin (12.4%) was the least. We
observed that 16 isolates were phenotypically identified as
ESBL producers.

4.3. Presence of blaCTX-M, blaGES, and blaIMP

Among 105 clinical isolates, 91 (86.7%) harbored the
blaCTX-M ESBL gene (Figure 3). The blaGES and blaIMP genes
were not detected in any of the isolates.

5. Discussion

It has been estimated that 17 million people die
globally as a result of infectious diseases every year.
According to a report by the United States Center for
Disease Control, the number of annual deaths due to
multidrug-resistant (MDR) infections will reach 10 million,
and the mortality of bacterial infections will exceed heart
diseases and cancer if no new treatments are developed.
Infectious diseases are currently the second leading
cause of death worldwide and the fourth leading in the
US (17). Approximately 80% of enterobacterales-related
carbapenem-resistant bacterial infections are caused
by K. pneumoniae. In addition, K. pneumoniae causes
approximately 12% of all hospital-acquired pneumonia
cases (17).

The bacterial pneumonia caused by this bacterium
is different from that caused by other agents, such

Jundishapur J Microbiol. 2023; 16(9):e140497. 3
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Figure 1. A, age group distribution of K. pneumoniae isolates; B, distribution of K. pneumoniae isolates in different intensive care unit (ICU) wards
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Figure 2. Antibiotic susceptibility test results for 105 K. pneumoniae isolates
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Figure 3. Visualization of the polymerase chain reaction (PCR) product for the blaCTX-M extended-spectrum beta-lactamase (ESBL) gene

as Streptococcus pneumoniae, in that patients with K.
pneumoniae infections produce thick and yellow-brown
sputum, which is indicative of extensive inflammation
and necrosis in the respiratory tissue (17). This study
determined the AMR pattern of K. pneumoniae clinical
isolates, investigated the phenotypic production of ESBLs,
and evaluated the frequency of the blaCTX-M, blaGES, and
blaIMP genes.

All isolates were found to be resistant to at least
three classes of antibiotics and were considered
MDR. The highest resistance was observed against the
third-generation cephalosporins, including ceftazidime
(100%) and cefotaxime (99%). The resistance rate to
carbapenems (imipenem 93.3% and meropenem 78.1%)
and fluoroquinolones (ciprofloxacin 84.8%) was also
very high. Similar to our study, Jalalvand et al. collected
800 enterobacterales clinical isolates from hospitals, of
which 291 were K. pneumoniae and 66.66% were obtained
from ICUs. In their study, 108 K. pneumoniae isolates were
resistant to carbapenems and all cephalosporins, of which
102 were obtained from respiratory samples (18). These
similar rates of antibiotic resistance may indicate the
common sources of infection or resistance genes. Similar
medical practices in terms of antibiotic administration

may have also contributed to the development of similarly
high antibiotic resistance rates.

In a study on the hospital and environmental isolates
of K. pneumoniae in Mexico, Cordova-Espinoza et al.
reported relatively lower rates of resistance to similar
antibiotics, which could indicate higher AMR rates in ICUs
compared to other hospital wards and the environment
(19). This could be due to the closer proximity of patients
or poorer infection control practices in ICUs compared
to other hospital wards. In a systematic review of K.
pneumoniae AMR in Asia, Effah et al. reported similar
but marginally lower resistance rates for most tested
antibiotics. However, our isolates showed notably higher
resistance rates to colistin and carbapenems (20). This
could indicate a more serious antibiotic resistance
problem in Iran compared to other Asian countries, or it
could be attributed to differences in sampling periods and
sources.

Polymyxins, especially colistin, are among
the few agents that retain their efficacy against
carbapenem-resistant K. pneumoniae. However, the
ever-increasing administration of these antibiotics has
contributed to the emergence of colistin-resistant strains
(21). Almost 12.4% of our isolates were resistant to colistin.

Jundishapur J Microbiol. 2023; 16(9):e140497. 5
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Resistance to colistin has been increasingly reported from
all parts of the world, including the Middle East region.
A high resistance rate of 16.9% was reported during 2015 -
2016 from Iran (22). Research in Iran revealed an increase of
up to 50% in colistin resistance in carbapenem-resistant K.
pneumoniae isolates (23). Although colistin resistance has
been reported in other countries, higher rates of resistance
were observed in our isolates compared to them (24). As
with other instances of increased antibiotic resistance,
excessive antibiotic administration, poor infection control
practices, and horizontal transfer of resistance genes are
possible contributing factors. It is essential to design and
implement standard practices for monitoring the use
of antibiotics and controlling nosocomial infections to
reduce the spread of antibiotic-resistant strains.

The frequency of the blaCTX-M gene in our isolates
was 86.7%, which explains the high level of resistance
to cefotaxime and ceftazidime antibiotics. Similarly, the
prevalence of blaCTX-M was reported as high as 100% and
89.2% by Patil et al. and Rameshkumar et al., respectively
(25, 26). An investigation in Iran in 2018 showed that 88 out
of 94 K. pneumoniae isolates harbored blaTEM, blaSHV, and
blaCTX-M-15 concurrently, which is in line with our results
(27). These similar rates may indicate an exogenous source
of resistance genes, as the frequencies of these genes are
similar in different regions. No isolates were positive for
blaGES in this study. In the research conducted by Patil et
al., the prevalence of blaGES was 9%, while Indrajith et al.
reported its prevalence as high as 20% in 2021 (25, 28).

Carbapenem-resistant K. pneumoniae has spread
extensively in medical care settings. More than 90% of
our isolates were carbapenem-resistant. In 2017, Moemen
and Masallat collected 125 K. pneumoniae isolates, of
which 42 were carbapenem-resistant, and 62% were
recovered from respiratory specimens. In their study, the
highest rate of resistance was reported against cefotaxime
(100%) and ceftazidime (97.6%), similar to the present
study. Moreover, resistance to carbapenems, including
meropenem, imipenem, and ertapenem, was reported to
be 71.4%, 59.5%, and 92.9%, respectively (29).

Resistance to carbapenems can be caused by the
production of K. pneumoniae carbapenemase, New
Delhi metallo-β-lactamase (NDM), MBLs, oxacillinase-48
(OXA-48), ESBLs, and porins as well as the hyperproduction
of Ambler class C (AmpC) β-lactamase (30). The blaIMP

gene was the only carbapenemase gene investigated in
our study, which was not detected in any isolates. It is very
likely that carbapenemase genes other than blaIMP were
responsible for carbapenem resistance in our isolates
(29). Ssekatawa et al. reported the presence of blaIMP as
high as 19.4% in 2021 (31). Hu et al. in China collected 159
carbapenemase-producing K. pneumoniae isolates during

2018 - 2019, of which 50.9% were recovered from sputum
samples.

All isolates were MDR and resistant to imipenem,
meropenem, gentamicin, cefoxitin, ceftazidime,
cefoperazone/sulbactam, and aztreonam. The prevalence
of resistance to imipenem was reported to be more than
90%, and blaKPC was positive in 81.1% of the isolates. No
blaIMP and blaGES were identified in their study, which is in
line with our results (32). It could be construed that blaIMP

as a resistance gene is not a point of concern currently in
our region. In contrast, other beta-lactamase genes, such
as blaCTX-M, are much more prominent and should receive
higher priority in surveillance programs.

5.1. Conclusions

Periodic examination of the phenotypic and genotypic
resistance patterns of patients is highly effective in
combating AMR and leads to decreased hospitalization
and medical care costs. Other ESBL genes can also be
investigated for more precise prediction of AMR status in
the clinical isolates of K. pneumonia.
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